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Abstract

Stereotypes are a positive or negative, gener-
alized, and often widely shared belief about
the attributes of certain groups of people, such
as people with sensory disabilities. If stereo-
types manifest in assistive technologies used
by deaf or blind people, they can harm the user
in a number of ways—especially considering
the vulnerable nature of the target population.
AI models underlying assistive technologies
have been shown to contain biased stereotypes,
including racial, gender, and disability biases.
We build on this work to present a psychology-
based stereotype assessment of the represen-
tation of disability, deafness, and blindness in
BERT using the Stereotype Content Model. We
show that BERT contains disability bias, and
that this bias differs along established stereo-
type dimensions.

1 Introduction

Pre-trained natural language processing (NLP)
models are becoming more commonly deployed
in pipelines for consumer tools, including those
that fall under the umbrella of assistive technolo-
gies. Models such as BERT are used in tools that
utilize automatic text simplification (ATS) for read-
ing assistance (Lauscher et al., 2020), where com-
plex words get replaced with simpler alternatives.
BERT is also used in natural language understand-
ing tools such as automatic speech recognition
(Chuang et al., 2020).

In addition to a continuing increase in the use
cases and complexity of AI-based assistive tech-
nologies, there is also growing interest in using
them. Alonzo et al. (2020) found that the deaf
community expressed strong interest in ATS-based
reading assistance tools. To achieve fair and inclu-
sive experiences for deaf and blind people, it is im-
portant to understand how they may be represented
by the models underlying the assistive technologies
that are designed for them (Kafle et al., 2019).

If an AI-based consumer tool perpetuates ex-
isting biases and stereotypes in society, it can in-
advertently cause and reinforce structural stigma,
or “societal level conditions, cultural norms, and
institutional policies that constrain the opportu-
nities, resources, and well-being of the stigma-
tized” (Hatzenbuehler, 2016). The bias against
deafness—or audism—is prevalent in both main-
stream society (Humphries, 1977) and in the deaf
community (Gertz, 2003). Audism has been linked
to discrimination in multiple real-world scenarios,
including the job application process (Task Force
Members and Contributors, 2012). In Szymanski
(2010), 100% of highly qualified psychology in-
ternship applications that mentioned deafness were
rejected, whereas 100% of those that didn’t men-
tion deafness were invited for an interview.

Causing or reinforcing structural stigma can lead
to allocational and representational harms (Blod-
gett et al., 2020). Allocational harms arise if as-
sistive technologies distribute resources or oppor-
tunities unfairly to disabled people. With repre-
sentational harms, if assistive technologies repre-
sent these people unfairly, disabled people may
experience alienation, decreased quality of service,
stereotypes, denigration and stigmatization, era-
sure, and/or decreased public participation.

Despite recent ballooning of research in NLP
fairness (Sheng et al., 2020; Blodgett, 2021), there
has been little investigation into how AI mod-
els represent disabled people, who comprise at
least 12.5% of the global population (WHO, 2021).
There has been even less of a focus on how people
with sensory disabilities are represented in NLP
models. Hutchinson et al. (2020) provided pre-
liminary evidence that disability-mentioning text
may be accidentally flagged as toxic. Hassan et al.
(2021) detected signs of disability bias in BERT us-
ing sentiment analysis, and they investigated how
this bias might shift when applying an intersec-
tional lens to the analysis.
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To further investigate sensory disability bias in
NLP models, we build upon prior work in associa-
tion bias in BERT. Our contributions include adapt-
ing Kurita et al. (2019)’s sentence templates to
examine associations between disability qualifiers
and stereotype traits, drawing from the Stereotype
Content Model (SCM), an established approach
in social psychology to defining stereotyped bias
(Fiske et al., 2002).

Specifically, we answer these research questions:

• RQ1. In BERT, is there evidence of bias in
how the model perceives disability, compared
to ability?

• RQ2. Do BERT’s representations of ability
and disability differ across various stereotype
dimensions?

2 Related Work

We review previous work in examining stereotypes
in NLP models, and then we briefly describe the
SCM and its relevance to measuring bias.

