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Abstract 

This paper describes our two deep learning 

systems that competed at SemEval-2022 

Task 1 “CODWOE: Comparing 

Dictionaries and WOrd Embeddings”. We 

participated in the subtask for the reverse 

dictionary which consists in generating 

vectors from glosses. We use sequential 

models that integrate several neural 

networks, starting from Embeddings 

networks until the use of Dense networks, 

Bidirectional Long Short-Term Memory 

(BiLSTM) networks and LSTM networks. 

All glosses have been preprocessed in order 

to consider the best representation form of 

the meanings for all words that appears. We 

achieved very competitive results in reverse 

dictionary with a second position in English 

and French languages when using 

contextualized embeddings, and the same 

position for English, French and Spanish 

languages when using char embeddings. 

Our source code can be found at GitHub1. 

1 Introduction 

Distributed representations of words (or word 

embeddings)  (Bengio et al., 2003; Mikolov et al., 

2013; Pennington, Socher and Manning, 2014) 

have shown to provide useful features for various 

tasks in natural language processing (NLP) and 

computer vision. While there seems to be a 

consensus concerning the usefulness of word 

embeddings and how to learn them, this is not yet 

clear with regard to representations that carry the 

meaning of a full sentence. That is, how to capture 

 
1 https://github.com/jln-brtn/BL.Research-at-

SemEval-2022-Task-1  

the relationships among multiple words and 

phrases in a single vector remains a question to be 

solved. 

Much recent research in computational 

semantics has focused on learning representations 

of arbitrary-length phrases and sentences. The 

reverse dictionary represents one of the most 

common cases to solve this problem of learning 

sequence representations. That said, the reverse 

dictionary is the task to find the proper target word 

given the word description (Hill et al., 2016; 

Hedderich et al., 2019; Zhang et al., 2019; Yan, Li 

and Qiu, 2020). For example, the composed 

meaning of the words in a dictionary definition (A 

mixture of other substances or things) should 

correspond to the meaning of the word that define 

it (cocktail). As mentioned by Hill et al. (2016), this 

bridge between lexical and phrasal semantics is 

useful because high quality vector representations 

of single words can be used as a target when 

learning to combine the words into a coherent 

phrasal representation. 

In this paper, we present our contributions to 

solve the reverse dictionary problem using very 

specific neural architectures and applying 

supervised learning. For more information on task 

1 of SemEval-2022 as described by its organizers, 

we invite the reader to consult the paper of Mickus, 

Timothee et al. (2022). 

Our approaches require a model able of learning 

to map between arbitrary-length phrases and fixed-

length continuous-valued word vectors. For this 

purpose, we experiment with two broad classes of 

neural language models (NLMs): Recurrent Neural 

Networks (RNNs) with (Bidirectional) Long-Short 

BL.Research at SemEval-2022 Task 1: Deep networks for  

Reverse Dictionary using embeddings and LSTM autoencoders 
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Term Memory (BiLSTM and LSTM), which 

naturally encode the order of input words (or 

characters), and simpler (feedforward) lexical units 

embedding models. These lexical units can be bag-

of-words (BOW) or a sequence of characters. 

After having described in section 2 in more 

detail the problem to be solved in the SemEval-

2022 evaluation campaign and the data provided, 

we present in section 3 the previous works of 

reverse dictionary. Then, in section 4, we present 

our neural architectures with all data preprocessing 

having been performed. Thereafter, in section 5, we 

describe the experimental setup implemented 

before presenting the results in section 6 and 

concluding in section 7. 

