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Introduction

NLP Power! is the workshop on efficient benchmarking in NLP.

Benchmarking has become a standard practice for evaluating upcoming models against one another and
human solvers; there are still many unresolved issues and methodological concerns. The main idea of
the workshop is to bring together researchers that work on benchmarks for natural language processing
(NLP) and discuss how benchmarking can be improved to account for computational efficiency, ethical
considerations, user preferences, and out-of-domain robustness. The workshop proceedings present the
collection of research contributions on the computational efficiency of model evaluation, transfer lear-
ning efficiency estimation, evaluation metrics, robustness and bias assessment, and general best practices
in benchmarking for NLP.

This is the first time we have organized a workshop with this particular scope of interest. Our wor-
kshop is hosted by the 60th Annual Meeting of the Association for Computational Linguistics (ACL
2022). Our program committee consisted of experts from all over the world with years of research expe-
rience in the industry and academia. The committee worked hard on every submission and selected 12
research papers to be presented at the workshop in the poster and oral sessions. The workshop program
also included one ACL Findings paper. Overall, it resulted in 2 oral presentation sessions, which were
intermitted by a poster session, three invited talks, and a round table on the problems of canonic ben-
chmark standards.

NLP Power would not be possible without the dedicated intellectual work of the program committee:
their peer review and efforts aimed to improve the work have shaped the scientific community, which is
now, for the first time, coming forward with a unified workshop mission. We also express our sincere
gratitude to the invited speakers: Anna Rumshiski, He He, and Ulises Mejias, for their contribution to
the program. We thank the researchers and NLP practitioners for the engagement and responses and
hope to continue to provide a platform for fruitful discussions on various topics, ranging from rethinking
benchmarking methods to the reproducibility of the leaderboard results.

You can find more details about the workshop on the website: http://nlp-power.github.io/.

Tatiana Shavrina, Valentin Malykh, Ekaterina Artemova, Vladislav Mikhailov, Laura Weidinger, Oleg
Serikov, and Vitaly Protasov
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Abstract

This paper critically examines the current prac-
tices of benchmark dataset sharing in NLP and
suggests a better way to inform reusers of the
benchmark dataset. As the dataset sharing plat-
form plays a key role not only in distributing
the dataset but also in informing the potential
reusers about the dataset, we believe data shar-
ing platforms should provide a comprehensive
context of the datasets. We survey four bench-
mark dataset sharing platforms: HuggingFace,
PaperswithCode, Tensorflow, and Pytorch to di-
agnose the current practices of how the dataset
is shared - which metadata is shared and omit-
ted. To be specific, drawing on the concept of
data curation which considers the future reuse
when the data is made public, we advance the
direction that benchmark dataset sharing plat-
forms should take into consideration. We iden-
tify that four benchmark platforms have dif-
ferent practices of using metadata and there
is a lack of consensus on what social impact
metadata is. We believe the problem of miss-
ing a discussion around social impact in the
dataset sharing platforms has to do with the
failed agreement on who should be in charge.
We propose that the benchmark dataset should
develop social impact metadata and data cura-
tor should take a role in managing the social
impact metadata.

1 Introduction

Benchmark datasets play a crucial role in devel-
oping the model. Publicly available benchmark
datasets serve as a baseline proxy to measure the
model’s performance and an evaluation as the ma-
chine learning (ML) and natural language process-
ing (NLP) scholarship competes for the higher
ground. Recent works have started to question
the validity of such benchmark datasets regarding
their generalizability (Bowman and Dahl, 2021;

* Both authors contributed equally to this research.

Paullada et al., 2021), documentation practices
(Bender and Friedman, 2018), and social impact
(Hovy and Spruit, 2016; Sap et al., 2021), amongst
others. Paullada et al. (2021) focus on the way how
benchmark datasets are collected and used and ad-
vocate cautious understanding of data in order to
address ethical issues of using such datasets. Bow-
man and Dahl (2021) suggest the criteria bench-
marks should qualify, namely the robustness, sta-
tistical power, and considerations of social impact.
However, despite the fact that the documentation of
benchmark datasets and the role of the dataset shar-
ing platform are pivotal not only in informing the
users about the benchmark dataset but also solicit-
ing a safe use, it has been relatively understudied.
We believe that critically examining the current
practices of dataset sharing platforms - which meta-
data is documented and omitted - and suggesting
desiderata for data sharing platforms can serve as a
practical guide for users and researchers in encour-
aging a safe environment.

