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Abstract

This year’s iteration of the SIGMORPHON-
UniMorph shared task on “human-like” mor-
phological inflection generation focuses on gen-
eralization and errors in language acquisition.
Systems are trained on data sets extracted from
corpora of child-directed speech in order to sim-
ulate a natural learning setting, and their pre-
dictions are evaluated against what is known
about children’s developmental trajectories for
three well-studied patterns: English past tense,
German noun plurals, and Arabic noun plurals.
Three submitted neural systems were evaluated
together with two baselines. Performance was
generally good, and all systems were prone
to human-like over-regularization. However,
all systems were also prone to non-human-like
over-irregularization and nonsense productions
to varying degrees. We situate this behavior in
a discussion of the Past Tense Debate.1

1 Introduction

The overarching goal of this subtask of the 2022
SIGMORPHON-UniMorph shared task on mor-
phological inflection, in contrast with this year’s
and previous years’ typologically informed sub-
tasks, was to provide insight into how current state-
of-the-art morphological inflection models relate to
human language acquirers, to what extent they be-
have similarly or differently, and in what respects
they perform better or worse. As such, the task
was designed to be cognitively informative while
still approachable for the NLP morphology commu-
nity. This was achieved in two ways: First, nested
training sets of increasing size were extracted from
corpora of child-directed speech, following (Belth
et al., 2021), allow us to approximate learning tra-
jectories with batch learning models that are typi-
cal in the field today rather than incremental mod-
els which might better approximate the child lan-

1Data, evaluation scripts, and predictions are avail-
able at: https://github.com/sigmorphon/
2022InflectionST

guage acquisition setting. Second, supervision with
semantic features substitutes for semantic infor-
mation which children in real acquisition settings
would certainly glean from their linguistic and en-
vironmental experiences. While this simplified the
task considerably, it also permitted us to focus on
the act of generating correct forms in the absence
of other learning confounds.

1.1 Historical Background

The acquisition of morphological patterns has been
heavily investigated for decades from both exper-
imental and computational perspectives. The ac-
quisition of English past tense in particular was
the original locus of the so-called “Past Tense
Debate,” with implications not only for the na-
ture of cognitive morphological representations
(single-route or dual-route), but also for the na-
ture of cognitive representations and computations
more generally (symbolic or non-symbolic, dis-
tributed or not). The debate kicked off in earnest
following the publication of an early connection-
ist (psychologically-inspired feed-forward artifi-
cial neural network) model for past tense learning
(Rumelhart and McClelland, 1986). The model did
not explicitly handle regular and irregular patterns
differently (it was single-route), yet it performed
reasonably well given the computing power and
neural network know-how available at the time.

A response by Pinker and Prince (Pinker and
Prince, 1988), who instead advocated for a sym-
bolic model of past tense learning and representa-
tion in which regular and irregular forms were han-
dled separately (a dual-route model) was the first
in what turned into many years and dozens of pa-
pers worth of discussion. As the years passed, they
expanded to encompass morphological patterns in
other languages as well, particularly pluralization
of German nouns. See McClelland and Patterson
(2002) and Pinker and Ullman (2002) for surveys
of the debate.
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Modern deep neural systems are in many ways
the spiritual and technological successors to the
connectionists. Given the success of such mod-
els on a wide range of tasks in NLP, it is possible
that modern neural morphology models could over-
come many of the drawbacks of their predecessors.
A recent paper (Kirov and Cotterell, 2018) made
this argument to the computational linguistics com-
munity. Given the critical responses and responses
to the responses so far (Corkery et al., 2019; Mc-
Curdy et al., 2020; Belth et al., 2021; Beser, 2021;
Dankers et al., 2021), it is fair to say that the debate
has been reignited.

1.2 Contribution of the Shared Task

The SIGMORPHON inflection shared task
paradigm (Cotterell et al., 2016, 2017, 2018; Mc-
Carthy et al., 2019; Vylomova et al., 2020; Pi-
mentel et al., 2021) is well-suited for assessing
the behavior of morphological learning systems.
Developing a greater understanding of the ways in
which systems are or are not human-like can help
explain why their prediction accuracy is so good
and also direct us towards areas of improvement.
The Past Tense Debate and the developmental re-
search that came out of it provides a backdrop over
which we can evaluate the systems.

This is the second year that the SIGMORPHON
shared task on morphological inflection is running
a “human-like” generalization task. Last year’s
task2 investigated the extent to which computa-
tional systems matched adult acceptability ratings
on wug tests presented in English, German, Dutch
and Russian. Such a task is suited for testing sys-
tems’ ability to form human-like analogies between
phonologically related forms in a laboratory setting.
However, the task is not suitable for answering the
questions addressed this year.

Adults appear to approach wug tests differently
from children (Schütze, 2005), with many adults
treating it as a game that requires clever analogies
(Derwing and Baker, 1977). This difference is ob-
served in the original wug test study (Berko, 1958),
in which adults readily produced analogical past
forms glung and glang for gling on analogy with
verbs like sting-stung and sing-sung, while 83 of
86 young children either produced glinged or re-
fused to answer. It is not clear to what extent this
is a difference in child and adult linguistic repre-

22021 description and data available here: https://
github.com/sigmorphon/2021Task0

sentations or an artifact of experimental design. It
is also not entirely clear to what extent gradient
acceptability ratings are the result of the gradient
experimental prompts, since they may drive test
subjects to spread responses over a wider range
than they would otherwise (Parducci and Perrett,
1971).3 See Yang (2020) for additional discussion.

Since this task sought to compare computational
morphology learning systems to child learners, we
took a different approach. Teams were asked to
train inflection models as for previous SIGMOR-
PHON shared tasks but on data drawn from corpora
of child directed speech, the input that children re-
ceive during acquisition. Systems made predictions
on real words rather than nonce words, simulating
the experience of children who need to produce
never before heard forms for lemmas that they al-
ready know. These outputs were compared to what
is known about children’s learning trajectories and
errorful productions.

Three inflectional patterns, English past tense,
German noun plurals, and Arabic noun plurals,
were chosen because they have been heavily stud-
ied from a developmental perspective and have
been subject to computational cognitive modeling
research. The acquisition of English past tense and
German noun pluralization in particular have re-
ceived renewed interest in recent years, and while
less work has been conducted on this aspect of
Arabic, we believe that it will make for an elucidat-
ing challenge case going forward. The remainder
of this section briefly summarizes some relevant
findings for English, German, and Arabic.

1.3 English Past Tense

The general state of the English past tense sys-
tem is a familiar one. There is a clearly produc-
tive general default regular suffix -ed (subject to
phonologically-conditioned allomorphy) which ap-
plies to the vast majority of verbs and new coin-
ings, as well as several much less frequent patterns
usually described as irregular. Many of these ir-
regulars indicate past tense through a stem vowel
mutation (the so-called strong verbs paralleled in
other Germanic languages), for example, sing-sang,
sting-stung, bite-bit, and ride-rode. Others com-
bine a stem mutation with a coronal suffix (the
so-called semi-weak verbs, where regular -ed verbs

3Armstrong et al. (1983) presents a stark example of this,
finding that participants would gradiently rate integers for their
“evenness” given the opportunity, even though the even/odd
distinction is completely binary.
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are weak) including keep-kept, sleep-slept and tell-
told. There are also a few one-off suppletive forms,
most notably go-went.

There is a clear distinction to be made between
the single overwhelming majority default pattern,
and the rest. Nevertheless, the irregulars as a whole
tend to fall in the high end of the frequency range
and so are over-represented in the input. As a result,
children identify -ed as productive later than one
may expect given its high type frequency. They
acquire it around age three (Berko, 1958; Marcus
et al., 1992). It is hard to say exactly what verbal
vocabulary size this age corresponds to since there
is quite a lot of variation among individuals, but
Marcus et al. (1992, ch. 5) report that Sarah and
Adam from the Brown Corpus (Brown et al., 1973)
have produced 300-350 unique verbs by age three.