2 Background 

2.1 Problem Description 

    The CODWOE shared task2 consists of compare 

two types of semantic descriptions: dictionary 

glosses and word embedding representations. The 

problem can be defined as follows: given a 

definition, can we generate the embedding vector 

of the target word? That said, there are several 

questions to be solved: (1) How should we 

compare two very different types of semantic 

representation? (2) Will contextualized 

embeddings help better define polysemous 

(ambiguous) words that have multiple senses? and 

(3) Can we have the same evaluation performances 

of the same neural architecture for different natural 

languages? In other words, five natural languages 

are studied in this task, namely: English, French, 

Spanish, Italian and Russian language. Our goal is 

to answer the following question: can the same 

model or the same neural network architecture be 

beneficial for all languages? 

2.2 Data Description 

The organizing members of the reverse 

dictionary task proposed different JSON files that 

contain definitions and their vector representations. 

Each JSON file describes information about a one 

natural language for a list of five languages, 

namely: French, English, Spanish, Italian and 

Russian language. The corpus is therefore 

multilingual. Before having the test corpus, the 

data have been split in different sets: trial, train, and 

development corpus. All the models we will 

 
2 https://competitions.codalab.org/competitions/34022 

present have been trained and validated on train 

and development corpus.  

Before describing the data, we can do a quick 

focus on the size of these data. As we mentioned, 

the data are split into 3 groups. For each language, 

the trial dataset contains 200 elements pairs 

(definitions and their embedding vectors), the train 

dataset contains 43,608 elements pairs, and the 

development dataset contains 6,375 elements pairs. 

Regarding the test corpus, we have 6,208 

definitions for each language. The organizers have 

provided different vector representations for the 

definitions. All these representations are 

continuous vectors (embedding vectors). They 

have 256 dimensions and are built with well-

known three techniques: 

• "char" corresponds to character-based 

embeddings, computed using an auto-

encoder on the spelling of a word. 

• "sgns" corresponds to Skip-Gram with 

negative sampling embeddings, aka. 

Word2Vec (Mikolov et al., 2013). 

• "electra" corresponds to Transformer-based 

contextualized embeddings. 

As mentioned above, all datasets of SemEval-

2022 task 1 are multilingual. This is an important 

point because we can imagine and create a system 

that manages these multilingual datasets, or several 

systems specialized in one language. We will 

explore this option in the “Experimental Setup”. 

3 Related Work  

In the field of natural language processing, word 

embeddings have been the subject of several 

research problems for many years. Indeed, a text 

contains various information, and the idea is to 

resorb the target information in a continuous vector 

representation. Embedding’s methods improve 

significatively the results against standard 

statistical approaches and justified the interest 

these last years. In order to create embeddings, the 

scientific research community is experimenting 

with two approach types: unsupervised and 

supervised learning of embeddings. 

The unsupervised approaches are the most 

common and consist in using a pretrained language 

model on a large corpus such as Word2Vec 

(Mikolov et al., 2013) or Glove (Pennington, 

Socher and Manning, 2014). From the word 
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embeddings we can obtained, we must then choose 

a technique in order to find the right combination 

of words that will best convey the desired 

information. For example, it’s possible to apply 

combinations such as: average, sum, or centroid to 

obtain a vector that reflect the representation for a 

sequence of words. We can find an example of 

centroid usage with Lwin and Nwet (2019) for 

news summarization extraction or a centroid vector 

weighted by IDF (Inverse Document Frequency) 

(Arora, Liang and Ma, 2017). 

For the supervised approaches to produce 

sequence text vector representation, the idea is 

consisting of modeling the link between a content 

and an embedding representation. The reverse 

dictionary is a common case of sequence or short 

content representation. Some state-of-the-art 

models are used to perform this task, for example 

neural networks LSTM (Sherstinsky, 2018) and 

Bert (Pre-training of Deep Bidirectional 

Transformers for Language Understanding) 

(Devlin et al., 2018). Notably in the paper of Yan, 

Li and Qiu (2020), they experiment with word 

generation from a definition using Bert 

multilingual architecture. As it’s mentioned in their 

paper, the use of a Bert model is a great idea and 

can, at least, achieves state-of-the-art performances 

for both monolingual and cross-lingual reverse 

dictionary task. Even better, the proposed 

framework here can perform cross-lingual reverse 

dictionary task without aligned data. 

