Dynamic and Efficient Inference for Text Generation via BERT Family

Xiaobo Liang!

Juntao Li'* Lijun Wu?

Zigiang Cao! Min Zhang'

'Soochow University, 2Microsoft Research
xbliang3@stu.suda.edu.cn, {1jt,zqcao,minzhang}@suda.edu.cn
lijuwu@microsoft.com

Abstract

Despite the excellent performance of Pre-
trained Language Models on many text genera-
tion tasks, they suffer from inefficient inference
on computation and memory due to their large-
scale parameters and the universal autoregres-
sive decoding paradigm. In this work, we pro-
pose a novel fine-tuning method DEER, which
can make a single pre-trained model support
Dynamic and Efficient infERence and achieve
an adaptive trade-off between model perfor-
mance and latency. In particular, our critical in-
sight is to jointly utilize the non-autoregressive
(NAR) generation and dynamic parameter prun-
ing techniques, which can flexibly control the
decoding iteration steps and model sizes ac-
cording to memory and latency limitations. Be-
sides, we also explore the effectiveness of the
pre-trained MLMs (i.e., the BERT family) for
text generation tasks since their bidirectional
attention nature is more suitable for the NAR
training objective. Extensive experiments on
both monolingual and multilingual pre-trained
MLMs demonstrate the effectiveness of our pro-
posed DEER method by consistently achieving
(1) higher BLEU scores than the strong autore-
gressive Transformer model on three neural
machine translation tasks with 3 — 12 times
speedup, (2) competitive performance (but with
much faster inference speed) compared with the
BART model on four GLGE benchmark tasks.
Our code will be publicly available at GitHub'.

1 Introduction

Large-scale pre-trained language models (Devlin
et al., 2019; Radford et al., 2019; Brown et al.,
2020; Chowdhery et al., 2022) have shown great po-
tential in achieving impressive performance; how-
ever, they are accompanied by substantial compu-
tational complexities and occupy significant mem-
ory space. These factors pose obstacles to their
practical implementation in real-world applications.

*Corresponding Author
1https ://github.com/dropreg/DEER

While recent studies (Sanh et al., 2019; Jiao et al.,
2020) have made attempts to address the chal-
lenges associated with compressing and acceler-
ating inference for pre-trained Transformer models,
the majority of these efforts have concentrated on
techniques such as knowledge distillation (Song
et al., 2020), quantization (Bai et al., 2021; Tao
et al., 2022), and parameter pruning (Xia et al.,
2022). The pre-trained non-autoregressive gener-
ation paradigm has received limited attention and
remains relatively unexplored.

To fill this blank, we first summarize two main
difficulties in the deployment and application of
large generative models. Firstly, the prevailing gen-
erative models currently employ an autoregressive
approach to generate target tokens incrementally, as
seen in models like BART (Lewis et al., 2020) and
T5 (Raffel et al., 2020). While these models have
gained popularity and demonstrated effectiveness,
their autoregressive nature hinders efficient infer-
ence through parallelization, resulting in inefficien-
cies. Secondly, task-specific fine-tuning is crucial
when deploying pre-trained models on diverse edge
devices (Sun et al., 2020; Xu et al., 2021). It is im-
practical to adopt a single model for all devices due
to variations in memory capacity and latency con-
straints. Consequently, multiple models with differ-
ent architectural configurations need to be trained
to meet these device-specific requirements, leading
to additional resource consumption and increased
carbon emissions. To address these challenges,
we propose a novel joint training strategy called
DEER. This strategy offers fast inference by em-
ploying a non-autoregressive generation approach
and provides flexibility in model size through the
utilization of dynamic block pruning.

Concretely, we choose the BERT family mod-
els to implement our DEER method because their
bidirectional attention mechanism is more suitable
for non-autoregressive generation tasks. To allow
encoder-based models for text generation and re-

2883

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 28832897
July 9-14, 2023 ©2023 Association for Computational Linguistics

https://github.com/dropreg/DEER

duce the error accumulation in length prediction,
we combine the training objective of Connectionist
Temporal Classification (Graves et al., 2006; Li-
bovicky and Helcl, 2018) (CTC) and Levenshtein
Transformer (Gu et al., 2019) for multi-task train-
ing. Compared with previous methods, this ap-
proach has a better result than the iterative ap-
proach at the first generation step and can further
improve the iteration refinement performance with
the obtained good initialization. Moreover, to eas-
ily adapt the BERT family to non-autoregressive
generation without introducing extra parameters or
cumbersome post-training, we design task-specific
input formats and self-attention masks (Dong et al.,
2019). Different input formats and self-attention
masks can dynamically control the source and tar-
get information interaction and remedy the struc-
tural defects of the encoder-based model, making
it competent for text generation.

Our DEER also incorporates dynamic block
pruning for model training and inference to make
the BERT family with adaptive model size. Mean-
while, we use score-based parameter mask and spar-
sity regularization to choose and train the suitable
model size for current devices, referring to move-
ment pruning (Sanh et al., 2020; Lagunas et al.,
2021; Xia et al., 2022). Unlike current pruning
works, DEER is a one-stage training method with-
out two-stage fine-tuning for sub-models and can
dynamically choose a model size instead of a fixed
size. In inference, we gather the weight from the
trained model for different devices when its impor-
tance score is larger than the global threshold. The
sparsity regularization is also crucial, which can
encourage the model to decrease the importance of
weight score and control the sparsity level.

We conducted extensive experiments to vali-
date and analyze the effectiveness of our proposed
DEER method on both monolingual and multilin-
gual models from the BERT family. In particu-
lar, our DEER method outperforms the AR model,
achieving a 3x — 12x speedup on three neural
machine translation tasks. Additionally, DEER
overcomes the limitations of memory and latency,
enabling support for various hardware devices with-
out compromising the task performance of the orig-
inal model. These results demonstrate the efficacy
of our DEER method in improving inference speed
and compatibility with diverse hardware devices,
while maintaining or surpassing the task perfor-
mance of the original models.