Children’s novel productions exhibit an asymme-
try between over-regularizations, which are over-
applications of the default pattern (e.g., *goed,
*feeled) and over-irregularizations, which apply
irregular patterns to regular verbs (e.g., fry-*frew
by analogy with fly-flew or peep-*pept by analogy
with keep-kept and sleep-slept).

The former error type is far more common than
the latter, both in English and in other languages.
Studies of past tense errors in English learners have
found over-irregularization rates of under 0.2% (Xu
and Pinker, 1995), but over-regularization rates
orders of magnitiude higher between 8 and 10%
(Maratsos, 2000; Yang, 2002; Maslen et al., 2004).
Similar findings have been observed in German
past participle production with under 1% over-
irregularization and about 10% over-regularization
(Clahsen and Rothweiler, 1993), and a similar ra-
tio in Spanish verbal production (Clahsen et al.,
1992; Mayol, 2007). See Marcus et al. (1992)
for more discussion. Nevertheless, for all their
strengths, over-irregularization has been a persis-
tent challenge for single-route models since the
early connectionist days. Early connectionist mod-
els were also prone to producing nonsense, for
example mail-membled (Xu and Pinker, 1995).

Despite its mundanity, the English past tense
system provides a valuable test case for models of
morphology acquisition. That said, it does have a
major drawback. Since there is only one apparently
productive global default pattern, and that pattern
applies to the overwhelming majority of types, a
naive model that performs simple frequency match-
ing is expected to perform quite well on English.

Corpus -e% -(e)n% -er% -∅% -s%
CELEX 27 48 4 17 4

UniMorph 34.4 37.3 2.9 19.2 4.0

Table 1: Type distribution of German noun plural types
in CELEX (Baayen et al., 1993) reported in Sonnen-
stuhl and Huth (2002), and in UniMorph as reported in
McCurdy et al. (2020). 2.1% of UniMorph nouns have
“other” plural forms.

While type frequency is certainly the most impor-
tant factor in the acquisition of productive gen-
eralizations (Aronoff, 1976; MacWhinney, 1978;
Bybee, 1985; Baayen, 1993; Elman, 1998; Pierre-
humbert, 2003; Yang, 2016), this obscures potential
differences between dramatically different learning
models. German noun pluralization was introduced
into the Past Tense Debate because it has a much
more even distribution of inflectional patterns.

1.4 German Noun Plurals

Unlike English past tense, the German noun plu-
ral system has several relatively frequent pluraliza-
tion patterns: -(e)n, -e, -er, -∅ and -s with distri-
butions summarized in Table 1. Pluralization may
be further indicated with Umlaut, or the fronting
of certain vowels. There are three Umlaut patterns
which are clearly indicated in German orthography:
(a→ä, o→ö, u→ü). Suffixing and Umlaut appear
to be largely orthogonal, so some recent compu-
tational modeling work has focused only on the
former (McCurdy et al., 2020; Belth et al., 2021).

It is clear that German noun plurals do not
have a high-frequency global default like English.
However, some plural forms appear to be defaults
for nouns that meet certain conditions. Feminine
nouns, for example, productively pluralize with -
(e)n, where the vowel is subject to phonologically
conditioned allomorphy (Wiese, 1996). Several
phonotactic properties are also shown to correlate
with pluralization type preferences (Zaretsky and
Lange, 2015).

While the -s plural is the least frequent of the lan-
guage’s pluralization types, it has attracted consid-
erable theoretical attention because it nevertheless
appears to be a case of a minority default pattern
(Clahsen, 1990; Marcus et al., 1995; Sonnenstuhl
and Huth, 2002). The -s plural is the plural of last
resort that speakers fall back on when the condi-
tions for other plurals are not met, however, unlike
English -ed, it is not particularly frequent. As a re-
sult, it serves as a means of differentiating learning
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models which rely naively on type frequency from
ones which leverage type frequency to learn more
underlyingly complex morphological systems.

Developmental studies show that children do
successfully learn this system around the same age
that English past tense is acquired. Children learn
-e -∅, and -(e)n by the time they know 100 words,
and while -er and -s are learned later, they are
acquired reliably around 500 words (Elsen, 2002).
Over-application of -(e)n is the most common error
type followed by over-application of -e, though
even -s and -er are overproduced (Elsen, 2002).

1.5 Arabic Noun Plurals

Finally, we introduce Arabic noun pluralization as
another challenge case. Arabic nouns may form
plurals in two ways: by suffixation (so-called sound
plurals) or by stem mutation (so-called broken plu-
rals). There are two sound plural suffixes, a femi-
nine -āt, and a masculine -ūn (-ı̄n, -ū, or -ı̄ depend-
ing on a nominal’s case and state). The relation-
ship between gender and sound plural ending is
reliable but not exceptionless. In particular, some
masculine nouns, generally non-human masculine
nouns, take the feminine sound plural, e.g., imtih. ān-
imtih. ān-āt ‘exam.’ Noun gender can be determined
with agreement – pronouns, adjectives, and verbs
all agree with nouns in gender, so masculine nouns
taking feminine plurals are a clear morphological
mismatch.

Broken plurals can be divided into many sub-
classes by which templatic pattern defines the out-
put of their stem mutations. In Modern Standard
Arabic (MSA), there are approximately 30 bro-
ken plural patterns (McCarthy and Prince, 1990),
though the exact count depends on the level of ab-
straction assumed for the templatic pattern. Some
classes of singular templates are known to take spe-
cific plural patterns, e.g., maktab (maCCaC) ‘desk,
office’ → makātib (maCāCiC). On the other hand,
different singular patterns can take the same plural
pattern, e.g., both kitāb (CiCāC) ‘book’ and sarı̄r
(CaCı̄C) ‘bed’ are pluralized as kutub and surur
(CuCuC), respectively. This results in a very com-
plex system. There are many theoretical accounts
which seek to explain and predict the mappings be-
twen singular and broken plural patterns. McCarthy
and Prince (1990), for example, group the broken
plural patterns according to prosodic shapes and
concluded that the iambic pattern is a productive
one. However, some of their findings have been

challenged (Gaskell and Marslen-Wilson, 2001;
Haddad, 2008).

The Arabic pluralization system is quite elabo-
rate, and it is not completely acquired by children
until primary school age, however, most proper-
ties of the system are acquired much earlier, in
line with the timelines observed for English and
German (Ravid and Farah, 1999). Using a wug
test paradigm, Ravid and Farah (1999) demonstrate
that children follow u-shaped learning trajectories
due to transient over-regularization in the direction
broken → sound, and over-regularization in the
direction MASC sound → FEM sound. The vast
majority of child production errors belong to one
of these two types, an asymmetry consistent with
strong tendency for over-regularization rather than
over-irregularization observed for other languages.

Dawdy-Hesterberg and Pierrehumbert (2014)
present a series of related exemplar learning mod-
els and apply them to Arabic data. Their systems
are generally successful at learning Arabic plural
patterns, but they show fewer MASC sound → FEM

sound and far more sound → broken errors than are
observed in children. Exemplar learners are a kind
of single-route learner, so this lack of asymmetry
in error types may be expected given what has been
observed for English.

2 Task Description

This task was organized very similarly to other
iterations of the inflection task from the partic-
ipants’ perspective in order to encourage cross-
submissions with this year’s large scale general-
ization inflection task (Kodner et al., 2022). Par-
ticipants were asked to design supervised learn-
ing systems which could predict an inflected form
given a lemma and a morphological feature set cor-
responding to an inflectional category or cell in a
morphological paradigm. They were provided with
several nested training sets as well as a develop-
ment set and test set for each language. The train
and dev sets consisted of (lemma, inflected,
feature set) triples, while the inflected forms
were held out from the test set.

