GRILLBot: An Assistant for Real-World Tasks with Neural Semantic
Parsing and Graph-Based Representations

Carlos Gemmell, Iain Mackie, Paul Owoicho, Federico Rossetto

{c.gemmell.l, i.mackie.l,

p.owoicho.1,

f.rossetto.l}@research.gla.ac.uk

Sophie Fischer, Jeffrey Dalton

{sophie.fischer,

jeff.dalton}@glasgow.ac.uk

University of Glasgow
Glasgow, Scotland, UK

Abstract

GRILLBot is the winning system in the 2022
Alexa Prize TaskBot Challenge, moving to-
wards the next generation of multimodal task
assistants. It is a voice assistant to guide
users through complex real-world tasks in the
domains of cooking and home improvement.
These are long-running and complex tasks that
require flexible adjustment and adaptation. The
demo highlights the core aspects, including a
novel Neural Decision Parser for contextual-
ized semantic parsing, a new “TaskGraph” state
representation that supports conditional execu-
tion, knowledge-grounded chit-chat, and au-
tomatic enrichment of tasks with images and
videos.

1 Introduction

We present GRILLBot, a task-oriented multi-
modal conversational assistant developed during
the 2021/2022 Alexa Prize TaskBot Challenge
(Gemmell et al., 2022). GRILLBot aims to be
an open research platform for complex tasks and
supports flexible graph-based task representations,
contextual semantic parsing, and incorporates im-
age and video content for clarity and instruction.
We release the core components of the system as
OAT! (Open Assistant Toolkit).

GRILLBot is still deployed throughout the
United States with users able to invoke the bot
by issuing the command “Hey Alexa, Assist me”
to their voice-only or screened Alexa device. Our
system provides open-ended assistance focusing in
the domains of cooking and home improvement.
It guides the user through all phases of the task,
from performing preference elicitation to guiding a
user to a relevant task from large task corpora, (i.e.
“making a New York-style pizza" or "how to paint a
wall”) and then proceeds to assist in executing the
task in an engaging way. Its capabilities include

'https://github.com/grill-lab/OAT

question answering, task-oriented chit-chat, and
instructional video content.

GRILLBot is part of the first generation of assis-
tants (Ipek et al.) that leverage screen-enabled con-
versational devices for complex real-world tasks.
These tasks are extensive, with some taking over
an hour. As a result, a performant system requires
long-term state tracking with capabilities to adapt
to a changing environment. It achieves this by in-
troducing a new novel task structure, a TaskGraph,
that captures the actions and information depen-
dencies to guide the user through a complex task.
TaskGraphs are enriched offline with content from
information extraction, knowledge-based content,
and multimedia images and videos.

Traditional task-oriented dialogue systems
(Young et al., 2013) take a slot-filling approach to
deriving system actions. Academic datasets such
as MultiwOZ (Budzianowski et al., 2018) capture
slot-value pairs from the user utterances within a
constrained set of domains enabling data-driven
neural models. Andreas et al. (2020) extend this
traditional representation towards semantic parsing
with dataflow graphs while constrained to the do-
main of events booking in the SMCalFlow dataset.
The neural decision parser in GRILLBot similarly
generates code but focused on all aspects of a con-
versation from navigation to task search and ques-
tion answering. Other challenges such as DSTC11
(Kottur et al., 2021) attempt this fully featured task-
oriented experience, yet only do so in a virtual set-
ting. GRILLBot stands apart as a system required
to engage with real-world users in their environ-
ment and assist in complex tasks for cooking and
home improvement.

2 System overview

The system uses a micro-service architecture with
a centralized Orchestrator that defines the system
behavior. We use a phase-based policy to transition

654

Proceedings of the SIGdial 2022 Conference, pages 654—658
Heriot-Watt University, Edinburgh, UK. 07-09, September, 2022 ©2022 Association for Computational Linguistics

https://github.com/grill-lab/OAT

b

Do you wont you
sauce to be wmore
Firm?

........

Grate

Ingcep{ien‘ts "o

towel and

Shallot

........

o large bowl

Betails

.

~
olive oil

[ppp——

.

Iy
v

|
\
.