In a nutshell, our contributions are as follows:

* DEER leverages the combination of non-
autoregressive training and the pre-trained
BERT family to enhance performance while
maintaining fast inference by modifying the
iteration step.

* DEER integrates the CTC generator and Lev-
enshtein editor to empower the Transformer
encoder-based model with the ability to gen-
erate and produce favorable results for itera-
tive refinement, eliminating the need for task-
specific length prediction modules.

* DEER utilizes dynamic block pruning to re-
duce the model size with only a marginal de-
crease in performance, enabling deployment
on diverse hardware devices and overcoming
limitations related to memory and latency.

* Benefits from the NAR generation and dy-
namic block pruning, we demonstrate that
DEER achieves excellent performance on mul-
tiple text generation tasks, showcasing its re-
markable generalization capability.

2 Related Works

2.1 Structured Pruning

Structured pruning methods (He et al., 2017;
Molchanov et al., 2019; Guo et al., 2020) aim to
search a sub-model for large-size models by prun-
ing unimportant dimensions (McCarley et al., 2019;
Prasanna et al., 2020), heads (Renda et al., 2019;
Wang et al., 2020), and layers (Fan et al., 2019; Saj-
jad et al., 2020). Movement Pruning (Sanh et al.,
2020; Lagunas et al., 2021; Xia et al., 2022) is
a representative method that introduces a flexible
parameter mask to obtain significant weights by
scoring parameters during training. However, this
approach only tries to find a high-performance sub-
model with target sparsity rather than a model that
can adaptively adjust the model size. It is an urgent
need to explore dynamic and efficient models for
various common mobile platforms (Li et al., 2021),
such as self-driving cars, smartphones, drones, and
robots. Hou et al. (2020) propose a dynamic BERT
model called DynaBERT, allowing both adaptive
width and depth to satisfy the requirements of dif-
ferent edge devices. In order to make the model
adaptable to different hardware devices and push
sub-models to achieve competitive performance,

2884

i [[[can be attended

[[] cannot be attended

ouepue | [ca]
=

Predic:
Transformer block

3

s O0O0OO0O

s O0O0o0oog

o [] [[[[[2emssen e

=00 [0 0O O O

<D OHOOO 3

key/value H
<BOS> I <EOS><BOS> § <EOS> |

~NENODOE:
esews ;A s

Figure 1: The illustration of our proposed DEER for non-autoregressive generation, which contains two training
objectives: single-step CTC generator (left) and iterative-based Levenshtein editor (right). We exhibit different
self-attention masks to show different context information for query and key/value pairs. The gray block represents
the hidden state of the query that is not used to attend to the hidden state of the key/value.

our DEER combines the advantage of movement
pruning and dynamic training to fine-tune the pre-
trained generative model.

2.2 Non-autoregressive Generation

Recently, there has been a wide range of stud-
ies (Guetal., 2018; Qi et al., 2021; Li et al., 2022a)
for Non-autoregressive text generation to improve
inference efficiency. The commonly used non-
autoregressive methods can be categorized into two
types, i.e., single-step generation (Qian et al., 2021;
Ghazvininejad et al., 2020; Du et al., 2021) and
iterative generation (Kasai et al., 2020; Gu et al.,
2019; Saharia et al., 2020; Huang et al., 2021). For
example, Libovicky and Helcl (2018) introduced
CTC to the single-step non-autoregressive frame-
work that models latent alignments with dynamic
programming. Ghazvininejad et al. (2019) intro-
duced the masked language modeling objective
to non-autoregressively model predict and refine
translations iteratively. Gu et al. (2019) proposed
a new sequence generation model called Leven-
shtein Transformer, composed of the insertion and
deletion operations, which facilitates not only gen-
eration but also sequence refinement by allowing
dynamic length changes. However, the iterative
model does not produce satisfactory results for
single-step decoding and needs multiple-step re-
finement to improve performance. As a concurrent
work, XLM-D (Wang et al., 2022) also delved into
the implicit alignment and pre-trained models for
non-autoregressive generation. However, we em-
ployed distinct methods and model architectures in
research. Additionally, we conducted further explo-
ration by incorporating model pruning to achieve
additional compression of the model size, enhanc-
ing its suitability for a broader range of scenarios.

3 Methods

In this section, we first exhibit how to fine-tune the
BERT family model (e.g., XLM-R and RoBERTa)
as a NAR text generator, which supports single-step
generation (§ 3.1) and iterative-based generation
(§ 3.2), as shown in Figure 1. Then we introduce
the dynamic block pruning for model training to
reduce the computation and memory consumption
in inference with dynamic model size (§ 3.3).

3.1 Single-step CTC Generator

The BERT family models comprise stacked bidirec-
tional Transformer encoder blocks (Vaswani et al.,
2017), in which each block contains two sub-layers:
the multi-head self-attention layer and the fully
connected feed-forward layer. For a given BERT
variant Mgeggrr, the [-th encoder block takes the rep-
resentation of the (I-1)-th block as input 4'~1, and
sequentially processes it as:

S! = self_attention(H!™!) + H! 1,

l l l ey

‘H' = Feed_Forward(S') + S',
where ! is the output of the encoder layer [, and
there is also a residual connection and layer nor-
malization for each sub-layer.

Given the paired training data D=(X",)), the
BERT family models can easily obtain the contex-
tualized vector representation for source sentence
X, but their bidirectional attention mask mecha-
nism makes them difficult to be applied to text
generation tasks. Thus, we use the latent align-
ment model to train our model, which utilizes the
Connectionist Temporal Classification (CTC) to
model the token alignment A between X and).
In this way, the model does not need to predict

2885

the length of the target sequence. The latent align-
ment assumption requires that the length of the
source sentence is at least as long as the target. To
satisfy this requirement, we utilize specific input
formats and self-attention masks to control con-
text information and generate target sentences in
a NAR manner. As shown in Figure 1, we com-
bine the source X" and pseudo target Y as input and
build a specific attention mask when the source
sentence length is close with the target, which
makes the)7 attend to X, but X cannot attend to
J>, such as machine translation task. For example,
we copy the source sentence twice uniformly as
V,eg.,Y = {x1,x1,22,22,...,Tm, Ty}, given
the X = {z1,x2,...,zy}. Finally, we will com-
pute the log-likelihood of the target and CTC loss
function by marginalizing the latent alignments:

log P(Y|X) =log > [[P(aild,),
a€B(Y) i 2)
Lere = —log P(Y]X),

where function 3()) can generate the set of all
possible alignments from X’ to), which can im-
plement with an efficient dynamic programming
algorithm (Graves et al., 2006).