Initially, only training and development sets
were available to participants. They were expected
to design, train, and tune their models on this data.
Shortly before the submission deadline, test sets
with held-out inflections were released. In contrast
with the large-scale subtask and previous iterations,
only three languages were investigated which could
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be evaluated in detail: American English, Standard
German, and Modern Standard Arabic. Several
nested training sets were released for each language
in increments of 100 items. Participants were asked
to return predictions from models trained on each
training size.

3 Data Preparation

Data sets for (American) English and (Standard)
German were extracted from the CHILDES col-
lection of child-directed speech (CDS) corpora
(MacWhinney, 2000). CHILDES contains several
types of corpora with various types of annotation.
English was sourced from the Brown (Brown et al.,
1973)4 and Brent (Brent and Siskind, 2001) corpora.
These contain free dialogue between caregivers and
their children alternating with lines of morpholog-
ical annotation. In (1), *MOT indicates that this
utterance was produced by the child’s mother and
%mor indicates that the following line contains
POS tags, lemmas, and morphological features.
However, “words” in morphological annotation
lines do not consistently line up one-to-one with to-
kens in dialogue lines, so it is not feasible to match
lemma-feature pairs to inflected forms. To accom-
plish this, features were converted into UniMorph
format, and (lemma, inflected, features)
triples were extracted from English UniMorph (Mc-
Carthy et al., 2020).

(1) Adam 021016.cha 571-572 (Brown, 1973)

*MOT: what are you writing ?
%mor: pro:int|what aux|be&PRES

pro:per|you part|write-PRESP ?

One advantage of CHILDES is that it presents
vocabulary that a typical child is likely exposed to
during the acquisition process, and since it contains
dialogue, it can also be used to make reasonable fre-
quency estimates of child-directed speech. In NLP
terms, it is a reasonable approximation of the train-
ing set over which children learn morphological
inflection. See Kodner (2022) for more informa-
tion. 2,054 nouns were sampled from CHILDES
weighted by their CHILDES frequencies, and their
plurals were extracted from UniMorph. 454 of
these items were sampled uniformly and reserved
as the development set. 600 of the remainder were
uniformly sampled from the remainder and set

4This is a classic CDS corpus built by Roger Brown. It
is not to be confused with the classic NLP Brown Corpus
developed at Brown University (Kučera and Francis, 1967).

aside as the test set. The remaining 1,000 was used
as the maximum training set. Smaller nested sub-
sets in increments of 100 were sampled from these,
weighted by noun lemma frequencies in CHILDES
such that each larger subset was a superset of the
smaller.

Training and test were sampled uniformly with
respect to one another to guarantee that the test set
would contain interesting test items. Another rea-
sonable approach would have been to sample the
1,000 training items by frequency from the entire
data set and then sample the test items from the
remainder in order to yield a training set containing
more frequent items and a test set containing less
frequent items. Since item token frequency cor-
relates with age of acquisition (Goodman et al.,
2008), this would correspond to a realistic sce-
nario where systems predict later-acquired forms
from their knowledge of earlier acquired forms.
However, English past tense irregulars (i.e., non-ed
pasts), are heavily skewed towards the high end of a
Zipfian frequency distribution, so such an approach
would not yield many interesting test items.

The German data set was created in much the
same way as the English with CDS frequency in-
formation sourced from the CHILDES Leo cor-
pus (Behrens, 2006) and nominative plural forms
matched from German UniMorph. Gender is
known to be a predictor for plural forms (Wiese,
1996), so the German UniMorph features were aug-
mented with MASC, FEM, or NEUT gender tags con-
verted from the CHILDES annotation lines. These
were split into 600 training items, 500 development
items, and 600 test items with the same frequency-
weighted algorithm that was applied to English.
The intersection of nouns extracted from Leo and
nouns present in UniMorph was relatively small,
so the largest training set that could be extracted
only contains 600 items.

Ideally, the Arabic data set would also be ex-
tracted from a CDS corpus in order to get a reason-
able estimation of a child’s vocabulary. Colloquial
Arabic varieties are unfortunately considered to be
low-resourced in terms of available linguistic re-
sources, so even though there are several dialectal
CDS corpora (Kern et al., 2009; Alqattan, 2015;
Salama and Alansary, 2017), they do not provide
morphological annotations useful to the task in
hand. Thus, we selected Modern Standard Arabic
(MSA) for the shared task. Even though it has vir-
tually no native speakers and no CDS corpora, it is
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well-resourced and exhibits the same kinds of mor-
phological patterns present across Arabic varieties.
A reasonable workaround for the lack of CDS is
to estimate a child size corpus from a given non-
CDS corpus through lemma frequencies. This will
most likely contain high frequency lexemes that
typically do not appear in CDS corpora but will
likely cover a similar distribution of morphological
phenomena (Kodner, 2019).

For this shared task, the Arabic data set was
sourced from the Penn Arabic Treebank (PATB)
(Maamouri et al., 2004), which is a morphologi-
cally and syntactically annotated news corpus of
MSA. The corpus is written using standard Arabic
orthography and it is fully diacritized. Diacritiza-
tion include short vowels, specific case and state
markings, and gemination. Arabic text without
diacritization does not mark these critical phono-
logical segments and thus would not be useful for
the task at hand. Despite including fine-grained
morphological annotations, PATB lacks the annota-
tions of functional (grammatical) gender and num-
ber in addition to rationality (animacy). Therefore,
a version that has been enriched with additional
features through the CALIMAMSA morphological
analyzer (Taji et al., 2018) was used. Plural inflec-
tions that reflect state and case were normalized
to a single inflection since only pluralization was
under investigation for this task.

The 2,000 most frequent plural nouns were ex-
tracted according to their lemma frequencies from
the TRAIN split of PATB (Diab et al., 2013). These
were then split into a training set of 1,000 items, a
development set of 343 items, and a test set of 600
items using the same algorithm that split English
and German. An animacy feature HUM or NON-
HUM was added was added to each noun, since
it is known to impact nominal inflection patterns
(McCarthy and Prince, 1990).

4 Systems

The same neural and non-neural baselines were
provided for this task and the 2022 typologically
diverse inflection shared task. The neural system
Neural, Wu et al. (2021), is a character-level
transformer. It is identical to the system CHR-TRM
which was used in the 2021 task with identical hy-
perparameters. The non-neural system, NonNeur,
is identical to the non-neural baseline made avail-

able in 2021 and 2020.5 Three systems were sub-
mitted, the first and last of which were also submit-
ted to the large scale generalization task:
CLUZH (Silvan Wehrli and Makarov, 2022): Uni-
versität Zürich’s system is identical to the one sub-
mitted to this year’s large scale generalization sub-
task (Kodner et al., 2022). Their submission is
a character-level transducer which operates over
edit actions: insertion, deletion, substitution, and
copy. They implement true mini-batch training for
a substantial speed up, rendering the system more
practical on larger training sets.
HeiMorph (Ramarao et al., 2022): The team
from Heinrich-Heine-Universität Düsseldorf devel-
oped a system with a self-attention Transformer
architecture with bigram hallucination. Submitted
models were trained on the enriched data setsthat
include either 1,000 or 10,000 bigram-aware hallu-
cinated word pairs, generated separately for each
training set size. The system was implemented
with Fairseq, a Pytorch-based tool.
OSU (Elsner and Court, 2022): OSU’s system is
identical to the one submitted to this year’s large
scale generalization subtask. This inflection sys-
tem is a transformer whose input is augmented
with an analogical exemplar showing how to in-
flect a different word into the target cell. In ad-
dition, alignment-based heuristic features indicate
how well the exemplar is likely to match the output.

5 Evaluation

Whole-form accuracy was employed as the pri-
mary quantitative evaluation, though several fur-
ther analyses were carried out by partitioning data
over grammatical gender and other factors. Perfor-
mance was good overall but showed some points
of divergence from human behavior. This section
provides an analysis for each of the shared task’s
three languages.