Our findings show that current practices of
dataset sharing platforms are highly centered on
reusable purpose, which focuses on the conve-
nience of the users in making use of the dataset.
For example, it provides detailed explanations of
how to load the dataset into actual development,
how the test and train split are made. It was hard,
on the other hand, to find the documentation of the
limitations of the dataset (e.g. which societal im-
pacts it may bring); even if there were, the concepts
and definitions were often elusive. We introduce
the concept of social impact metadata which is
the documenting practice done in Library and In-
formation Science in order to advocate mitigating
possible social harms.

We propose desiderata for documenting bench-
mark datasets. Beyond descriptive and adminis-
trative metadata, the documents of the metadata
should also include the social impact metadata. To
make it possible, we highly encourage developing
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the social impact metadata (e.g. demographic statis-
tics of the data) and also emphasize a role of the
data curator who is responsible for documenting in
terms of the data sharing platforms.

2 Definitions

In order to narrow down the conceptual difference
that may conflict between the ML (and NLP) com-
munity and Library and Information Science com-
munity, we introduce the definition of the key terms
that will be used throughout the paper.

Data documentation Data documentation (some-
times called a "codebook") is helpful in under-
standing and interpreting the dataset (Vardi-
gan et al., 2008). A document can be de-
fined as ‘anything in which knowledge is
recorded’ and documentation is ‘any process
which serves to make a document available to
the user after knowledge.’ (Woledge, 1983).
With this sense, Data Documentation Initia-
tives (DDI) defines data documentation as
‘document and manage data across the en-
tire data life cycle, from conceptualization to
data publication, analysis and beyond’ (DDI,
2020). ML community defines the data docu-
mentation as ‘annotating various demographic
characteristics for disaggregated testing, gath-
ering representative data, and providing docu-
mentation pertaining to the data gathering and
annotation process’ (Jo and Gebru, 2020).

Benchmark dataset Benchmark dataset refers to
the typical set of datasets that are commonly
used for evaluating the model’s baseline per-
formance on specific tasks (Bowman and
Dahl, 2021). Some of the widely used bench-
mark datasets in NLP are GLUE (Wang et al.,
2018) and SuperGLUE (Wang et al., 2019)
for natural language understanding, SQuAD
(Rajpurkar et al., 2016) for question and an-
swering, and Seteroset (Nadeem et al., 2021),
CrowS (Nangia et al., 2020) for checking bi-
ased natural language models, amongst others.

Data sharing platform We consider a data-
sharing platform, that provides access to
the datasets or the metadata of the datasets.
Normally the benchmark datasets are shared
through the third party provider rather than
the data creators themselves. Generally, the
data sharing platforms offer the users direct

access to the datasets by their pre-defined
methods that are compatible with their
libraries used for developing NLP models
(e.g. HuggingFace, PyTorch, Tensorflow).
Apart from the concept of data curator, who
collects, selects, and participates in the data
creation process, contributors are the ones
that upload and document the dataset to
the data-sharing platform. This could be
voluntary individuals (e.g. HuggingFace), or
in part supported by automated algorithms
(e.g. PaperswithCode).

Descriptive metadata Descriptive metadata is
considered to contain information that can
help users to find, identify, select, and obtain
the resource. Title, creator, keywords, sub-
ject, type of resource, and other attributes that
describe what the resource is about are con-
sidered as descriptive metadata (Liu and Qin,
2014; Pomerantz, 2015). In practice, descrip-
tive metadata in the archives can be used to
catalog entities, events, time, and space to an-
swer the queries that the users want to find
(Dobreski et al., 2020). Descriptive metadata
in the benchmark dataset can be derived from
variables inside of the dataset. The domain
(e.g., social media, news media), scope (e.g.,
the topic covered by the dataset) can be addi-
tional descriptive metadata of the benchmark
dataset.