Heat up the inﬁreo(ien’ts on o«
lwﬁe skillet for 30 seconds

Add Zacehini
—~_ | Mixture and cook
for 15-20 minutes.

v

Add pasto to
Lo;lingl woter.

SetTimer5M)

Figure 1: Example TaskGraph (right) and conversation (left) connect each utterance with the information in the

graph nodes. The figure shows how we use conditional

Grate
Ingreol‘nents n

)

ur |

| J

"/‘l’o start cooking o
pasta, put a pot of
water on the stove to

&

—
. | (\
....... > boil. Do {you wont z”“ | Ehm... No I prefer it o\J
| sauce to be more firm? | |
§ \ bit cunny. ‘
= /4 a)
a7 7)))
| ! N
, Oh ok 3013 it/ | / \7
o — | Ok, What's next? |
Grate Ingreoheu‘ts n a 222222027 J

| 2228\
‘ Jd
|
)

larce bowl. You will need
| Zucching Shallot and Garlic.

<
///

\

J\

ka do I need to
grate them?

/

e \ 2
{/Gyro:tiv\g the zucchini is \‘

io(eoJ to moke a v |
‘cre_amy sauce that chngs}

s>

(oK

‘\,

, I'm done 3{‘0&1»«3, \‘.
n@(t.

A}

A

Heot up the ingredients \
on o lo«ige sk:“z; for 30‘
seconds. You will n
Olive Oil and Red Pepper‘;
Flokes.)

p—
| And aPter that? |

(& g
~J

[Add Zucchini Mixture
and cook for 15-20
minutes. Do you wont o

Timer for

>
i

|

e
that? ' Oh... Sure start the
Q222222220000 v_J { timer! A

7\
~

________ I have set the timer!
>N
—

()

J

nodes (in light blue) to manage yes/no questions to unlock

different branches of instructions. Conditional nodes can also unlock autonomous actions like setting a timer. The
figure also highlights how the requirement nodes (in light green) are used by the system to enrich the experience
by adding specific information that the user will need to perform the step. Finally, the purple box highlights extra

information contained inside the step nodes to ground t

from searching for a suitable task (i.e. planning
phase) to guiding users in performing a task (i.e.
execution phase).

The Orchestrator is the central process that di-
rects and receives all the information from other
microservices. Specifically, these child compo-
nents are called functionalities and provide the nec-
essary tools required by policies during conversa-
tions. The main components inside functionalities
are: Neural Decision Parser, Task Searcher and
Question Answering. We discuss the Neural Deci-
sion Parser in Section 4.

The task searcher leverages our collection of
TaskGraphs to find candidate tasks. Our approach
is based on a combination of traditional sparse &
dense retrieval and neural re-ranking (Gemmell
et al., 2022). The question answering system pro-
vides extra task information, handles user ques-
tions, and provides chit-chat elements. It uses a
collection of QA systems across six categories.

he QA system in domain knowledge.

3 TaskGraphs

A TaskGraph is a new graph-based representation
based on a directed acyclic graph that encodes the
actions and information dependencies that the sys-
tem needs to enable complex dialogue flows. In-
formation is represented with heterogeneous nodes,
each with a specific role:

» Steps: Represent a task instruction for the
user, including visual information and textual
descriptions.

Requirements: Represent tools and ingredi-
ents that are needed to perform the task and
can be grounded to specific steps.

Conditions: Represents yes/no gates that re-
quire external information to resolve during
execution dynamically.

Logic: Represents logical operations. These
can be used in conjunction with other nodes to
655

enable compact dependencies and smoother
execution flows. We currently support A, V
and — operations.

* Actions: Represents actions taken by the sys-
tem. This could be operations like setting a
timer or adding items to a list.

¢ Extra Information: Represents domain/task-
specific knowledge like tips or fun facts that
can enrich the user experience during the exe-
cution of the task.

Combining all these nodes, we can obtain adap-
tive interactions where system-initiative allows the
system to adapt to the user’s needs. Figure 3
shows how TaskGraphs can be leveraged using a
task-oriented conversation helping a user cooking
“creamy zucchini pasta.”