5.1 English Past Tense

As expected given its majority default pattern, per-
formance across all systems was higher on English
than the other languages. Table 2 summarizes the
results. CLUZH in particular achieved most of its
performance already on 100 training items, while
HeiMorph and the neural baseline show the most
substantial gains as the training size increases.

5Available here: https://github.com/
sigmorphon/2022InflectionST/tree/main/
baselines/nonneural
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#Train CLUZH HeiM OSU Neural NonN

Avg. 85.67 65.65 81.48 70.12 80.60
100 80.33 50.50 67.67 21.67 68.17
200 82.33 68.17 75.00 46.83 75.67
300 83.17 64.83 78.50 62.83 77.50
400 83.50 46.17 81.67 72.83 80.00
500 85.67 69.17 81.67 78.17 81.17
600 87.83 69.17 83.50 82.33 83.17
700 87.00 69.33 85.00 84.00 84.00
800 87.83 70.33 85.17 83.17 84.33
900 90.33 71.50 88.00 84.50 85.50
1000 88.67 77.33 88.67 84.83 86.50
Ortho 91.17 82.0 90.67

Table 2: English: Overall percent exact match training
size for submitted systems and baselines. Ortho are
accuracy at 1000 when stem-final spelling errors are not
penalized.

Since English orthography is notoriously com-
plex, evaluating this task on written English
presents an unnecessary additional burden on the
systems. And though few errors could be clearly
attributed to orthography in practice, some were
found. In particular, some systems occasionally
failed to follow orthographic rules regarding the
doubling of word-final consonants. For example,
systems produced *enthraled instead of expected
enthralled and *payed for paid. These are spelling
mistakes, though the latter is actually attested in
Early Modern English texts. The final line in Ta-
ble 2, Ortho, evaluates the submitted systems at
1,000 training when these particular errors are not
penalized.

The performance of each system rises 2-5 points
when these errors are ignored. There is, however,
one cause for concern. 557 of 600 test items form
regular -ed pasts, so a baseline system which al-
ways predicts -ed should achieve 92.83% accuracy
in the Ortho evaluation. No system outperformed
this baseline.

Table 3 investigates the role that over-
regularization played in driving errors at 100, 500,
and 1,000 training. Numbers for other training
sizes are available in Table 15 in the Appendix.
The Match column presents the percent of gold
irregulars which were correctly predicted. These
values are appropriately low given that these pat-
terns are generally unpredictable in English. The
Other column indicates the percent of gold irreg-
ulars which were subject to other plausible irreg-
ular patterns (e.g., OSU produced bring-?brang,
which is incorrect according to the gold standard
brought6). The sum of these two columns is the

6This particular error is interesting. Brang does exist di-

CLUZH Match Other Reg -ed ?
100 4.65 4.65 88.37 88.37 2.33
500 9.3 6.98 83.72 83.72 0.0

1000 9.3 6.98 83.72 83.72 0.0

HeiM Match Other Reg -ed ?
100 9.3 18.6 58.14 69.77 2.33
500 6.98 37.21 46.51 51.16 4.65

1000 2.33 9.3 76.74 81.4 6.98

OSU Match Other Reg -ed ?
100 9.3 27.91 53.49 55.81 6.98
500 11.63 9.3 67.44 74.42 4.65

1000 2.33 4.65 88.37 90.7 2.33

Table 3: Error type analysis for English irregular verbs.
Match = % correct. Other = % other plausible strong
and weak irregulars. Reg = % “correct” regularized. -ed
= % forms ending in -ed. ? = other nonsense output

proportion of gold irregulars that were predicted to
be irregular. HeiMorph and OSU produced sub-
stantially more irregular forms than CLUZH.

Columns Reg and -ed indicate the rate of over-
regularization. Reg is the proportion of gold ir-
regular items that were inflected as “correct” regu-
lar past forms (e.g., buy-*buyed, bleed-*bleeded).
This was the majority for each system at each
training size, though CLUZH performed more over-
regularization. The -ed adds predictions that in-
cluded -ed but were still incorrect (e.g., forgive-
*forgaved for expected forgave). ? counts outputs
that qualify as nonsense in some way (e.g., seek-
*sougk for expected sought.)

Overall, the systems all clearly show a tendency
towards over-regularization. The systems clearly
learn an -ed rule and apply it readily. In fact, all
the systems, especially CLUZH, are too good from
a developmental perspective. They begin applying
-ed the majority of the time after only 100 training
instances, well ahead of children.

Table 4 and the full version Table 16 in the Ap-
pendix quantify over-irregularization. Match indi-
cates percent of gold regular -ed verbs inflected
correctly. SorW is the proportion gold regular
verbs inflected according to some strong or semi-
weak irregular pattern, for example OSU ply-*plew,
CLUZH spike-*spake, and HeiMorph top-*topt.
SC+ed is the proportion of gold regular verbs that
received an -ed suffix but were also subjected to
some stem vowel change (e.g., OSU fine-*founed),
and Irreg is the sum total of irregularized gold reg-
ular verbs. ? again indicates nonsense outputs

alectally in American English.
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CLUZH Match SorW SC+ed Irreg ?
100 99.1 0.9 0.0 0.9 0.0
500 97.49 2.51 0.0 2.51 0.0
1000 97.49 2.51 0.0 2.51 0.0

HeiM Match SorW SC+ed Irreg ?
100 63.91 12.93 0.72 14.9 21.18
500 80.43 15.44 0.72 16.88 2.69
1000 88.15 5.39 0.18 6.46 5.39

OSU Match SorW SC+ed Irreg ?
100 79.17 8.98 3.77 15.44 5.39
500 90.66 3.05 0.9 4.85 4.49
1000 97.49 1.26 0.36 1.62 0.9

Table 4: Error type analysis for English regular verbs.
Match = % correct or orthographic. SorW = % well-
formed strong or semi-weak irregular. SC+ed = % -ed is
present but with a vowel change. Irreg = % all plausibly
irregular patterns. ? = nonsense output

-ed →a →u Other ?
Gold 2 2 3 1 –
CLUZH 4 1 3 0 0
HeiM 8 0 0 0 0
OSU 8 0 0 0 0

Table 5: Inflection type for English monosyllabic -ing
verbs at 1,000 training. -ed = regular. →a = sing-sang-
type. →u = sting-stung-type. Other = other inflection
(bring-brought in the gold standard). ? = nonsense
inflection.

including ski-*soa, crush-*crushi, and test-*tsot.7

CLUZH produced by far the least over-
irregularized forms at smaller training sizes, while
the other systems produced substantially more. A
qualitative error analysis revealed some interesting
patterns. Every system extended the semi-weak
shortening pattern of keep-kept to the lemmas such
as cheep or beep, producing *bept or *chept. OSU
and the neural baseline extended the think-thought
pattern to monosyllabic verbs beginning with con-
sonant-h, producing pairs such as whiz-*whought
and thin-*thought. These are clear examples of
unnatural over-irregularization behavior.

Finally, the monosyllabic -ing verbs were inves-
tigated as an illustrative study. Since it is not possi-
ble to predict the correct past forms of the -ing test
items in a principled way, systems were expected
to fail by raw accuracy. Thus, this makes for an
interesting case for a more detailed analysis. There

7The neural baseline produced several instances of
metathesis, especially at smaller training sizes. Examples
include flitter-*filtered, bark-*braked, sand-*snad, dodge-
*dogde, clink-*clikned, own-*won, sell-*sleled, spring-
*sprigned, and erase-*reased at 100 vs. erase-*earsed at
200.

were six such items in the training data and eight in
the test data. Lists of training and test items is pro-
vided in (2)-(3)8 along with the smallest training
sample in which the training items appeared.

(2) Training

300 swing-swung
300 sing-sang
700 thing-thinged
800 ding-dinged
800 sling-slung
900 cling-clung

(3) Test

sting-stung bring-brought
fling-flung king-kinged
ring-rang spring-sprang
ping-pinged string-strung

Even though the number of irregular -ing verbs
increases with training size, over-regularization to
-ed is the most common output at 1,000 training.
HeiMorph and OSU “correctly” over-regularize
all eight test items at 1,000 training. CLUZH over-
regularizes half the forms and prefers -ung forms
for three of the others (4). This ratio makes sense
if the system is matching the training data, which
has more -ung pasts than -ang pasts.