Administrative metadata Administrative meta-
data is required to house information about
managing and administering collections. Ad-
ministrative metadata includes information
about rights, versions, and preservation
(NISO, 2004). For the benchmark dataset,
the version can be appropriate administrative
metadata.

3 Social Impact of Benchmark Dataset
Sharing Platforms

Once the benchmark dataset is made available for
others, data friction comes into play. Data fric-
tion explains a point of resistance where data can
be garbled, misinterpreted, or lost (Edwards et al.,
2011). As Edwards et al. (2011) argue, researchers’
main interest is in using data, not in describing the
dataset for the benefit of invisible, unknown future
users. The problem of benchmark dataset sharing
arise because text-as-data and computation is no
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longer exclusive field of NLP and ML (Monroe
et al., 2008). The benchmark dataset can be eas-
ily used by researchers outside of NLP and ML
community. For instance, now in the name of digi-
tal humanities, researchers in humanities also use
computational approaches and technologies with
historical text data (Connolly, 2020; Soni et al.,
2021; Smith et al., 2014).
Likewise, if the benchmark dataset is shared
through the sharing platforms, ML and NLP re-
searchers will make derivative models based on
the benchmark dataset and this will lead the re-
searchers outside of ML and NLP to indirectly
impacted by benchmark dataset without knowing
the social impact of the dataset. Even though hu-
manists and social scientists may not fine-tune the
parameters of the model itself, their research will
be impacted by how the benchmark dataset is de-
signed and constructed. The use of pre-trained
model from NLP community by researchers out-
side of NLP and ML can be found in the case of
politeness detection model. The original idea of
developing a NLP model for detecting politeness
from language is from Danescu-Niculescu-Mizil
et al. (2013). As the automatic scoring of the po-
liteness in the language has benefits regardless of
the field, Hoffman et al. (2017) attempted to repro-
duce and validate Danescu-Niculescu-Mizil et al.
(2013). In doing so, Hoffman et al. (2017) applied
the same model to Wikipedia, which is the identi-
cal domain and found unexpected results that led
them to question the quality of the dataset. Their
conclusion called for an investigation on research
which reused the dataset that Danescu-Niculescu-
Mizil et al. (2013) developed. If the quality of
dataset is spurious, then it is hard to say the follow-
ing research building on the questionable dataset
can avoid critics. Nonetheless, the politeness cor-
pus of Danescu-Niculescu-Mizil et al. (2013) is
now incorporated into the R package (Yeomans
et al., 2018), allowing researchers from outside of
ML community can easily load the package and
analyze the data. There are some papers already
utilized politeness corpus from outside of NLP and
ML for social science research purpose (Sun et al.,
2021; G Moore et al., 2020). At this point, we
do not know how to measure the social impact of
politeness detection dataset and the derivative pack-
age will bring.
For ML and NLP researchers, identifying who is re-
sponsible for assessing the social impact and alarm-

ing the benchmark dataset reusers is now more
than important. We can find another example of
social impact of malfunctioned benchmark dataset
in the recent development of a chatbot called ‘Lee
ruda’. ’Lee ruda’ showed how artificial intelligence
systems can jeopardize sexual minorities by expos-
ing them to toxic communication space (McCurry,
2021). If the data documentation process is not
shared in the benchmark dataset sharing platforms
and discussion around social impact of the dataset
is not mature enough to alert reusers, the social im-
pact of benchmark dataset can be catastrophic. In
this vein, Hovy and Spruit (2016) also emphasizes
how naive use of the datasets may cause problems
on the society by directly deploying the trained
model into the society.

4 Current Practices of Benchmark
Dataset Sharing Platforms

We investigated the platforms that practitioners and
researchers largely accessed for datasets. This re-
sulted in four main platforms: HuggingFace1, Pa-
perswithCode 2, Tensorflow 3, and PyTorch 4. We
focused on whether it provides users easy access to
datasets along with its metadata. As for Paperswith-
Code, it did not provide direct access to datasets
however, it offered detailed information of data
such as the papers that used (cited) the datasets. We
excluded the platforms that were managed by the
users themselves, such as Github, as it was mostly
uploaded by the data creators themselves, rather
than other contributors that curated the dataset for
ease of use.