3.1 Offline TaskGraph Curation

A key part of the system is providing relevant and
high-quality TaskGraphs that satisfy the user’s task
goal. For example, if a user asks, “I want to cook a
gluten-free meal based around lamb shoulder, the
system must find a suitable TaskGraph.

To enable this, the system has to process rich and
executable TaskGraphs offline with enough scale
to cover most user needs. Offline processing also
decouples the heavy processing stages and data
enrichment from online processing.

Web content We leverage domain experts
to identify high-quality seed websites for each
domain, e.g. wholefoodsmarket.com
and seriouseat.com for cooking and
wikihow.com for home improvement. We use
Common Crawl to download the raw HTML for
target domains and develop website-specific wrap-
pers to extract semi-structured information about
each task, i.e. title, author, description, ingredients,
images, steps, ratings, videos, infoboxes, FAQs.

Synthesize TaskGraphs The next stage of the of-
fline process takes the semi-structured information
extracted and synthesizes executable TaskGraphs.
This creates multi-modal task nodes and connec-
tions from previously linear task steps. For ex-
ample, we can create expressive graphs that con-
tain a summary and a detailed description for each
task step, which can be accessed by users who
require additional context. We also leverage infor-
mation extraction methods, such as noun phrase

detection (Honnibal and Montani, 2017), to cre-
ate graph connections that link required ingredi-
ents and tools to each step. Additionally, complex
graph structure and manual augmentation can be
added using a custom-developed excalidraw.com
graph interface. This allows loading automatically
processed TaskGraphs, adding additional graph
nodes and connections, and exporting the updated
TaskGraphs.

Multimodal augmentation Visual information
plays a crucial role in improving the success and en-
joyment of users being guided through real-world
tasks. For example, showing “How-to” videos,
images and lists of tools and ingredients offers a
more compelling and useful user experience. Fig-
ure 2 depicts the multi-modal experience where the
screen text outlines the instruction, a list shows the
ingredients required, an image enriches the user
experience, and a video offers a technical demon-
stration.

CREAMY LEMON ZUCCHINI PASTA
| understood: "next step"

Step 2

Hint: Ask about specific ingredients

(video)| Next

On a kitchen towel, clean and grate
the Zucchini, Garlic and Shallot
Things you'll need:

@ 4 large garlic cloves

@ 4-6 Zucchini

® 1 large shallot or half small onion

Figure 2: Multimodal UI containing text, buttons, im-
ages, and videos.

We also develop a means of enriching task nodes
if the task steps do not have aligned images and
videos. First, we extract actions (i.e "cut the beef")
from a step based on a dependency parse of the step
text using the spaCy toolkit. For images, we use
CLIP (Radford et al., 2021) to search over an im-
age corpus of all other task steps images. This uses
the cosine similarity between image and step ac-
tion embeddings to identify the relevant images for
each step. For videos, we develop a video corpus
of domain-focused techniques, which is an index
based on the video title using S-BERT (Reimers
and Gurevych, 2019). Similar to image retrieval,
we embed the step action as a query and rank the
titles of each “How-To” video through a cosine
similarity of the step action embedding.

656

4 Neural Decision Parser

/” Conversation Context

“next pease’

\
|
1
[
1
|
|

Parse:
set_timer('15 minutes”)
ser /

"Add cheese and User:
\bake for 15 winutes’ ! "Oh, set a timer for that"

|
|
1
1
!
|
\

User: Parse:

— last step'—=>| step_select(-1)

Neural
Decision
Parser

\ "
Task State | User: "can it be vegan?'

[

| — l

I | Phase: Execution)

\)

Figure 3: Example of several possible in-context parses
during task execution. The Neural Decision Parser au-
toregressively generates the function call and arguments
as code in our DSL.

TaskGraphs allows complex representations of
real-world tasks. Due to the complex conversa-
tional dialogue required, traditional non-contextual
intent classifiers struggle to manage stateful tran-
sitions. For this reason, we develop a Neural De-
cision Parser that leverages both TaskGraphs and
user history for contextualized semantic parsing.
Specifically, the model takes in natural language
representations of a TaskGraph and prior conver-
sational context to generate actions in the form of
the custom GRILLBot Domain Specific Language
(DSL). These generated arguments supply the task
sub-components with parsed knowledge relating to
the conversation.