We can also talk about the work of Morinaga and 

Yamaguchi (2020), Malekzadeh, Gheibi and 

Mohades (2021) which are based on a Long Short-

Term Memory (LSTM) architecture. With always 

our objective to produce a vector of a 

contextualized text, the LSTM offers great 

prospect in this field of research. Indeed, the 

recurrent neural network architecture of the LSTM 

allow models to perform on sequential data which 

is exactly our case study in this task. 

4 System Overview  

In this section, we describe the models we 

proposed in the CODWOE – Reverse dictionary 

shared task. In order to keep comparable and 

linguistically significant the results submitted by 

the different participants, the organizers of 

 
3 https://www.tensorflow.org/ 
4 https://keras.io/ 
5 https://stanfordnlp.github.io/stanza/ 

CODWOE disallowed any use of external 

resources, including standard datasets as well as 

pretrained models that could be used for this task 

(such as Word2Vec models or contextual pretrained 

models based on Transformer’s architectures like 

Bert). Given this condition, we decided to explore 

the sequential models, and particularly the LSTM 

and BiLSTM models. All the following models’ 

architecture we created are based on TensorFlow3 

and Keras4 (Chollet and others, 2015) libraries. 

4.1 Data preprocessing 

Before introducing our models, we want to 

mention that we have performed preprocessing on 

the content data. By using Stanza5 (Qi et al., 2020), 

we lemmatized all definitions and removed all 

punctuations. We decided to do this to minimize 

alternative words for the same concept and help our 

models to correctly process the vocabulary. 

To optimize our workflow, we worked on the 

data before and independently from the neural 

network architectures. In this way, we built new 

files based on the lemmatization of the main 

corpus. This process is possible because all 

languages are covered by Stanza6. 

4.2 Baseline Model  

In this section, we will introduce our first model, 

called: Baseline Model. This model is intentionally 

simple in order to create baseline scores and 

introduce manipulation on the datasets. The figure 

1 presents our first architecture. 

 

 

6https://stanfordnlp.github.io/stanza/available_models.

html  

Figure 1 : Baseline Model Architecture. 
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   As you can see on the figure 1, our model created 

with Keras contains four different layers and starts 

with the text vectorization. This first layer will 

transform the input text in a vector to be process by 

the next layers. To perform this operation, we must 

give an identifier to each different word in our 

corpus. After that, each sentence will be 

represented as a vector of identifiers. To be 

processed, the vector of a sentence must have the 

same size for all sentences. That said, we take the 

maximum sentence size (Ms in figure 1) and 

normalize all the vectors by adding zero values in 

the end. 

Now, each vector’s sentence is ready to be 

processed by the embedding layer. This layer turns 

positive integers (indexes) into dense vectors of 

fixed size. After this operation, the flatten layer will 

change the dimensionality of the data from two 

dimensions to one dimension without losing any 

value. The shape of this layer will be the 

multiplication of the two dimensions of the 

previous layer. Finally, we model the output data 

by using a fully connected layer (Dense layer) with 

256 dimensions to match with the gloss 

embeddings gave by the organizers. 

4.3 Advanced Model 

LSTMs are a Recurrent Neural Networks 

(RNN)  (Medsker and Jain, 2001) which have an 

internal memory that allows them to store the 

information learned during training. LSTMs are 

frequently used in the reverse dictionary task 

(Sherstinsky, 2018) and in word and sentence 

embeddings tasks in general (Augustyniak, 

Kajdanowicz and Kazienko, 2019; Liu et al., 

2020), as they can learn long-term dependencies 

between existing words in the sentence and thus 

compute context representation vectors for each 

word. BiLSTM for its part, is a variant of LSTMs, 

it allows a bidirectional representation of words 

(Augustyniak, Kajdanowicz and Kazienko, 2019). 