2.1 Stereotypes in NLP models

Bolukbasi et al. (2016) first observed that gender
stereotypes are present in static word embeddings
(e.g. word2vec and GloVe) using subspace analysis.
Caliskan et al. (2017) found that word embeddings
capture a spectrum of implicit biases, using lexi-
cons developed for the Implicit Association Test,
or the IAT (Greenwald et al., 1998), and calculated
associations within static word embeddings. Kurita
et al. (2019) extended this approach to work with
contextualized embedding models such as BERT.

However, using word lists pulled from the IAT is
limiting when it comes to assessing disability bias,
since the relevant tests incorporate images instead
of words. For this reason, there has been more work
in downstream tasks such as sentiment analysis and
topic modelling (Hutchinson et al., 2020; Hassan
et al., 2021), and less in direct association analysis.

2.2 Stereotype Content Model (SCM)

Stereotypes have been studied in social psychology
for decades (Asch, 1946; Greenwald et al., 1998;
Fiske et al., 2007). To concisely summarize the
current knowledge about stereotypes, Fiske et al.
(2002) proposed the SCM, which postulates that
stereotypes can be aligned along two dimensions:
competence and warmth. When we meet someone

new, our first psychological response is to subcon-
sciously evaluate whether they are a friend or a foe.
This is a judgement along the warmth dimension.
Immediately after we make this evaluation, we go
on to evaluate how well they may be able to act
in accordance to our perception of their warmth.
Abele et al. (2016); Nicolas et al. (2021) suggested
that these dimensions can be further split into two
subdimensions. Warmth is comprised of Morality
and Sociability, and competence is comprised of
Agency and Ability.

Researchers working under the SCM framework
also propose a causal link between stereotypes and
structural stigma (Fiske et al., 2007). People per-
ceived as warm and competent evoke feelings of
pride and admiration, whereas people perceived
as cold and incompetent evoke feelings of disgust
and contempt. Ambivalent perceptions involving
warmth and incompetence typically elicit pity and
sympathy. Coldness and competence evokes envy
and jealousy. These biases, whether explicit or im-
plicit, can lead to harms if they are perpetuated in
AI-based assistive technologies.

To the best of our knowledge, Fraser et al. (2021)
is the only work to date that has applied the SCM
to analyze stereotypes in text. The SCM has not
yet been used to investigate stereotypes in NLP
models.

3 Methods

Following Kurita et al. (2019) and Bartl et al.
(2020), we measured association bias in BERT us-
ing a fill-in-the-blank task, and synthetic, semanti-
cally bleached sentence templates. Our goal was
to directly examine representations in the model,
without potential interference from unexpected con-
text or downstream input, which may occur when
using natural sentence templates or with tasks such
as sentiment analysis and topic modelling.

3.1 Data

Table 1 displays the targets, stereotype attribute
dimensions, and sentence templates used in our
study. For the targets, we used three abled/disabled
antonym pairs to represent the concepts of abil-
ity and disability for general ability, deafness, and
blindness. We recognize that some words such
as “hearing” may not be commonly used in main-
stream society, and in turn may not appear often as
a person-describing qualifier in the Wikipedia and
Books Corpus, which BERT was pre-trained on.
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Targets
disabled abled
deaf hearing
blind sighted

Stereotype Dimension Subdimension Attributes

Warmth

Sociable 155
Unsociable 156
Moral 159
Immoral 334

Competence

Able 153
Unable 127
Independent 156
Dependent 109

Templates
1 A [TARGET] person is [ATTRIBUTE].
2 [TARGET] people are [ATTRIBUTE].
3 A person who is [TARGET] is [ATTRIBUTE].
4 People who are [TARGET] are [ATTRIBUTE].

Table 1: Targets, stereotype attribute dimensions, and se-
mantically bleached templates. The syntactic structure
of templates 1 and 2 is typical of identity-first language,
whereas templates 3 and 4 use person-first language.

However this word represents how the members of
the deaf community describe those who hear. It is
important to explore how a model may represent
a word that has different usage in certain commu-
nities, if the model is used in end-applications by
those communities.

Taking inspiration from Fraser et al. (2021), we
constructed the stereotype subdimensions using the
extended lexicon created by Nicolas et al. (2021),
with the four subdimensions of Morality, Sociabil-
ity, Agency, and Ability. In this lexicon, words are
annotated with either +1 or -1 to indicate a positive
or negative association with the given subdimen-
sion. We removed words that were not labelled
with either valence value. We represent each va-
lence pole of these subdimensions as their own sub-
dimension, e.g. words with a negative association
to Morality represent the Immoral subdimension.
We expect these 8 subdimensions to provide a more
granular understanding of stereotyped representa-
tions in BERT.