For example, if a user asks “Can you go
back to the first step?”’, the Neural Decision
Parser would generate a parameterized parse
step_select (1).

Contextual Semantic Parsing as a DSL Figure
4 shows our state transition domain specific lan-
guage (DSL) that captures all system actions. This
DSL outlines a parameterized global command set
that is understood throughout the system to derive
what actions or external APIs should be called, and
what the response utterance should be. This flexi-
ble navigation allows for a complex conversation
design that leverages TaskGraphs.

Model We use a single TS large model (Raffel
et al., 2020) to generate an agent action based on
the TaskGraph and conversational content. Using
a pre-trained language model allows advanced lan-
guage capabilities to be leveraged across all system
parts, including coreference resolution, search pa-
rameterization, setting timers, and state prediction.

User specifies which task to execute
> select(option=Int)

Catch all for user questions
> answer_question ()

Catch all for task search
Vague and Theme query categories
> search (vague=Bool, theme=String)

Go to prior node
> previous ()
Go to next scheduled node
> next ()

Navigate to specific task
> step_select(step=Int)

steps
Set timer with parsed time span
> timer (span=String)

Provide details
> chit_chat ()

about a step

Figure 4: A sample of the Neural Decision Parser out-
put DSL with intent-based functions and parameterized
arguments that a T5 model generates at inference time.

We train the Neural Decision Parser by annotat-
ing simulated conversations with the appropriate
function calls and associated arguments. Our anno-
tated training data comprises 1,200 turns across var-
ious conversation stages and includes TaskGraph
and conversational context. Through user studies
and system comparisons, we find that this approach
achieves strong performance, and allows flexible
task navigation.

5 Conclusion

This demo presents GRILLBot, a newly devel-
oped Alexa Prize Taskbot system for complex real-
world tasks with rich multimodal capability. It
demonstrates multiple novel components includ-
ing TaskGraphs to manage long complex tasks that
are automatically enriched with offline process to
add multimodal image and instructional video con-
tent. It also shows key elements of the system
that make it engaging, including its flexible Neural
Decision Parser that performs contextual semantic
parsing as parametrized code generation. The re-
sult is a demonstration of a new research platform
designed from the ground-up around around flex-
ible cloud micro-services and large-scale neural
language models.

657

References

Jacob Andreas, John Bufe, David Burkett, Charles Chen,
Josh Clausman, Jean Crawford, Kate Crim, Jordan
DeLoach, Leah Dorner, Jason Eisner, et al. 2020.
Task-oriented dialogue as dataflow synthesis. Trans-

actions of the Association for Computational Linguis-
tics, 8:556-571.

Pawet Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iiigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasic. 2018. Multiwoz-a large-
scale multi-domain wizard-of-oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on EMNLP, pages 5016-5026.

Carlos Gemmell, Sophie Fisher, Iain Mackie, Paul
Owoicho, Federico Rossetto, and Jeffrey Dalton.
2022. Grillbot: A flexible conversational agent for
solving complex real-world tasks. In 2022 Alexa
Prize Proceedings.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

Anna Gottardi Osman Ipek, Giuseppe Castellucci Shui
Hu, Lavina Vaz Yao Lu, Anju Khatri, Anjali Chadha,
Desheng Zhang, Sattvik Sahai, Prerna Dwivedi,
Hangjie Shi, Lucy Hu, et al. Alexa, let’s work to-
gether: Introducing the first alexa prize taskbot chal-
lenge on conversational task assistance.

Satwik Kottur, Seungwhan Moon, Alborz Geramifard,
and Babak Damavandi. 2021. SIMMC 2.0: A task-
oriented dialog dataset for immersive multimodal
conversations. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 4903-4912, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In ICML, pages 8748—
8763. PMLR.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of ML Research, 21:1-67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Steve Young, Milica Gasié, Blaise Thomson, and Ja-
son D Williams. 2013. Pomdp-based statistical spo-
ken dialog systems: A review. Proceedings of the
IEEE, 101(5):1160-1179.

658

https://doi.org/10.18653/v1/2021.emnlp-main.401
https://doi.org/10.18653/v1/2021.emnlp-main.401
https://doi.org/10.18653/v1/2021.emnlp-main.401