Our second model, named Advanced Model, is 

therefore a BiLSTM-LSTM network. As for the 

baseline model, we use a sequential model which 

can be provided by Keras. The figure 2 presents our 

second architecture. This last one starts with a text 

vectorization layer, followed by an Embedding 

layer and a dense layer producing vectors of the 

words passed as an input, the vectors have (length 

of the longest sentence, 128) dimensions. Then we 

added a BiLSTM layer, which takes a recurrent 

layer (the first LSTM of our network) which in turn 

takes the “merge mode” as an argument. This mode 

specifies how the forward and reverse outputs 

should be combined; in our case the average of the 

outputs is taken. 

 

 

To these three layers, we added another fully 

connected Dense layer and a LSTM layer of 256 

dimensions corresponding to the dimensions of the 

output vectors and a final Dense layer with the 

same dimensions as illustrated in figure 2. We use 

the Softmax as an activation function. For the 

hyper-parameters to train the model, we use the 

following: epochs = 10; batch size = 192; learning 

rate = 1e-3 and AdamW as an optimizer.  

5 Experimental Setup 

In this section, we describe different variants we 

tested. Since there were 3 types of vector 

representations proposed to us in this shared task, 

we used the same architectures to produce the 3 

types of vectors. However, the data format given as 

input to the model is not the same for the 3 types. 

For the ‘electra’ and ‘sgns’ representation types, we 

prepare a vocabulary containing the words of the 

glosses of the ‘training dataset’, the words of this 

vocabulary were obtained by following the 

preprocessing described in section 4.1. 

For the ‘char’ vector type, we construct a 

vocabulary of all the characters used in the glosses 

without preprocessing the data. The idea being that, 

Figure 2 : Advanced Model Architecture. 
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for the ‘char’ type representation, the model 

encodes the characters of the glosses into vectors 

and then produce the vectors encoding the glosses 

based on the vectors of the characters constituting 

the glosses. 

The model that we propose is a monolingual 

model, i.e., we trained it separately on the training 

dataset of each language provided. However, in 

order to evaluate the impact of using a multilingual 

model, we trained the same neural networks on five 

languages (with character vector) at the same time 

and compared the results obtained with those 

obtained by the monolingual models.  

For the ‘sgns’ and ‘electra’ representation types, 

we built a vocabulary containing the words of all 

glosses on the five languages, which contains in 

total 121,147 words. We did the same with the 

‘char’ vectors but with preparing a vocabulary of 

characters instead containing 405 characters, in 

total. The table 1 describes the vocabulary size for 

each monolingual model and for multilingual 

model. 

 

Model Type Language 
Vocab Type 

Words Chars 

Monolingual 

Model 

English 21,001 139 

French 24,089 170 

Spanish 29,383 229 

Italian 25,414 162 

Russian 29,289 212 

Multilingual 

Model 

All 

languages 
121,147 405 

 

Table 1: Vocabulary size of models. 

    We can see that there are common words 

between the different languages since the 

multilingual model has a vocabulary of 121,147 

words instead of 129,176. That said, there are 8,029 

common words between at least two language 

vocabularies. Moreover, we find that the 

vocabulary of the Spanish language is the best 

represented in the train dataset. 

6 Results and Analysis 

In this section, we present the performance 

results on using architectures that we described in 

section 4 and try to give clue to understand them. 

Our main goal was to outperform the organizers’ 

baseline model and results (Mickus, Timothee et 

al., 2022). 

For our first model (our baseline), the model is 

not better than the state-of-the-art models for this 

task. However, we can analyze an interesting point: 

this simple model surprisingly produces better 

results on the rank cosine (Rank) measure. To 

illustrate this remark, we can look the model results 

in table 2. On results for the MSE measure, only 3 

cases outperform the organizers’ baseline model. 