We used four semantically bleached sentence
templates, which are shown in Table 1. We adapted
them from Kurita et al. (2019) and Hutchinson et al.
(2020). The first two templates use identity-first
language, in which [TARGET] precedes “person.”
Despite removing context, the syntactic structure
of the sentence itself is known to carry cultural con-
notations (Beukeboom and Burgers, 2019; Shake-
speare, 2016). Members of the deaf community
often prefer to use identity-first language, whereas

the person-first language is usually found in a med-
ical lens. To get a general picture of associations,
we also include two templates that use person-first
language, in which [TARGET] follows “person.”

We removed words that would not fit the gram-
mar of our selected templates. We kept adjec-
tives, as identified by WordNet part-of-speech la-
belling. This leaves 1,256 unique words in this
lexicon. Most belong to one subdimension, while
87 words belong to two subdimensions (e.g. “neg-
ligent” belongs to both the Immoral and Unable
subdimensions), and 3 words belong to three sub-
dimensions (e.g., “ingenuous” belongs to the So-
ciable, Immoral, and Unable subdimensions).

To further reduce possible causes of variation,
we also removed all multi-word attributes. Al-
though we are able to mask a couple of words in
a sentence when feeding it to BERT, as done in
Bartl et al. (2020), it is not possible to predict the
probability of a multi-word phrase, only a single
subtoken. Most of our targets are whole tokens,
except for “abled,” which is a multi-token word:
“able” + “ed”. We multiplied the probabilities for
the subtokens that make up this word, since it is
implicit that these subtokens are associated.

The final dataset consisted of 30,144 combina-
tions of targets, attributes, and templates.

3.2 Measuring Bias in BERT
We used the PyTorch implementation of the
transformers library from HuggingFace, a
widely used hub for the distribution of pre-trained
Transformer models (Wolf et al., 2020). We down-
loaded bert-base-uncased, the most popu-
lar version of BERT according to download count,
along with a language modeling head on top and
its tokenizer.

Below we outline our methodology to measure
bias in BERT, which we adapted from Kurita et al.
(2019).

1. Prepare semantically bleached template sentences. For
example,

A [TARGET] person is [ATTRIBUTE].

2. For each combination of target, attribute, and template,

(a) Fill in the template.
"A deaf person is eligible."

(b) Mask the target.
"A [MASK] person is eligible."

(c) Compute the target’s probability, given the con-
text provided by the attribute.

px = P([MASK]="deaf" | sentence)
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Figure 1: Bias scores for pairs of targets, when the target is predicted in the presence of the attribute. Each bias
score is annotated with statistical significance where n.s. means the bias is not significant at p > 0.05, ∗ is p ≤ 0.05,
∗∗ means p ≤ 0.01, and ∗ ∗ ∗ is highly significant at p ≤ 0.001. The further the score gets from zero, the more
unequal the representations of ability and disability. Scores above zero indicate that BERT more closely associates
the abled target with the corresponding stereotype subdimension, whereas scores below zero indicate a bias where
the model prefers the disabled target more, given the stereotype context. These results show evidence of significant,
nuanced bias in how BERT represents disability, compared to ability.

(d) Mask both the target and attribute.
"A [MASK] person is [MASK]."

(e) Compute the target’s prior probability, given no
context.

pprior = P([MASK]="deaf" | masked_sentence)

(f) Compute the association (a) between the target
(x) and attribute (m).

ax,m = log (
Px

Pprior
)

(g) Compute the mean association score (A) between
the target (x) and the attribute subdimension (M).

Ax,M = meanmϵM ax,m

(h) Compute the bias score for the attribute subdi-
mension (M) as the difference between the mean
association scores for two targets.

biasM = Ay,M − Ax,M

If the association is negative, this means that the
target’s probability is lower than its prior proba-
bility. In other words, the attribute’s context de-
creased the probability that BERT predicts the tar-
get. Likewise, if the association is positive, the
context increased the target’s probability of being
predicted.