It is worth noting that we have discovered that
in tasks with rich resources, the model’s exclu-
sive reliance on implicit alignment does not ad-
equately capture the alignment patterns inherent
in the dataset. The existence of numerous intri-
cate patterns amplifies the challenges associated
with model learning. Consequently, we adopt the
Glancing strategy (Qian et al., 2021) to facilitate a
progressive learning approach for the model.

3.2 Iterative-based Levenshtein Editor

Although the CTC model supports fast inference
with the single-step generation, it relies on the con-
ditional independence assumption for token align-
ments, which is incapable of handling multi-modal
scenarios. Therefore, we introduce the iterative re-
finement mechanism using Levenshtein Editor (Gu
etal., 2019), which shares parameters with the CTC
model to correct the text error.

During training, we first build training data to
imitate insertion and deletion behaviors in the text
editor, which are basic operations from the Leven-
shtein Transformer. In particular, we corrupt the
target as an initial state Vpg. by random deleting
each token from) and then reconstruct the original
target sequence by three classifiers: 1) the place-

holder classifier can predict the number of insertion
tokens via the adjacent two tokens of Vpg, :

Von = PLH_CLS(Mgert (Hx, YoeL)),

. 3)
Ly = Cross_Entropy(Vein, Vein),

where the placeholder target label)p y is calcu-
lated by comparing Y and Vpe . Meanwhile, we
concatenate the hidden states of the source se-
quence H x and target sequence hidden states Hy,.,
as the attention key/value for Transformer self-
attention layer, as shown in Figure 1. Especially,
‘H x is the cached hidden states from the CTC gen-
eration step; 2) we insert placeholder for Vpg. as
the insertion classifier input Yiys, and predict the
missing token for each placeholder:

Vs = INS_CLS(Meert(Ha, Yins)),

. (@)
Lins = Cross_Entropy (Y, Vins);

3) the deletion classifier can predict whether the
current token needs to be kept or removed for pre-
vious step results Viys:

VoeL = DEL_CLS(Mgert(Hx, j’INs))y

. 5

Lo = Cross_Entropy(Voer, Voer), ©)
where the delete label Vpg, is calculated by)>IN5 #*
Y. During inference, we take the CTC result as
input to feed the Levenshtein Editor sequentially
through different classifiers (deletion classifier —
placeholder classifier — insertion classifier) to
obtain the target sequence. We refer the reader to
Gu et al. (2019) for more details.

3.3 Dynamic Block Pruning

To achieve dynamic computation scales, we in-
troduce the dynamic block pruning to fine-tune
the BERT family with a task-specific dataset refer
to movement pruning (Sanh et al., 2020). We se-
lect important weight from the pre-trained model
by introducing the score-based parameter mask
M(S) in each forward pass, i.e., W = W ©
M (S). S is the score parameter for each param-
eter, which is calculated by the straight-through
estimator (Bengio et al., 2013). The importance
score can guide us to adjust the model size dy-
namically by setting a specific threshold 7, e.g.,
M(S) = 1 when S > 7. Different from the prun-
ing method, our method needs to modify the thresh-
old value according to fixed model sparsity (such
as {0%, 25%,50%, 75%}) during training. The

2886

threshold 7 is not needed to be updated every train-
ing step as it is time-consuming, and we found that
setting the updating number to 200 works better
in experiments. It is worth noting that we set two
global thresholds for the self-attention layer and the
feed-forward layer, respectively, considering their
different designs and functions for Transformers.

The masked weight is required for each multi-
head self-attention and the fully connected feed-
forward layer in model training:

Q=H"W, o M(S,),
K =H"W, 0 M(Sy),

V=H"Tw, o M(S,),

T 6
A = Sothax(% ©

va’
Sl — AVWO @ M(So> + Hl_l:

H' = gelu(S'W) © M(Sy) © Wy + S,

where d is the dimension of hidden states, W,
Wi, Wy, Wy, Wyq, and Wyo are the projection
matrices. We use two kinds of block-wise score
parameter (Lagunas et al., 2021): square blocks
(32 x 32) for the self-attention layer, and dimension
blocks (1 x d and d x 1) for feed-forward layer.
We also add the L1 norm as a regularization item
in training objectives to encourage more sparsity:

Lreg = Ao (S)]];)

where) is the hyper-parameter, o is the sigmoid
function to limit the score boundary.

3.4 Joint Training Algorithm

The detailed training process of DEER is shown
in Algorithm 1. Lines 2 to 5 are the dynamic
block pruning process, i.e., randomly selecting tar-
get sparsity from the model size list L,, to initial-
ize the weight mask. Lines 6 to 9 initialize the
specific input to train the CTC generator for the
first-step generation. Lines 11 to 20 will switch the
self-attention mask and input formats to train the
iterative-based Levenshtein Editor through three
classifiers. The final training objective is the sum
of all items: CTC loss, Levenshtein classifier loss,
and weight sparsity regularization term (line 21).

4 Experiments

Datasets We evaluate DEER on multiple widely
used text generation tasks to verify its effective-
ness: 1) neural machine translation (NMT), we con-
duct experiments on three benchmark translation

Algorithm 1 Training model with DEER

Require: Given data D={(X’,))}, BERT family
model Mperr and model size list L,,, for example
{0.25,0.5,0.75,1.0}.