Moreover, every rank cosine measure is better. At 

this point, we can reach our first analyze, it’s hard 

to perform in the MSE and Cosine (Cos) with, at 

the same time, trying to obtain good results in Rank 

(and vice-versa). This analyze is supported by the 

following table 3 based on advanced model. 

 

Language Emb-type MSE Cos Rank 

EN 

char 0.216 0.709 0.449 

electra 1.638 0.805 0.433 

sgns 1.217 0.165 0.311 

FR 

char 0.501 0.690 0.428 

electra 1.394 0.813 0.441 

sgns 1.867 0.166 0.314 

ES 
char 0.632 0.787 0.411 

sgns 1.089 0.251 0.253 

IT 
char 0.691 0.572 0.417 

sgns 1.329 0.245 0.246 

RU 

char 0.165 0.787 0.409 

electra 0.946 0.694 0.398 

sgns 0.690 0.219 0.289 

 

Language Emb-type MSE Cos Rank 

EN 

char 0.143 0.795 0.500 

electra 1.326 0.843 0.500 

sgns 0.895 0.153 0.500 

FR 

char 0.365 0.769 0.500 

electra 1.112 0.857 0.500 

sgns 1.106 0.211 0.500 

ES 
char 0.510 0.824 0.500 

sgns 0.910 0.227 0.500 

IT 
char 0.358 0.728 0.500 

sgns 1.111 0.227 0.500 

RU 

char 0.132 0.829 0.500 

electra 0.864 0.719 0.500 

sgns 0.566 0.298 0.425 

 

With our second model, the results are 

completely opposite. We performed in MSE and 

Cosine measure. With these two measures, we’re 

Table 2: Our Baseline model results. 

Table 3: Advanced model results. 
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doing better than the organizers’ baseline model. 

On the other hand, the Rank cosine seems to be 

stuck on 0.5. We can also compare our results with 

the other participants. Our BiLSTM-LSTM 

architecture is efficient on ‘char’ and ‘electra’ 

embeddings. For example, in ‘char’ with English, 

French and Spanish languages, we obtain the 

second-best score over the seven participants in 

SemEval-2022 campaign at task 1. We can 

conclude this analyze for the advanced architecture 

with this open-ended question: Why our 

architecture performs on English, French and 

Spanish but seam to give worse results on the 

Italian and Russian languages? 

As we mentioned earlier, we tried to create a 

multilingual model. Unfortunately, after trained 

this model on all five languages and test on French 

Character embeddings, the model gave us poor 

results: 0.67 for MSE and 0.48 for Cosine measure. 

These are the worst results we’ve had in this 

competition, so we decided to drop this architecture 

and focus on the models presented in the system 

overview section. 

Given the set of results obtained, we find that the 

best cosine score was obtained by using electra 

(contextualized) vector embeddings and the best 

MSE score was obtained by using character vector 

embeddings. More generally, the use of BiLSTM-

LSTM architecture neural network has been 

beneficial in having results that surpass baselines 

when cosine and MSE are used as evaluation 

measures. 

7 Conclusion 

    In this paper, we have presented our 

contributions to solve the task 1 problem of the 

semeval-2022 evaluation campaign. We studied the 

effects of training sentence embeddings with 

supervised data by testing on five different 

languages, namely: English, French, Spanish, 

Italian and Russian language. We showed that 

models learned with char embeddings or 

contextualized embeddings can perform better than 

models learned with Skip-Gram word embeddings. 

By exploring various architectures, we showed that 

the combination of Embedding/Dense/BiLSTM/ 

Dense/LSTM layers can be beneficial than the 

simple use of Embedding layer. 

We believe that the neural architecture of our 

advanced model can be used to solve other tasks 

such as Definition Modeling (Noraset et al., 2017), 

where the objective would be to reverse the 

inputs/outputs of the model, or other natural 

language processing tasks where the objective is to 

add a specific output layer to adopt the specific 

problem like sequence classification, for example. 
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