HuggingFace HuggingFace provides an infras-
tructure so ML researchers can easily leverage
models and datasets. The idea of Hugging-
Face is similar to Github, where the codes and
data are shared. In HuggingFace, it is the lan-
guage model trained by different groups of
researchers in NLP that is shared. Of many
language models available in HuggingFace,
what made HuggingFace famous is Transform-
ers, which enabled loading thousands of deep
learning frameworks (PyTorch, Tensorflow,
JAX) as well as language models (e.g., BERT,
RoBERTa, GPT) with a single line of code.

1https://huggingface.co/
2https://paperswithcode.com/
3https://www.tensorflow.org/datasets
4https://pytorch.org/text/stable/

datasets.html
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The Dataset card for social impact, biases, and
unknown limitations is developed to reflect the
growing concern around the social impact of
the ML benchmark dataset (McMillan-Major
et al., 2021).

PaperswithCode PaperswithCode organizes the
research works from the ML community by
providing three access points: tasks, datasets,
and methods. PaperswithCode do not house
the datasets but rather provide a reference
point where you can find the research worked
on the specific benchmark dataset. The
Dataset section was organized with brief in-
formation about the dataset, relevant papers
which reused the benchmark dataset, on which
tasks the benchmark dataset was used, and
where researchers can find the benchmark
dataset. For instance, PaperswithCode intro-
duces GLUE dataset with additional informa-
tion that it can be found from Hugging Face
and Tensorflow.

Tensorflow Tensorflow is an open-source library
that helps the users to develop and train ML
models developed by the Google Brain Team.
It serves as the core platform and library for
machine learning by allowing the users to
customize their own models. In addition to
the model library, Tensorflow also provides
datasets as a collection of ready-to-use li-
braries. Ranging from audio, graphs, image,
and texts, it offers widely used datasets includ-
ing benchmarks (e.g. GLUE, SQuAD). The
merit of Tensorflow datasets lies in their easy-
to-use nature, as users can simply load and
make use of the datasets by importing the li-
brary, except for a few exceptions that require
a manual download.

PyTorch Analogous to the Tensorflow library, Py-
Torch is an open-source tensor library for
deep learning using GPUs and CPUs, primar-
ily developed by Facebook’s AI research lab.
In addition to the modules for operation, it
also provides datasets and tools that make
data loading easy, mainly for usability pur-
poses. The dataset it provides is the most
widely used benchmark, such as WikiText-2,
CoNLL2000Chunking, for a variety of tasks
including language modeling, sequence tag-
ging, and text classification amongst others.

5 Results

As one would expect, the essential role of these
platforms was focused on helping the users easily
fetch the dataset and use it without putting in
an extra endeavor. For example, the datasets
were well-curated into train and test set splits,
so that users can readily reproduce, and custom
it to their own task. However, when it came to
sharing auxiliary information (metadata) regarding
the dataset, such as its limitations, and societal
impacts, a large portion of the platforms lacked
providing detailed information. In this section, we
introduce the metadata types used in benchmark
dataset sharing platforms and summarized in Table
1 of Appendix A.

5.1 Confusing concepts in terminology and
metadata

HuggingFace placed ‘Personal and Sensitive
Information’ into the big category called Dataset
Creation. However, given that dataset creation
includes information about source and annotation,
Dataset Creation is the section for descriptive
metadata. Following HuggingFace’s rule of cate-
gorization, it is hard to identify whether ‘Personal
and Sensitive Information’ is descriptive metadata
that can be recorded directly from the dataset.
Furthermore, the terminology that HuggingFace
is using can be misleading. HuggingFace uses
‘Curators’ to show “people involved in collecting
the dataset and their affiliation(s)” 5. Using the
term ‘curator’ to indicate people who created
(collected) the dataset can be confusing. In
Library and Information Science (especially the
documentation field), the museum curators are
people establishing collecting policies to guide
the future acquisition of objects (Roberts and
Light, 1980). With this sense, HuggingFace is
equivalent to a museum where the virtual place
houses multiple objects (datasets) and curators
are people who put the dataset in the benchmark
dataset sharing platform. We believe the confusing
concept of curator stems from the fact that the
dataset is also collected from various sources.
However, a curator is the person who works at the
museum or library to facilitate access or circulation
of the object, not the writer or creator of the book

5https://github.com/huggingface/
datasets/blob/master/templates/README_
guide.md
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or object.