1: while not converged do

2: > Dynamic Block Sparsity

3 Sample model size m ~ L,

4: Calculate threshold by sorted weight

s: Initialize M (S) when 7 > sort(6)[m|0|]
6 > Train Single-step CTC Generator

7 switch self-attention mask for CTC

8 Initialize by uniformly copy X

9: Lcrc = criterion(), Mgerr(X,)>))
10: > Train Levenshtein Editor
11: reswitch self-attention mask for Levenshtein

12: Initialize)pg by random delete token from
35 and calculate placeholder label Ve

13: Yoy = PLH_CLS(MBERT(?:Lm Yoer))

14: Lpy = criterion(Veiu, Vein)

15: Ipitialize Yins by insert mask token for X

16: Vins = INS_CLS(MBERI(Hz7yINs))

17: Lins = criterion(Y, Vins)

18: Ipitialize Voe as delete label)

19: VoL = DEL_CLS(]\{BERT(’ﬂx, Yins))

20: LopL = criterion(yDEL, yDEL)

21: L = Lerc + Lown + Lins + Loer + Lreg

22: Compute gradients and update weights

23: end while

datasets: IWSLT’ 14 German—English? (De—En),
WMT’16 English—Romanian® (En—Ro), and
WMT’ 14 English—>German4 (En—De). For all
translation tasks, we report the results of raw
(RAW) data and knowledge distilled (KD) data, re-
spectively. We use the same training/validation/test
sets as in previous works and the BELU score as
the evaluation metric for a fair comparison. 2)
monolingual text generation scenarios, we eval-
uate the efficacy of the proposed DEER on four
GLGE benchmarks’, including text summarization
(XSum (Narayan et al., 2018) and MSNews) and
question generation tasks (SQuAD 1.1 (Rajpurkar
et al., 2016) and MSQG). For each dataset, we first
train BART Base as a teacher model and gener-

Zhttps://github.com/facebookresearch/fairseq/
tree/main/examples/translation
Shttps://github.com/facebookresearch/DisCo/
issues/5
4https://github.com/facebookresearch/fairseq/
tree/main/examples/nonautoregressive_translation
5https://github.com/microsoft/glge

2887

https://github.com/facebookresearch/fairseq/tree/main/examples/translation
https://github.com/facebookresearch/fairseq/tree/main/examples/translation
https://github.com/facebookresearch/DisCo/issues/5
https://github.com/facebookresearch/DisCo/issues/5
https://github.com/facebookresearch/fairseq/tree/main/examples/nonautoregressive_translation
https://github.com/facebookresearch/fairseq/tree/main/examples/nonautoregressive_translation
https://github.com/microsoft/glge

IWSLT’14 De—En

WMT’16 En—Ro WMT’14 En—De

Method ‘ Iter RAW KD RAW KD RAW KD Speedup
Transformer (Vaswani etal., 2017) | # | 3474 35.05 34.16 346 | 2774 283 |
CTC (Libovicky and Helcl, 2018) 1 - 322 25.7 18.6 x
GLAT (Qian et al., 2021) 1 29.07 32.79 26.39 15.3 x
DSLP (Huang et al., 2022a) 1 - 34.17 - 27.02 14.8 x
DAG (Huang et al., 2022b) 1 - 27.25 2791 7.0 x
CMLM (Ghazvininejad et al., 2019) | 10 32.10 32.87 32.86 33.7 - 27.40 2.2 %
DisCo (Kasai et al., 2020) 2 - - - 33.22 25.64 27.34 -
Levenshtein (Gu et al., 2019) 10 33.2 33.7 - - - 27.27 4.0 x
CMLMC (Huang et al., 2021) 10 34.21 34.78 34.14 34.57 26.40 28.37 1.7 x
Imputer (Saharia et al., 2020) 8 - - - 34.4 25.0 28.2 3.9 x
CeMAT (Li et al., 2022b) 10 33.7 333 - 27.2 -
‘ ‘ 100% 75% 50% 25% | 100% 75% 50% 25% | 100% 75% 50% 25%
DEER (RAW) 1 |3549 3518 34.19 29.27 | 3247 32.18 30.48 2631 | 2299 2269 2135 1848 | 12.0 x
2 37.12 36.78 36.04 3237 | 3479 3452 32.84 28.87 | 25.18 24.77 23.60 20.82 5.3 %
4 37.24 3691 36.16 32.59 | 3493 34.67 33.01 29.14 | 2549 25.14 2396 21.20 3.3 x
‘ ‘ 100% 75% 50% 25% | 100% 75% 50% 25% | 100% 75% 50% 25%
DEER (KD) 1 | 3584 3577 3489 3147|3395 33.65 3230 2886 | 26.19 2583 2456 6.86 12.0 x
2 37.34 3726 36.54 33.81 | 3541 35.07 34.07 30.99 | 28.39 27.82 2694 15.75 53 %
4 3746 3736 36.66 33.95| 35.53 35.14 34.16 31.13 | 28.56 2797 27.18 18.18 33 x

Table 1: Comparison of our model with other non-autoregressive models on three NMT datasets. The results of
prior work are trained from scratch, which evaluates the BLEU score using the average checkpoint. Instead, we only
choose the best checkpoint without any augmentation techniques (such as LM re-ranking model or beam search).

ate the distilled data as DEER training data, which
can reduce the multi-modality problem (Zhou et al.,
2019) to facilitate the learning of NAR models. The
official script® is used for evaluation. Descriptions
and data statistics are shown in Appendix A.