(4) CLUZH -ing predictions at 1000 training

sting-stung bring-bringed
fling-flinged king-kinged
ring-rang spring-sprung
ping-pinged string-strung

There was much more variety at smaller train-
ing sizes, including an aamusing incorrect produc-
tion generated by the OSU system: it produced
the present-past pair ping-*pong. Overall, systems
showed a preference for over-regularization rela-
tive to over-irregularization, especially apparent
for CLUZH. Nevertheless, they all produced orders
of magnitude more over-irregularization than ob-
served during child development as described in
the Introduction. In particular, systems picked up
on the semi-weak shortening pattern, over-applied
-ought, and applied stem changes of various sorts
even when simultaneously applying -ed. All sys-
tems showed super-human performance in their
acquisition of -ed, productively applying it after
only 100 training examples, when a human child
might produce -ed only after learning a few hun-
dred verbs (Brown, 1973).
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#Train CLUZH HeiM OSU Neural NonN

Avg. 76.72 67.03 72.11 58.33 74.81
100 72.67 59.00 66.50 18.67 63.67
200 74.67 63.50 69.17 51.00 71.50
300 76.17 66.33 72.00 62.00 76.00
400 78.17 69.00 74.00 68.83 78.00
500 78.50 71.00 76.00 74.17 79.50
600 80.17 73.33 75.00 75.33 80.17
Suff. 89.00 85.83 85.67
Uml. 90.67 88.83 90.17

Table 6: German: Overall percent exact match training
size for submitted systems and baselines. Suff. are
accuracy at 600 when only suffix type is evaluated. Uml.
are accuracy at 600 when only Umlaut is evaluated.

5.2 German Noun Pluralization
Performance on German, summarized in Table 6,
was generally good but lower than for English at
equivalent training sizes. This may be because
German noun pluralization does not have an over-
whelming majority pattern. CLUZH achieved the
highest accuracies of any of the submitted systems,
though it performed roughly on par with the non-
neural baseline at training sizes 300 and above. All
systems except for the neural baseline achieved
most of their performance after only 100 training
items – CLUZH in particular reached 90% of its
final performance.

Two additional accuracy measures are reported
in Table 6 for the submitted systems. Suff refers
to test accuracy in the 600 training condition when
only the suffix type is evaluated rather than ex-
act match. This measure is more lenient because
Umlaut and any other alternations do not need to
be generated correctly. As expected, each system
achieves a higher Suff score than exact match score
at 600. HeiMorph shows the largest increase of
12.5 points. Uml. refers to test accuracy in the
600 training condition when only the presence of
absence of Umlaut is evaluated. 522, or 87% of test
items do not form plurals with additional Umlaut,
so a baseline system that ignored the process alto-
gether would achieve 87%. Each system surpassed
this baseline by a small amount.

Table 7 presents Umlaut confusion matrices for
each submitted system. Each system shows a sim-
ilar pattern of under-application of Umlaut. Only
HeiMorph applies Umlaut in more than half of
the cases where it should apply, but only barely.
Each system also occasionally over-applies Um-
laut, with HeiMorph exhibiting the highest over-

8Some of these have alternative past forms in actual speech.
Only a single form was chosen for each in the data set.

CLUZH Gold NC Gold Umlaut
Pred NC 506 (96.93%) 40 (51.28%)

Pred Umlaut 16 (3.07%) 38 (48.72%)

HeiMorph Gold NC Gold Umlaut
Pred NC 492 (94.25%) 37 (47.44%)

Pred Umlaut 30 (5.75%) 41 (52.56%)

OSU Gold NC Gold Umlaut
Pred NC 503 (96.36%) 40 (51.28%)

Pred Umlaut 19 (3.64%) 38 (48.72%)

Table 7: German Umlaut/No Change confusion matrices
at 600 training

Set -e% -(e)n% -er% -∅% -s% #
Train200 29.5 46.5 2.0 20.0 2.0 200
Train600 27.8 38.0 3.0 26.7 4.6 600

TrainF 2.8 96.2 0.0 0.5 0.5 212
TrainM 45.4 7.3 1.5 41.2 4.5 262
TrainN 33.3 4.0 11.1 40.5 11.1 126

Test 30.5 36.7 2.8 24.8 5.2 600
TestF 3.5 95.0 0.0 0.0 1.5 201
TestM 48.9 9.2 0.3 35.9 5.6 284
TestN 32.2 2.6 13.9 40.9 10.4 115

Table 8: Distribution of German plural suffixes in the
200 training set, and by gender in the 600 training and
test sets.

application rate at 5.75%.
Table 8 presents the overall and by-gender dis-

tribution of each pluralization suffix in the train-
ing and test sets. Counts for -en and -n are col-
lapsed, since they are phonologically predictable
allomorphs. These can be compared to the CELEX
and UniMorph distributions presented in Table 1.

All systems are more accurate when the gold
pluralization suffix is one of the three more com-
mon (-e, -(e)n, -∅) than one of the two less common
(-er, -s). This is summarized in the confusion ma-
trices provided in Tables 9-10 for training sizes
200 and 600. OSU and HeiMorph produces some
forms containing miscellaneous stem-internal er-
rors, marked as ? in the confusion matrices, such as
a j > t mutation in *Kabeltaue as the plural of Ka-
beljau, but these were much rarer, and much more
limited, than what was observed in their English
predicitions. CLUZH did not produce any. -er and
-s plurals were under-produced by each system. In
both cases, each system usually applied -e instead.
For example, CLUZH produced *Grase instead of
expected Gräser as the plural of Gras.

Comparing this to findings about the time course
of children’s plural pattern acquisition (Elsen,
2002), each system appears to acquire productive
-e and -(e)n as early as expected, as evidenced by
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CLUZH G -e G -(e)n G -er G -∅ G -s Sum
P -e 166 17 17 2 27 229
P -(e)n 7 198 0 2 4 211
P -er 0 0 0 0 0 0
P -∅ 10 5 0 145 0 160
P -s 0 0 0 0 0 0
P ? 0 0 0 0 0 0
Sum 183 220 17 149 31 600

HeiM G -e G -(e)n G -er G -∅ G -s Sum
P -e 110 8 7 6 15 146
P -(e)n 22 192 0 5 6 225
P -er 3 0 1 1 2 7
P -∅ 42 14 7 133 7 203
P -s 3 4 2 1 1 11
P ? 3 2 0 3 0 8
Sum 183 220 17 149 31 600

OSU G -e G -(e)n G -er G -∅ G -s Sum
P -e 159 16 14 5 28 222
P -(e)n 10 183 0 0 2 195
P -er 0 2 3 0 0 5
P -∅ 10 10 0 139 0 159
P -s 1 0 0 0 0 1
P ? 3 9 0 5 1 18
Sum 183 220 17 149 31 600

Table 9: German inflection confusion matrices at 200
training for FEM nouns only, disregarding Umlaut. G =
Gold, P = Prediction.

over-application after 200 training. This is con-
trasted with -er, -s, which they rarely produce after
200 training but produce (still insufficiently fre-
quently) at 600 training. These results are broadly
consistent with what is observed developmentally,
with the caveat that -er, -s are proportionately less
frequent in the small training sets than the large
ones (Table 8).

Since analyzing suffix confusions as a whole ob-
scures some patterns, Tables 18-20 are provided
in the Appendix which present confusion matrices
partitioned by gender. Every system effectively
learns that -(e)n is the appropriate ending for fem-
inine nouns, and as observed in Table 18, most
errors among feminines can be attributed to over-
application of this ending.