In all bias calculations, the minuend is the abled
target’s association score, and the subtrahend is the
disabled target’s association score. Thus, if the bias
is positive, the association between the abled target
and the attribute subdimension is stronger. If the

bias is negative, the disabled target is more strongly
associated to the attribute subdimension. If the bias
is zero, there is no difference in the probability of
predicting either target, given the context.

We measured statistical significance via a paired-
attribute permutation test over Ay,M and Ax,M.

We also performed the inverse analysis, where
we explored the representation of stereotype con-
tent given the presence of ability or disability. To
carry out this analysis, we essentially treated at-
tributes as targets, meaning that we masked the
attribute and computed its probability, given the
context provided by the target. Aside from this
swap, the overall methodology remains the same.

4 Results and Discussion

Figure 1 displays the bias score between each pair
of targets (abled/disabled antonyms, e.g. “hear-
ing” and “deaf”) for each stereotype subdimension
in the SCM. Here we can see certain patterns in
how disability is represented in BERT, compared
to ability.

The first takeaway from this figure is that there
is a bias, or a difference, in the representations,
confirming RQ1. The bias is significant at varying
levels across all subdimensions except the Unable
subdimension. Correlation in language usage may
have contributed to the lack of bias in the Unable
subdimension. Mentions of disability are often ac-
companied by words referring to ability, and often
in a negative, medical context where disability is
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Figure 2: Mean association scores for each combination of target and stereotype subdimension. The further the score
is from zero, the stronger the association is in BERT. If the score is above zero, this means that BERT positively
associates the target with the stereotype subdimension. Conversely, if the score is below zero, BERT negatively
associates the target with the stereotype subdimension. These results reveal patterns in how BERT’s representations
of ability and disability align to known stereotype subdimensions.

framed as a problem on the body, rather than on
society (Shakespeare, 2016).

The second takeaway is that BERT is gener-
ally more likely to associate the abled target to all
stereotype subdimensions, except the Unable sub-
dimension for all three pairs of targets, and the Im-
moral and Unsociable subdimensions for blindness.
This partiality toward ability may been caused by
higher frequencies of abled targets in the training
data (Schick and Schütze, 2020). People with dis-
abilities are an underrepresented population and
are thus mentioned less in mainstream text; there
is an ongoing project to improve one of the train-
ing datasets to create more text related to disability
(Wikipedia contributors, 2022). It is also less com-
mon to use an abled target to describe a person with-
out a disability (Beukeboom and Burgers, 2019),
and this in addition to these words’ increased fre-
quency may have led BERT to “understand” them
better but in different contexts.

The third takeaway is that the bias is stronger if
the sentence includes a positive warmth (Moral, So-
ciable) or competence (Able, Independent) context,
presenting a high-level insight into RQ2. Given a
positive stereotype context, BERT is more likely
to predict the abled target than the disabled target
in the fill-in-the-blank task. In other words, BERT
is less likely to associate disability to warmth and
competence. This bias is significant for ability,
deafness, and blindness at p ≤ 0.001.

On the other hand (or the other side of the fig-
ure), the bias between abled/disabled antonym tar-

get pairs is weaker if the sentence includes a nega-
tive warmth (Immoral, Unsociable) or competence
(Dependent) context. This smaller difference in
representation is still significant for deafness at
p ≤ 0.001, significant for general ability at varying
levels, and significant for blindness with only the
Dependent subdimension at p ≤ 0.01.

To investigate RQ2 in more depth, we show in
Figure 2 the mean association scores for each com-
bination of target (an abled or disabled antonym)
and stereotype subdimension. This figure reveals
more nuanced patterns in BERT’s representation
of disability and how this representation aligns to
stereotype subdimensions from the SCM.

One pattern that stands out is that almost all
of the mean association scores are negative, re-
gardless of target or subdimension. A negative
association score indicates that BERT is less likely
to predict the target given the stereotype content
and the syntactic structure of the sentence tem-
plate. These negative association scores provide
further support for BERT having limited knowl-
edge about abled targets’ range of usage, and/or
the under-representation of disabled targets in the
model.