Training Setups We use diverse BERT variants
as backbone models for different tasks, e.g., XLM-
R (Conneau et al., 2020) Base for NMT tasks and
RoBERTza (Liu et al., 2019) for monolingual text
generation. All pre-trained model contains 12 lay-
ers of encoder layer with 12 head for multi-head
self-attention layer. The embedding size is 768; the
feed-forward layer dimension is 3072; dropout and
attention dropout is 0.1, and 85M model parame-
ters are in total. For all experiments, we adopt the
Adam (Kingma and Ba, 2014) as an optimization
algorithm with an initial learning rate 5e — 5, with
learning rate schedule polynomial_decay. Label
smoothing is utilized in the loss function with a
value of 0.1. We set hyper-parameter A as 10 for
all tasks. We select the best checkpoint based on
the model performance on the validation set. We
train models with target sparsity of {25%, 50%,
75%} for each dataset. We set batch size as 1 for
all models and evaluate them on the corresponding
test set with the same hardware setup on a single
NVIDIA V100 GPU to measure inference speedup.
All experiments are done using the sequence mod-

6https ://github.com/microsoft/ProphetNet/blob/
master/GLGE_baselines/script/eval.py

eling toolkit Fairseq library (Ott et al., 2019).

Baselines We compare DEER against several
baselines, including vanilla AR-based Transform-
ers, single-step NAR models, and iterative-based
NAR models. We also take several pre-trained
language models as the strong baseline, e.g., pre-
trained AR model BART, ProphetNet, and CeMAT,
and pre-trained NAR model BANG and ELMER.

5 Main Results

In this section, we explore whether DEER can
provide dynamic and efficient inference on mul-
tiple tasks and datasets by evaluating its non-
autoregressive capabilities and model performance
with adaptive model sizes.

5.1 Neural Machine Translation

Table 1 shows the performance of our DEER com-
pared with base models on three NMT datasets.
DEER consistently achieves higher performance
on the KD dataset by fine-tuning the BERT family
model compared to the model trained from scratch.
Remarkably, our model can improve nearly 2 to 3
BLEU scores for every dataset through single-step
iterative refinement using Levenshtein Editor. Sig-
nificantly, DEER exceeds the vanilla Transformer
(AR model) by 2 BLEU score (37.46 v.s. 35.05)
on the IWSLT’ 14 De—En dataset and nearly 1
BLEU score (35.53 v.s. 34.6) on WMT’16 En—Ro
dataset with 4 iteration steps. For the fully NAR

2888

https://github.com/microsoft/ProphetNet/blob/master/GLGE_baselines/script/eval.py
https://github.com/microsoft/ProphetNet/blob/master/GLGE_baselines/script/eval.py

Method ‘ Iter ‘ XSUM Speedup MSNews Speedup
Metrics | | R-1/R-2/R-L
Transformer | # 30.5/10.4/24.2 - 33.0/15.4/30.0 -
ProphetNet # 39.8/17.1/32.0 - 40.6/21.6/37.0
BART { # 41.4/18.6/33.4 1.0 x 43.1/23.9/39.2 1.0 x
BANG 1 32.6/9.0/27.4 -
ELMER 1 38.3/14.2/29.9 -
\ | 100% 75% 50% - 100% 75% 50% -
DEER(Ours) | 1 | 34.1/122/289 33.5/11.6/283 31.0/10.0/26.4 93 x | 36.5/17.2/33.8 35.9/16.8/332 34.8/159/323 538 x
2 | 385/16.1/32.0 37.8/15.6/31.5 35.7/14.0/29.8 47 x | 40.5/21.6/37.4 39.8/21.2/36.9 38.4/20.0/35.6 2.7 X
4 | 39.1/16.8/32.4 385/16.4/32.0 36.5/15.0/304 25x | 41.1/22.2/37.8 40.4/21.8/37.3 39.0/20.7/36.1 1.7 x
Method | | SQuAD 1.1 MSQG
Metrics | | R-L/B-4/MTR
Transformer | # 30.7/4.8/10.9 - 29.3/5.1/16.6 -
ProphetNet | # 48.0/19.5/23.9 - 37.1/9.3/22.7 -
BART { # 49.2/20.3/23.6 1.0 x 38.1/10.2/22.9 1.0 x
BANG 44.1/12.8/19.0 - - -
ELMER 40.2/13.5/20.1 - - -
| | 100% 75% 50% - 100% 75% 50% -
DEER(Ours) | 1 | 48.2/16.9/21.7 47.4/157/21.0 46.1/144/200 63 x | 357/7.8/19.7 353/7.6/19.5 34.3/69/186 4.6 x
2 | 49.9/19.9/237 49.2/19.2/23.2 48.4/18.2/224 2.9 x | 38.7/10.0/22.7 38.7/9.9/22.5 37.9/9.4/21.8 2.1x
4 | 499/203/24.0 49.3/19.6/23.6 48.6/18.8/22.8 1.9 x | 387/9.7/233 38.8/9.8/23.1 382/9.5722.5 12X

Table 2: Results on text generation tasks. We simplify the evaluation metrics: R-1: ROUGE-1. R-2: ROUGE-2.
R-L: ROUGE-L. B-4: BLUE-4. MTR: METEOR. (7} indicates the results of our re-implementation.)

setting (single-step generation), our method also
achieves comparable performance compared with
strong baseline GLAT by only using CTC align-
ment training objective. Benefiting from the NAR
speedup, DEER obtains efficient inference with
faster 3 — 12 x than the AR model, even though
the BERT family model has more parameters and
layers. For the raw data scenario, DEER obtains
acceptable results on low-resource datasets but fails
on the rich-resource dataset (WMT’ 14 En—De).
Obviously, the CTC-based model cannot handle the
multi-modality problem in large-scale data, which
confuses the model in learning the alignment effec-
tively. Considering its complexity, we will leave it
as future work.

5.2 Text Generation

Table 2 presents the experimental results for the
monolingual text generation datasets. Compared to
the pre-trained NAR model BANG (Qi et al., 2021)
and ELMER (Li et al., 2022a), DEER obtains better
performance on question generation task SQuAD
1.1 under the fully NAR setting. Besides, DEER
also achieves 9.3 x, 5.8 x, 6.3 %, and 4.6 x infer-
ence speedup for XSUM, MSNews, SQuAD, and
MSQG, respectively. Compared to the pre-trained
AR model, DEER surpasses the ProphetNet (Qi
et al., 2020) and achieves a comparable result with
BART. These results well demonstrate that DEER

Scalable Transformer DEER
Param beam=1 beam=4 | Param greedy
46M 26.7 27.1 38M 27.18
6OM 27.4 27.9 64M 27.96
91M 27.8 28.4 85M 28.56

Table 3: Comparison with the Scalable Transformer.

supports dynamic and efficient inference and good
trade-offs between performance and latency with
flexible iteration steps.