Overall, systems show some consistency with
the developmental patterns evaluated here. What
the systems do learn, they learn on appropriate
amounts of training data. However, they continue
to greatly under-produce the infrequent but appar-
ently minority default -s pattern. Further work
needs to be done, along the lines of recent pa-
pers published on this topic (McCurdy et al., 2020;
Belth et al., 2021; Dankers et al., 2021) to deter-
mine whether or not the submitted systems are
behaving in a human-like manner.

CLUZH G -e G -(e)n G -er G -∅ G -s Sum
P -e 168 16 13 0 18 215
P -(e)n 6 198 0 1 2 207
P -er 0 0 3 0 0 3
P -∅ 8 5 0 148 0 161
P -s 1 1 1 0 11 14
P ? 0 0 0 0 0 0
Sum 183 220 17 149 31 600

HeiM G -e G -(e)n G -er G -∅ G -s Sum
P -e 154 13 12 4 16 199
P -(e)n 14 194 0 0 4 212
P -er 4 0 4 1 4 13
P -∅ 9 10 0 142 1 162
P -s 1 1 1 0 3 6
P ? 1 2 0 2 3 8
Sum 183 220 17 149 31 600

OSU G -e G -(e)n G -er G -∅ G -s Sum
P -e 155 19 13 1 18 206
P -(e)n 7 184 0 0 2 193
P -er 2 0 3 1 0 6
P -∅ 11 10 1 142 1 165
P -s 2 1 0 1 8 12
P ? 6 6 0 4 2 18
Sum 183 220 17 149 31 600

Table 10: German inflection confusion matrices for each
submitted system at 600 training disregarding Umlaut.
G = Gold, P = Prediction.

5.3 Arabic Noun Pluralization

Arabic proved to be the most challenging of the
three languages: summarized in Table 11, no sys-
tem achieved more than 67% accuracy on any train-
ing size. This result is to be expected, since Arabic
noun pluralization is more complex than the other
phenomena evaluated. As for English, some errors
were determined to be very minor and primarily
orthographic. Not penalizing these errors yields
the Minor line in the table, for which each sys-
tem shows a 4-5-point increase. The line SFSMB
additionally does not penalize broken-to-broken er-
rors as long as the applied broken pattern is itself
valid. This increases performance by another 6-9
points, indicating that predicting the correct broken
pattern for an item was challenging compared to
determining whether to apply a broken pattern at
all. Since there are so many broken patterns, this
is not surprising. Nevertheless, accuracies in this
most permissive evaluation are still lower than for
German or English.

Noun gender and rationality are known to corre-
late with plural formation in Arabic, so Table 12
presents the distribution of items by gender and
rationality in the training and test sets. Masculine
sound plurals are the least frequent, and masculine
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#Train CLUZH HeiM OSU Neural NonN

Avg. 59.63 55.37 57.53 52.70 33.70
100 45.67 41.83 34.00 14.83 28.33
200 54.83 45.67 49.17 41.67 28.33
300 54.17 48.67 53.33 51.00 29.00
400 58.33 49.83 54.17 52.83 31.67
500 62.00 59.67 61.00 57.17 34.83
600 63.17 62.83 64.00 61.50 35.50
700 64.67 60.33 63.83 62.50 36.33
800 63.33 62.17 63.83 61.33 37.33
900 64.33 63.33 66.67 60.83 37.33

1000 65.83 59.33 65.33 63.33 38.33
Minor 69.67 63.67 68.83

SFSMB 75.50 71.00 76.00

Table 11: Arabic: Overall percent exact match training
size for submitted systems and baselines. Minor are
accuracy at 1000 training when errors deemed to be mi-
nor or orthographic are ignored. SFSMB are accuracy at
1000 training when confusion between broken patterns
is not penalized.

Set SF SM B #
Train 424 140 434 998
Train F 222 0 85 307
Train M 202 140 349 691
Train HUM 24 129 84 237
Train NHUM 400 11 350 761
Test 257 62 281 600
Test F 156 0 73 229
Test M 101 62 208 371
Test HUM 15 50 43 108
Test NHUM 242 12 238 492

Table 12: Distribution of Arabic plural types suffixes by
gender and rationality in the 1000-training and test sets.
Two irregular forms in the training set, ðāt ‘self’ and
h. abb ‘seeds,’ are excluded from this table.

nouns (as determined through agreement) are more
diverse than feminines in their plural forms. About
two thirds of feminine nouns take the feminine
sound plural and all of the remainder take a broken
plural. A plurality of rational nouns take the mascu-
line sound plural, while non-rational nouns, which
account for nearly five sixths of the data, are split
about evenly between feminine sound and broken
plurals with very few masculine sound plurals.

Table 13 presents confusion matrices for each
plural type for each system. Breakdowns by gender
and rationality can be found in Tables 22-25 in the
Appendix. Each system over-produced feminine
sound plurals at the expense of masculine sound
and broken, but they varied in their production of
masculine sound and broken plurals. This extended
across gender and rationality.

Prior work evaluated children and a compu-
tational system according to their distributions
of sound-to-sound, sound-to-broken, broken-to-

CLUZH Gold SF Gold SM Gold B Sum
Pred SF 213 5 52 270
Pred SM 2 51 16 69
Pred B 38 4 206 248
Pred ? 4 2 7 13
Sum 257 62 281 600

HeiM Gold SF Gold SM Gold B Sum
Pred SF 227 7 72 306
Pred SM 3 43 15 61
Pred B 18 5 177 200
Pred ? 9 7 17 33
Sum 257 62 281 600

OSU Gold SF Gold SM Gold B Sum
Pred SF 218 8 49 275
Pred SM 5 50 15 70
Pred B 29 2 202 233
Pred ? 5 2 15 22
Sum 257 62 281 600

Table 13: Arabic inflection confusion matrices for each
submitted system at 1000 training.

sound, and broken-to-broken errors (Ravid and
Farah, 1999; Dawdy-Hesterberg and Pierrehum-
bert, 2014). Table 14 provides such a breakdown
for each system at 1,000 training, and Table 21
in the Appendix provides further breakdowns by
gender and rationality. Each system’s error types
follow the same frequency order: broken-to-sound
is the most frequent followed by broken-to-broken,
sound-to-broken, and sound-to-sound errors.

S→S S→B B→S B→B
CLUZH 7 42 68 52
HeiM 10 23 87 65
OSU 13 31 64 57

Table 14: Arabic error types at 1000 training.

This is quite unlike children, who overwhelm-
ingly produce broken-to-sound and sound-to-sound
errors (in both cases, mostly to feminine sound).
It is also different from the (Dawdy-Hesterberg
and Pierrehumbert, 2014) exemplar models in that
broken-to-broken were much more common. Nev-
ertheless, those exemplar models and the neural
models submitted here both greatly over-produce
sound-to-broken errors. The lack of to-broken er-
rors among children, similar to the lack of over-
irregularization in English, suggests that these are
memorized patterns rather than ones that are pro-
ductively applied. Thus, to-broken errors can be
seen as a kind of over-irregularization.
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6 Discussion

This year’s shared task investigated the perfor-
mance of neural systems on an inflection task de-
signed to mimic language acquisition. Training
data was mostly sourced from the CHILDES col-
lection of child-directed speech corpora and ex-
tracted by frequency to represent early linguistic
input, and systems produced past forms and plu-
rals for real words, simulating children producing
novel (to them) forms of lemmas that they know
from daily life.

This was a challenging task characterized by
small training data and complex patterns. Never-
theless, systems performed well in terms of raw ac-
curacy. American English past tense forms proved
the easiest, followed by Standard German noun
plurals, then Modern Standard Arabic noun plu-
rals. In some ways, the submitted systems actually
outperformed children – they all learned the pro-
ducive -ed pattern for English past tense after only
100 training items, far earlier than what is reported
for children. Systems also achieved most of their
performance on very small data. Superhuman per-
formance on very small data is a valuable property
for real-world NLP applications.