Figure 2 also sheds additional light on the
weaker bias shown in Figure 1 for negative sub-
dimensions. Although BERT may have an overall
preference for abled targets, the disabled targets’
associations to these negative subdimensions are
strong enough to appear nearly on par with the
abled targets’ associations to the same subdimen-
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Figure 3: Bias scores for pairs of targets, when the attribute is predicted in the presence of the target. For
interpretation details, please refer to Figure 1. These results show evidence that BERT is less likely to predict any
attribute given an accompanying disability context. BERT contains significantly stronger associations between all
stereotype attribute subdimensions and the abled target.

sions.
A third takeaway from Figure 2 is that disabled

targets are less associated with Able, Independent,
Moral, and Sociable contexts, compared to all other
associations. This is especially pronounced with
“disabled” and “deaf”.

In Figure 4, the bias scores from the inverse
analysis present evidence that predicting different
attributes given the same target do not lead to dif-
ferent biases. Different stereotype subdimensions
are not any closely combined with different targets,
when the target context is already present in the sen-
tence. However, BERT shows a general preference
for predicting any attribute in the presence of abled
targets, since the bias scores are all significantly
positive, especially for ability.

We want to note that, despite semantic bleaching,
syntactic differences in the sentence templates af-
fected the strength of the association scores, but not
the patterns. When using identity-first templates
to predict a target given stereotype content, BERT
more strongly associated “abled” and “hearing” to
all subdimensions, whereas “sighted”, “disabled”,
“blind”, and “deaf” had stronger associations to
all attribute subdimensions using person-first tem-
plates.

This is interesting, because identity-first and
person-first language are known to carry cultural
connotations. Furthermore, some common identity-
first disability qualifiers, such as “disabled” and
“deaf”, and “blind” are used in contexts outside
of social identity categories, e.g. as metaphors:

“deaf as a post,” “deaf and blind to [insert situa-
tion]”. This may have impacted how they were
understood by the model, and subsequently how
they are predicted in identity-first or person-first
language contexts.

5 Conclusions and Future Work

Regardless of how biases manifest, the first step
toward ensuring harmless use of AI-based assistive
technologies is to understand how target users are
represented in the underlying models. By apply-
ing the Stereotype Content Model to evaluate rep-
resentational differences, we present evidence of
disability association bias in a popular pre-trained
NLP model that is used in state-of-the-art AI-based
assistive technologies such as text simplification
and speech recognition.

We also present a breakdown of this bias along
stereotype dimensions, which uncovers nuanced
patterns in undesirable associations between dis-
ability and stereotypes, the most notable being that
disabled people are significantly less likely to be
associated to warmth and competence. Our results
emphasize the need to work toward more fair and
inclusive assistive technologies, especially since
disabled people are the target population for these
tools.

There are a number of limitations with our study.
First, we explored these associations through a
broad lens, looking at only ability versus disability.
It is important to recognize that disability is not a
siloed, unitary concept (Peña et al., 2016). Future
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work should investigate the associations through
an intersectional lens (Crenshaw, 1989), to better
understand how disability bias is affected by the
interconnected nature of social categorizations.

A second limitation of our study is our usage of
sentence templates. Despite attempts to semanti-
cally strip a sentence to provide a neutral context,
BERT still draws on the syntactic structure of the
sentence itself to help make its predictions (Devlin
et al., 2019). We took this into consideration by
varying the structure. However, we observed that
association strengths appear to be influenced to a
degree by syntactic differences. Future work can in-
vestigate stabilizing the bias evaluation metrics by
including more templates and a wider range of sen-
tence structure, or randomly sampling a natural sen-
tence dataset. It would also be interesting to further
differentiate between identity-first and person-first
language, as well as to explore question-answering
templates.

Third, we examined a limited number of targets
and only in one model, BERT. Future work can
extend our approach to evaluate additional disabled
targets in additional models, such as GPT-2 (Rad-
ford et al., 2018) and GPT-3 (Radford et al., 2019),
to get a fuller picture of disability representation in
a wider range of popular pre-trained NLP models
underlying AI-based assistive technologies.

Future work can also draw on debiasing ap-
proaches to mitigate bias in these models. We want
to note that it is important in this work to also take
into consideration the specific model deployment
context, because enforcing fairness in an inappro-
priate context can result in the unintended erasure
of a marginalized population (Blodgett, 2021). We
provided an array of possible causes of the stereo-
type patterns that we observed, and these can be
avenues for exploring debiasing solutions.
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