5.3 Dynamic Model Size for Inference

We conducted further experiments to evaluate the
performance of the models under different sizes
pruning, to verify whether the models are overpa-
rameterized for various tasks. We partitioned the
backbone networks of ROBERTa-base and XLMR-
base into different proportions: 100%, 75%, 50%,
and 25% (excluding the parameters of the embed-
ding layer). In the experiments, it can be observed
that our approach maintains satisfactory perfor-
mance even after reducing the parameter size by
half. Thus, we can effectively deploy DEER on dif-
ferent edge devices by adjusting the model sizes.
In Table 3, we compare the scalability for DEER
and Scalable Transformer (Gao et al., 2021) (AR
model) on the WMT’14 En—De dataset, which
contains multiple sub-Transformer that can be eas-

2889

Iteration Step

Method Dataset | 5 3 4
DEER Raw 3549 37.12 3723 37.24
w/o Levenshtein Raw 32.41 - - -
w/o CTC Raw 18.02 32.72 33.50 33.59
DEER KD 35.84 3734 3745 37.46
w/o Levenshtein KD 35.27 - - -
w/o CTC KD 23.60 35.09 3554 3559

Table 4: Ablation study for IWSLT’ 14 De—En.

" IWSLT'14 De—En

371

36 1 L RS N .

351

)}
Hw
m
334
—®— DEER (21M) %~ DEER W/0 Lrzg (21M)
32 A DEER (38M) DEER W/0 Lreg (38M)
®~ DEER(64M) o DEER w/o Lrey (64M)

314 —&— DEER (85M)

-#- DEER W/o Lre; (85M)
30

j . 3 ;
Iteration Step

Figure 2: Results with no sparsity regularization.

ily obtained from full Transformer by parame-
ters pruning. Under the same memory constraint,
DEER outperforms Scalable Transformer by com-
paring the sub-model performance with competi-
tive parameters, which demonstrates the superiority
of our dynamic block pruning.

6 Analysis and Discussion

6.1 Ablation Study

To confirm the effectiveness of the CTC model
and Levenshtein Editor combination, we separately
train them by using the RoBERTa as the backbone
model on the IWSLT’ 14 De—En dataset. Table 4
shows that DEER achieves better performance than
Levenshtein Transformer (w/o CTC) with nearly 3
BLEU scores, which benefits from the good CTC
initialization at the first iteration step. We also
observe that DEER performs better than a single
CTC generator under the fully NAR setting, which
indicates that their combination can enhance each
other without sacrificing the model performance.

6.2 Sparsity Regularization

We continue to explore the effect of sparsity on
dynamic block pruning, which is also the notable
dissimilarity between DEER and related work Dyn-
aBERT (Hou et al., 2020). Figure 2 displays the re-
sults of DEER without sparsity regularization term

Multi-head Self-attention Layer

EEN 75% Param
45% Param
| MWW 25% Param

o
]

o
o

0.4

0.2 {

Keep Percentage (%)

4] 1 2 3 4 5 6 7 8 9 10 11

Feed Forward Layer

mmm 75% Param
45% Param
mm 25% Param

e
IS

e
NI

Keep Percentage (%)

Figure 3: The kept weight in the pruned model.

Lyeq. We can observe that the model performance
drops significantly with the increase of the pruning
scale. Experiments show that sparse regularization
is crucial for model training, which ensures that the
model performs well without post-tuning.

6.3 Structures of Pruned Units

Furthermore, we study the pruned structures pro-
duced by DEER and show the proportion of kept
weights on WMT’ 14 En—De (please refer to Ap-
pendix B for other datasets) for each multi-head
self-attention (MHA) layer and feed-forward (FFN)
layer respectively, as shown in Figure 3. The model
tends to prune the parameters of the top layer of the
stacked transformer block rather than the bottom
layer, which is consistent with the phenomenon in
NLU model pruning (Xia et al., 2022). In addition,
there is not much distinction for pruned structures
on each MHA layer. We also test the model per-
formance with a single mix threshold instead sep-
arately for different layers. Unfortunately, we do
not obtain better results in experiments. The mixed
threshold reduces numerous essential parameters
in the MHA layer and seriously impairs the model
inference because the FFN layer has much more
parameters than the MHA layer.

7 Conclusion

In this work, we propose DEER, a novel fine-tuning
method that supports dynamic and efficient infer-
ence to adapt to the memory and latency limitations
during deployment. Our approach has achieved
impressive results on multiple natural language
processing tasks, including the GLGE benchmark
and three machine translation datasets. Further-
more, we have observed that the issue of length pre-
diction consistently limits the performance of the

2890

model, especially when dealing with raw datasets.
The model struggles to accurately determine the
length of the target data, which somewhat affects
the model evaluation. In our future work, we will
prioritize addressing the challenge of length pre-
diction, aiming to make it more convenient and
applicable to a wider range of tasks and scenarios.

8 Limitation

Although DEER has shown excellent performance
on multiple datasets and tasks, we still found some
limitations affecting its usability and efficiency: (1)
The latent alignment model (such as CTC) cannot
deal with the multi-modality problem in the large-
scale dataset, which also leads DEER to under-
fitting the multiple latent alignment targets that
need to be aligned. (3) Although DEER does not
need to perform length prediction, it relies on the
assumption that the input length is large than the
output, which causes the model to lose flexibility
in length control. (3) We compared sequence-to-
sequence models such as BART and ProphetNet in
the experimental part of this work. In fact, BART
only through six layers on each forward pass, while
the BERT family model needs to go through 12 lay-
ers, leading the inefficient inference due to latency
accumulation of multiple iteration steps.