Compared to early connectionist systems, mod-
ern neural morphology learners produce far fewer
nonsense forms of the mail-membled type, though
this still remains a problem, even in the largest train-
ing conditions evaluated here. This is consistent
with the findings of Gorman et al. (2019), which
found that what they called “silly” errors were still
present in the productions of the 2017 task, but they
were majorly reduced compared to early work.

Systems “successfully” over-regularized the En-
glish -ed past, the most frequent German noun plu-
ral types, and the Arabic feminine sound plural.
This is is a human-like tendency, however it cannot
be said whether this indicates deep understanding
of the paradigms or a simple case of frequency
matching. Systems under-applied rarer German
noun plural types even at the largest training size,
which may imply the latter, but more work would
need to be done to confirm this.

The most significant weakness of all three sys-
tems uncovered by this analysis is persistent inhu-
man over-irregularization. Though rates of over-
irregularization varied significantly on English, all
systems produced far more instances of it than child
learners, and the problem was starker for Arabic.
All three systems dramatically overproduced sound-

to-broken and broken-to-broken errors which are
rare in child productions. Broken plural patterns
are apparently no more productive than English
strong verb mutations, so their over-application has
to be seen as over-irregularization.

Though Gorman et al. (2019) did not categorize
errors in these cognitively-minded terms, they did
find evidence for over-irregularization in their anal-
ysis. They noted, for example, that one system over-
applied Spanish diphthongization, a pattern that
applies to many verbs. The pattern is frequent but
unpredictable – many verbs that could be subject to
diphthongization are not. The pattern is apparently
lexicalized and unproductive, and children under-
apply it if anything (Mayol, 2007), thus the over-
application is an instance of over-irregularization.

All of the systems evaluated this year happen
to be neural single-route models that do not make
an explicit distinction between regular and irreg-
ular items. No dual-route models were submit-
ted for comparison. While all systems performed
well, they showed the clear hallmarks of such mod-
els, in particular a tendency to over-produce over-
irregularization. All of the technical improvements
over the decades have greatly improved overall pre-
diction accuracy, but single-route models are still
single-route models.

What do these results tell us about human cogni-
tion? Even if the systems had shown very human-
like performance, we could not therefore conclude
that they are good models of cognition. As sum-
marized recently in Guest and Martin (2021), that
line of reasoning is backward. Prediction is not ex-
planation. We would need to first justify the asser-
tion that these are theoretically plausible cognitive
models. Only then, if these systems were effective
representations of cognition, then we should expect
them behave in a human-like manner.

What studies like this do provide is insight
into state-of-the-art morphological learning models
with ever-improving prediction capabilities. Inas-
much as humans are the gold-standard in language
learning and language use, one possible reason for
current progress is that models are making predic-
tions for more human-like reasons. The results here
show that that intuition does not necessarily hold.
The systems evaluated in this shared task were on
the whole successful in their predictions but did
not behave in a especially human-like manner.
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A Additional Analysis

The tables in this appendix present additional anal-
yses referenced in the paper.

CLUZH Match SorW SC+ed Irreg ?
100 99.1 0.9 0.0 0.9 0.0
200 99.28 0.72 0.0 0.72 0.0
300 99.82 0.18 0.0 0.18 0.0
400 99.46 0.54 0.0 0.54 0.0
500 97.49 2.51 0.0 2.51 0.0
600 96.41 3.59 0.0 3.59 0.0
700 96.77 3.05 0.0 3.23 0.0
800 97.67 2.33 0.0 2.33 0.0
900 99.28 0.72 0.0 0.72 0.0

1000 97.49 2.51 0.0 2.51 0.0

HeiM Match SorW SC+ed Irreg ?
100 63.91 12.93 0.72 14.9 21.18
200 80.97 9.69 0.18 14.18 4.85
300 79.17 10.77 0.54 14.72 6.1
400 63.2 3.77 0.36 5.75 31.06
500 80.43 15.44 0.72 16.88 2.69
600 82.05 13.46 0.9 15.26 2.69
700 81.87 13.82 0.36 14.54 3.59
800 81.87 10.77 0.36 11.13 7.0
900 80.79 10.77 0.0 11.31 7.9

1000 88.15 5.39 0.18 6.46 5.39

OSU Match SorW SC+ed Irreg ?
100 79.17 8.98 3.77 15.44 5.39
200 87.97 4.13 1.8 7.18 4.85
300 91.74 3.41 0.9 5.21 3.05
400 92.82 2.33 0.18 3.23 3.95
500 90.66 3.05 0.9 4.85 4.49
600 92.82 3.77 0.36 4.31 2.87
700 93.36 3.05 0.36 3.77 2.87
800 94.61 3.59 0.0 3.59 1.8
900 97.49 1.8 0.0 1.8 0.72

1000 97.49 1.26 0.36 1.62 0.9

Table 15: Error type analysis for English regular verbs.
Match = % correct or orthographic. SorW = % well-
formed strong or weak irregular. SC+ed = % -ed is
present but with a vowel change. Irreg = % all plausibly
irregular patterns. ? = nonsense output
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CLUZH Match Other Reg -ed ?
100 4.65 4.65 88.37 88.37 2.33
200 2.33 4.65 93.02 93.02 0.0
300 2.33 4.65 93.02 93.02 0.0
400 2.33 2.33 95.35 95.35 0.0
500 9.3 6.98 83.72 83.72 0.0
600 13.95 4.65 81.4 81.4 0.0
700 6.98 4.65 83.72 86.05 2.33
800 9.3 4.65 86.05 86.05 0.0
900 4.65 2.33 93.02 93.02 0.0

1000 9.3 6.98 83.72 83.72 0.0

HeiM Match Other Reg -ed ?
100 9.3 18.6 58.14 69.77 2.33
200 11.63 9.3 69.77 74.42 4.65
300 13.95 18.6 55.81 62.79 4.65
400 9.3 9.3 60.47 81.4 0.0
500 6.98 37.21 46.51 51.16 4.65
600 11.63 39.53 32.56 41.86 6.98
700 9.3 30.23 51.16 58.14 2.33
800 4.65 20.93 60.47 72.09 2.33
900 6.98 16.28 60.47 74.42 2.33

1000 2.33 9.3 76.74 81.4 6.98

OSU Match Other Reg -ed ?
100 9.3 27.91 53.49 55.81 6.98
200 9.3 11.63 69.77 79.07 0.0
300 11.63 20.93 62.79 67.44 0.0
400 4.65 11.63 72.09 81.4 2.33
500 11.63 9.3 67.44 74.42 4.65
600 9.3 13.95 65.12 76.74 0.0
700 6.98 9.3 74.42 79.07 4.65
800 4.65 16.28 72.09 76.74 2.33
900 4.65 6.98 83.72 88.37 0.0

1000 2.33 4.65 88.37 90.7 2.33

Table 16: Error type analysis for English irregular verbs.
Match = % correct. Other = % other plausible strong
and weak irregulars. Reg = % “correct” regularized. -ed
= % forms ending in -ed. ? = other nonsense output

CLUZH # -ed →a →u NC Other ?
100 8 8 0 0 0 0 0
200 8 8 0 0 0 0 0
300 8 8 0 0 0 0 0
400 8 8 0 0 0 0 0
500 8 6 1 1 0 0 0
600 8 6 1 1 0 0 0
700 8 7 0 1 0 0 0
800 8 7 0 1 0 0 0
900 8 7 0 1 0 0 0
1000 8 4 1 3 0 0 0

HeiM # -ed →a →u NC Other ?
100 8 8 0 0 0 0 0
200 8 8 0 0 0 0 0
300 8 6 0 0 1 0 1
400 8 7 0 0 0 0 1
500 8 4 0 0 4 0 0
600 8 5 0 0 3 0 0
700 8 4 0 0 4 0 0
800 8 8 0 0 0 0 0
900 8 8 0 0 0 0 0
1000 8 8 0 0 0 0 0