9 Ethics Statement

DEER relies on the pre-trained language models,
e.g., RoOBERTa and XLM-R, which may inherit
problematic biases. However, we only use these
models as a backbone rather than using their pre-
dictions. DEER is also a task-specific method that
performs the fine-tuning process at the task-specific
dataset, which also makes the generated result de-
pend on the input of the dataset and reduces the
inherent bias.

Acknowledgements

This work is supported by the National Science
Foundation of China (NSFC No. 62206194), the
Natural Science Foundation of Jiangsu Province,
China (Grant No. BK20220488). This work is
also supported by Beijing Academy of Artificial
Intelligence (BAAI).

References

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jin Jin,
Xin Jiang, Qun Liu, Michael Lyu, and Irwin King.

2021. Binarybert: Pushing the limit of bert quan-
tization. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 4334-4348.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
2013. Estimating or propagating gradients through
stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling

language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmadn, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440—
8451.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171—
4186.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language model
pre-training for natural language understanding and
generation. Advances in Neural Information Process-
ing Systems, 32.

Cunxiao Du, Zhaopeng Tu, and Jing Jiang. 2021. Order-
agnostic cross entropy for non-autoregressive ma-
chine translation. In International Conference on
Machine Learning, pages 2849-2859. PMLR.

Angela Fan, Edouard Grave, and Armand Joulin. 2019.
Reducing transformer depth on demand with struc-
tured dropout. In International Conference on Learn-
ing Representations.

Peng Gao, Shijie Geng, Yu Qiao, Xiaogang Wang,
Jifeng Dai, and Hongsheng Li. 2021. Scalable
transformers for neural machine translation. arXiv
preprint arXiv:2106.02242.

2891

Marjan Ghazvininejad, Vladimir Karpukhin, Luke
Zettlemoyer, and Omer Levy. 2020. Aligned cross
entropy for non-autoregressive machine translation.
In ICML.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel de-
coding of conditional masked language models. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 6112-6121.

Alex Graves, Santiago Fernandez, Faustino Gomez, and
Jiirgen Schmidhuber. 2006. Connectionist temporal
classification: labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of the
23rd international conference on Machine learning,
pages 369-376.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK
Li, and Richard Socher. 2018. Non-autoregressive
neural machine translation. In International Confer-
ence on Learning Representations.

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019. Lev-
enshtein transformer. Advances in Neural Informa-
tion Processing Systems, 32.

Shaopeng Guo, Yujie Wang, Quanquan Li, and Junjie
Yan. 2020. Dmcp: Differentiable markov channel
pruning for neural networks. In Proceedings of the
IEEE/CVF conference on computer vision and pat-
tern recognition, pages 1539-1547.

Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Channel
pruning for accelerating very deep neural networks.
In Proceedings of the IEEE international conference
on computer vision, pages 1389-1397.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. Dynabert: Dynamic bert
with adaptive width and depth. Advances in Neural
Information Processing Systems, 33:9782-9793.

Chenyang Huang, Hao Zhou, Osmar R Zaiane, Lili Mou,
and Lei Li. 2022a. Non-autoregressive translation
with layer-wise prediction and deep supervision. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 10776-10784.

Fei Huang, Hao Zhou, Yang Liu, Hang Li, and Minlie
Huang. 2022b. Directed acyclic transformer for non-
autoregressive machine translation. In Proceedings
of the 39th International Conference on Machine
Learning, ICML 2022.

Xiao Shi Huang, Felipe Perez, and Maksims Volkovs.
2021. Improving non-autoregressive translation mod-
els without distillation. In International Conference
on Learning Representations.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling bert for natural language under-
standing. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 4163—4174.

Jungo Kasai, James Cross, Marjan Ghazvininejad, and
Jiatao Gu. 2020. Non-autoregressive machine trans-
lation with disentangled context transformer. In In-
ternational conference on machine learning, pages

5144-5155. PMLR.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. International
Conference on Learning Representations.

Francgois Lagunas, Ella Charlaix, Victor Sanh, and
Alexander M Rush. 2021. Block pruning for faster
transformers. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 10619-10629.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871-7880.

Changlin Li, Guangrun Wang, Bing Wang, Xiaodan
Liang, Zhihui Li, and Xiaojun Chang. 2021. Dy-
namic slimmable network. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 8607-8617.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun
Nie, and Ji-Rong Wen. 2022a. Elmer: A non-
autoregressive pre-trained language model for effi-
cient and effective text generation. arXiv preprint
arXiv:2210.13304.

Pengfei Li, Liangyou Li, Meng Zhang, Minghao Wu,
and Qun Liu. 2022b. Universal conditional masked
language pre-training for neural machine translation.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 6379-6391.

Jindfich Libovicky and Jindfich Helcl. 2018. End-to-
end non-autoregressive neural machine translation
with connectionist temporal classification. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 3016—
3021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

JS McCarley, Rishav Chakravarti, and Avirup Sil. 2019.
Structured pruning of a bert-based question answer-
ing model. arXiv preprint arXiv:1910.06360.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Turi
Frosio, and Jan Kautz. 2019. Importance estima-
tion for neural network pruning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11264-11272.

2892

Shashi Narayan, Shay B Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1797-1807.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of NAACL-HLT
2019: Demonstrations.

Sai Prasanna, Anna Rogers, and Anna Rumshisky. 2020.
When bert plays the lottery, all tickets are winning.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3208-3229.

Weizhen Qi, Yeyun Gong, Jian Jiao, Yu Yan, Weizhu
Chen, Dayiheng Liu, Kewen Tang, Houqiang Li,
Jiusheng Chen, Ruofei Zhang, et al. 2021. Bang:
Bridging autoregressive and non-autoregressive gen-
eration with large scale pretraining. In International
Conference on Machine Learning, pages 8630-8639.
PMLR.

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu, Nan
Duan, Jiusheng Chen, Ruofei Zhang, and Ming Zhou.
2020. Prophetnet: Predicting future n-gram for
sequence-to-sequencepre-training. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 2401-2410.

Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin
Qiu, Weinan Zhang, Yong Yu, and Lei Li. 2021.
Glancing transformer for non-autoregressive neural
machine translation. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:

Long Papers), pages 1993-2003.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 2383—
2392.

Alex Renda, Jonathan Frankle, and Michael Carbin.
2019. Comparing rewinding and fine-tuning in neural
network pruning. In International Conference on
Learning Representations.

Chitwan Saharia, William Chan, Saurabh Saxena, and
Mohammad Norouzi. 2020. Non-autoregressive ma-
chine translation with latent alignments. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing, pages 1098—1108.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and
Preslav Nakov. 2020. Poor man’s bert: Smaller
and faster transformer models. arXiv preprint
arXiv:2004.03844.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Victor Sanh, Thomas Wolf, and Alexander Rush. 2020.
Movement pruning: Adaptive sparsity by fine-tuning.
Advances in Neural Information Processing Systems,
33:20378-20389.

Kaitao Song, Hao Sun, Xu Tan, Tao Qin, Jianfeng Lu,
Hongzhi Liu, and Tie-Yan Liu. 2020. Lightpaff: A
two-stage distillation framework for pre-training and
fine-tuning. arXiv preprint arXiv:2004.12817.

Zhiqging Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobilebert: a
compact task-agnostic bert for resource-limited de-
vices. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
2158-2170.

Chaofan Tao, Lu Hou, Wei Zhang, Lifeng Shang, Xin
Jiang, Qun Liu, Ping Luo, and Ngai Wong. 2022.
Compression of generative pre-trained language mod-
els via quantization. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 4821—
4836.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Yong Wang, Shilin He, Guanhua Chen, Yun Chen, and
Daxin Jiang. 2022. XLM-D: Decorate cross-lingual
pre-training model as non-autoregressive neural ma-
chine translation. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 6934—6946, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2020.
Structured pruning of large language models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6151-6162.

Mengzhou Xia, Zexuan Zhong, and Danqgi Chen. 2022.
Structured pruning learns compact and accurate mod-
els. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1513-1528.

2893

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/2022.emnlp-main.466
https://aclanthology.org/2022.emnlp-main.466
https://aclanthology.org/2022.emnlp-main.466

Jin Xu, Xu Tan, Renqgian Luo, Kaitao Song, Jian Li, Tao
Qin, and Tie-Yan Liu. 2021. Nas-bert: task-agnostic
and adaptive-size bert compression with neural ar-
chitecture search. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery &
Data Mining, pages 1933—1943.

Chunting Zhou, Jiatao Gu, and Graham Neubig.
2019. Understanding knowledge distillation in non-
autoregressive machine translation. In International
Conference on Learning Representations.

2894

A Dataset Statistics

The statistic of each dataset is shown in Table 5. We
exhibit the number of examples in the train/dev/test
set and the average number of words for the source
and target sentence. In particular, the XSUM
dataset consists of 227K online articles from the
British Broadcasting Corporation (BBC), which
contains professionally written single-sentence
summaries. MSNews is a new News headline gen-
eration dataset, which contains online news arti-
cles, and each article contains a professionally writ-
ten single-sentence headline. SQuAD 1.1 contains
over 100K crowd-worker created questions in 536
Wikipedia articles. MSQG contains 220K passages
as source sentences from a real-world search en-
gine, and each passage contains a highlighted span
as the target.

Corpus | Train Dev Test Src Tgt
XSUM 204,017 11,327 11,333 358.5 21.1
MSNews 136,082 7,496 7,562 310.7 9.7
SQuAD 1.1 | 75,722 10570 11,877 1494 11.5
MSQG 198,058 11,008 11,022 459 5.9

Table 5: GLGE dataset descriptions and statistics

B Structures of Pruned Models

Figure 5 and Figure 4 show the structures of
the pruned model on IWSLT’ 14 De—En dataset
and WMT’ 16 En—Ro dataset respectively. We
can summarize from the experimental results that
the pruning ratio of each layer (multi-head self-
attention layer and feed-forward layer) in the model
is similar even in different tasks.

Multi-head Self-attention Layer

EEm 75% Param
081 mmm 45% param

0.6 | ™= 25% Param

0.4+

024

Keep Percentage (%)

0.0~
4 5 6

Feed Forward Layer

mmm 75% Param
- 45% Param
s 25% Param

Keep Percentage (%)

Figure 4: The kept weight for WMT’ 16 En—Ro.

2895

Multi-head Self-attention Layer

EEN 75% Param
mw 45% Param
s 25% Param

Keep Percentage (%)
o
£

4 7 8 9

Feed Forward Layer

mmm 75% Param
I 45% Param
mmm 25% Param

Keep Percentage (%)
o
s

Figure 5: The kept weight for IWSLT’ 14 De—En.

ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
We provide the limitations in Section 8.

A2. Did you discuss any potential risks of your work?
We think our general training method will not lead to any negative societal impact.

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
We summarize our contribution in section 7.

A4. Have you used Al writing assistants when working on this paper?
Left blank.

B Did you use or create scientific artifacts?
Left blank.

O B1. Did you cite the creators of artifacts you used?
No response.

0J B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

0 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?

No response.

0J B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

L1 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

0J B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C ¥ Dpid you run computational experiments?
In section 4
¥ C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?

We provide computational information in section 4 training setup, which contains the computational
budget, i.e., NVIDIA V100 GPU.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

2896

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

v C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
We provide experimental setup including hyper-parameter setting and best-found in section 4.

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,

etc. or just a single run?
We report the average results (number) for multiple runs of most experiments instead of the error

bars.

v C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

We report the toolkit version in section 4.

D Did you use human annotators (e.g., crowdworkers) or research with human participants?

Left blank.

[l D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

L1 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

No response.

0J D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

[D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

(] D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

2897