OSU # -ed →a →u NC Other ?
100 8 8 0 0 0 0 0
200 8 8 0 0 0 0 0
300 8 4 2 2 0 0 0
400 8 3 1 2 0 2 0
500 8 7 0 1 0 0 0
600 8 5 1 1 0 1 0
700 8 7 0 1 0 0 0
800 8 7 0 1 0 0 0
900 8 7 0 1 0 0 0
1000 8 8 0 0 0 0 0

Table 17: Inflection type for English monosyllabic -
ing verbs. -ed = regular. →a = sing-sang-type. →u =
sting-stung-type. NC = no change. Other = other strong
inflection. ? = nonsense inflection.
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CLUZH G -e G -(e)n G -er G -∅ G -s Sum
P -e 1 0 0 0 0 1
P -(e)n 6 191 0 0 2 199
P -er 0 0 0 0 0 0
P -∅ 0 0 0 0 0 0
P -s 0 0 0 0 1 1
P ? 0 0 0 0 0 0
Sum 7 191 0 0 3 201

HeiM G -e G -(e)n G -er G -∅ G -s Sum
P -e 0 0 0 0 0 0
P -(e)n 7 190 0 0 3 200
P -er 0 0 0 0 0 0
P -∅ 0 0 0 0 0 0
P -s 0 0 0 0 0 0
P ? 0 1 0 0 0 1
Sum 7 191 0 0 3 201

OSU G -e G -(e)n G -er G -∅ G -s Sum
P -e 2 5 0 0 1 8
P -(e)n 3 181 0 0 2 186
P -er 1 0 0 0 0 1
P -∅ 0 0 0 0 0 0
P -s 0 0 0 0 0 0
P ? 1 5 0 0 0 6
Sum 7 191 0 0 3 201

Table 18: German inflection confusion matrices at 600
training for FEM nouns only, disregarding Umlaut. G =
Gold, P = Prediction.

CLUZH G -e G -(e)n G -er G -∅ G -s Sum
P -e 134 14 1 0 9 158
P -(e)n 0 7 0 0 0 7
P -er 0 0 0 0 0 0
P -∅ 4 5 0 102 0 111
P -s 1 0 0 0 7 8
P ? 0 0 0 0 0 0
Sum 139 26 1 102 16 284

HeiM G -e G -(e)n G -er G -∅ G -s Sum
P -e 126 12 1 1 11 151
P -(e)n 7 4 0 0 1 12
P -er 1 0 0 0 0 1
P -∅ 4 10 0 99 1 114
P -s 1 0 0 0 2 3
P ? 0 0 0 2 1 3
Sum 139 26 1 102 16 284

OSU G -e G -(e)n G -er G -∅ G -s Sum
P -e 125 13 1 0 9 148
P -(e)n 4 3 0 0 0 7
P -er 0 0 0 0 0 0
P -∅ 5 10 0 99 0 114
P -s 1 0 0 0 6 7
P ? 4 0 0 3 1 8
Sum 139 26 1 102 16 284

Table 19: German inflection confusion matrices at 600
training for MASC nouns only, disregarding Umlaut. G
= Gold, P = Prediction.

CLUZH G -e G -(e)n G -er G -∅ G -s Sum
P -e 33 2 12 0 9 56
P -(e)n 0 0 0 1 0 1
P -er 0 0 3 0 0 3
P -∅ 4 0 0 46 0 50
P -s 0 1 1 0 3 5
P ? 0 0 0 0 0 0
Sum 37 3 16 47 12 115

HeiM G -e G -(e)n G -er G -∅ G -s Sum
P -e 28 1 11 3 5 48
P -(e)n 0 0 0 0 0 0
P -er 3 0 4 1 4 12
P -∅ 5 0 0 43 0 48
P -s 0 1 1 0 1 3
P ? 1 1 0 0 2 4
Sum 37 3 16 47 12 115

OSU G -e G -(e)n G -er G -∅ G -s Sum
P -e 28 1 12 1 8 50
P -(e)n 0 0 0 0 0 0
P -er 1 0 3 1 0 5
P -∅ 6 0 1 43 1 51
P -s 1 1 0 1 2 5
P ? 1 1 0 1 1 4
Sum 37 3 16 47 12 115

Table 20: German inflection confusion matrices at 600
training for NEUT nouns only, disregarding Umlaut. G
= Gold, P = Prediction.

S→S S→B B→S B→B
CLUZH F 7 29 45 48
HeiM F 1 9 21 3
OSU F 2 13 23 0
CLUZH M 0 13 23 4
HeiM M 9 14 66 62
OSU M 11 18 41 57
CLUZH HUM 0 3 16 14
HeiM HUM 0 4 15 15
OSU HUM 2 1 15 16
CLUZH NHUM 7 39 52 38
HeiM NHUM 10 19 72 50
OSU NHUM 11 30 49 41

Table 21: Arabic error types at 1000 training by gender
and rationality.
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CLUZH Gold SF Gold SM Gold B Sum
Pred SF 139 0 23 162
Pred SM 0 0 0 0
Pred B 13 0 49 62
Pred ? 4 0 1 5
Sum 156 0 73 229

HeiM Gold SF Gold SM Gold B Sum
Pred SF 140 0 21 161
Pred SM 1 0 0 1
Pred B 9 0 51 60
Pred ? 6 0 1 7
Sum 156 0 73 229

OSU Gold SF Gold SM Gold B Sum
Pred SF 138 0 23 161
Pred SM 2 0 0 2
Pred B 13 0 45 58
Pred ? 3 0 5 8
Sum 156 0 73 229

Table 22: Arabic inflection confusion matrices for each
submitted system at 1000 training. FEM nouns only.

CLUZH Gold SF Gold SM Gold B Sum
Pred SF 74 5 29 108
Pred SM 2 51 16 69
Pred B 25 4 157 186
Pred ? 0 2 6 8
Sum 101 62 208 371

HeiM Gold SF Gold SM Gold B Sum
Pred SF 87 7 51 145
Pred SM 2 43 15 60
Pred B 9 5 126 140
Pred ? 3 7 16 26
Sum 101 62 208 371

OSU Gold SF Gold SM Gold B Sum
Pred SF 80 8 26 114
Pred SM 3 50 15 68
Pred B 16 2 157 175
Pred ? 2 2 10 14
Sum 101 62 208 371

Table 23: Arabic inflection confusion matrices for each
submitted system at 1000 training. MASC nouns only.

CLUZH Gold SF Gold SM Gold B Sum
Pred SF 14 0 1 15
Pred SM 0 48 15 63
Pred B 1 2 24 27
Pred ? 0 0 3 3
Sum 15 50 43 108

HeiM Gold SF Gold SM Gold B Sum
Pred SF 12 0 0 12
Pred SM 0 43 15 58
Pred B 2 2 16 20
Pred ? 1 5 12 18
Sum 15 50 43 108

OSU Gold SF Gold SM Gold B Sum
Pred SF 13 2 0 15
Pred SM 0 47 15 62
Pred B 1 0 24 25
Pred ? 1 1 4 6
Sum 15 50 43 108

Table 24: Arabic inflection confusion matrices for each
submitted system at 1000 training. HUM nouns only.

CLUZH Gold SF Gold SM Gold B Sum
Pred SF 199 5 51 255
Pred SM 2 3 1 6
Pred B 37 2 182 221
Pred ? 4 2 4 10
Sum 242 12 238 492

HeiM Gold SF Gold SM Gold B Sum
Pred SF 215 7 72 294
Pred SM 3 0 0 3
Pred B 16 3 161 180
Pred ? 8 2 5 15
Sum 242 12 238 492

OSU Gold SF Gold SM Gold B Sum
Pred SF 205 6 49 260
Pred SM 5 3 0 8
Pred B 28 2 178 208
Pred ? 4 1 11 16
Sum 242 12 238 492

Table 25: Arabic inflection confusion matrices for each
submitted system at 1000 training. NHUM nouns only.
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