5.2 Lack of documenting the limitations of the
benchmark datasets

Among the platforms we investigated, only a few
platforms provided the information of limitations
of the benchmark datasets. HuggingFace data
cards have a section that links the contributors,
those who upload the dataset to the platform to
write down what the data curation rationale is
and how the annotations were made. However,
when it comes to the limitations of the benchmark
datasets, the detailed explanations about what the
limitations are unclear. It is hard to find coherent
concept of what limitation should be addressed.
For example, one of the datasets mentioned the
contextual limitation - monolingual dataset as
the limitation "(the) issue is the focus on English
language and lack of multilingual hate speech."
(hatexplain6) - while the other noted the technical
issue, the data size, as its limitation "The dataset is
relatively small and should be used combined with
larger datasets." (ethos7).
Similar to the Hugging Face, PaperswithCode
showed the related papers, however, as the related
papers were based on the citation information -
whether the dataset was cited in the paper or not
- it did not explicitly distinguish the papers that
mentioned the limitations of the datasets. Even
though one particular paper cited the dataset, it
does not necessarily mean that the paper used
the dataset for improving their own models. It
could have been the paper discussing the caveats
of using the dataset. However, this demarcation
was not clear to help reusers notice whether there
is a potential harm of leveraging this dataset.
As Tensorflow and PyTorch were focused more
on its technical use of the datasets, only the
information pertaining to how to practically use
the datasets was documented. For example, the test
and train splits, and the functions that were used to
load the data. This different metadata recording
practice in benchmark dataset sharing platforms
shows that there is no consensus on what metadata
to use to inform the reusers of the benchmark
dataset.

6https://huggingface.co/datasets/
hatexplain

7https://huggingface.co/datasets/
ethos#other-known-limitations

5.3 Discussions of social impacts

We denote two prominent points when investi-
gating the platforms overall regarding the discus-
sions of social impacts. First, the platforms that
documented the social impacts of the benchmark
datasets barely existed. Even if there were sections
for limitations, it was not clear whether the sec-
tion is for discussing the social impact of dataset or
technical aspect of dataset. Second, the definition
of what social impacts it is referring to was obscure
if there were any sections allocated to document it.
For Tensorflow and PyTorch, as the main focus
of these platforms are on redistribution, and en-
hancing the reusability of the users, the documen-
tation did not include any discussions of the so-
cial impacts of the datasets. PaperswithCode has
its unique feature, ‘leaderboard’ that demonstrates
the state-of-the-art models that were tested on the
given datasets. It allows the users to easily check
the model performance based on this leaderboard.
This practice, however, is far from discussing the
social impacts the datasets and it does not provide
the audience with potential caveats that may arise
when using the dataset.
HuggingFace, on the other hand, provided the data
cards which is the format the contributors need to
fill when sharing the dataset, and there is a section
that deals with the possible social impact of the
dataset. According to the HuggingFace data card
guidelines, the range of what social impact is broad
ranging from positive impact to potential risks it
may have to the society. One of the dataset expla-
nations mentioned the positive social impact it can
bring: "The dataset could prove beneficial to de-
velop models which are more explainable and less
biased." (hatexplain8), while the others focused
on the functional effectiveness: "This dataset is
part of an effort to encourage text classification
research in languages other than English." (ama-
zon reviews9), and few on the negative impacts:
"..it necessarily requires confronting online con-
tent that may be offensive or disturbing but ar-
gue that deliberate avoidance does not eliminate
such problems" (social bias frames10). This lack

8https://huggingface.co/datasets/
hatexplain#social-impact-of-dataset

9https://huggingface.co/
datasets/amazon_reviews_multi#
social-impact-of-dataset

10https://huggingface.co/
datasets/social_bias_frames#
social-impact-of-dataset
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of consensus on what limitation is with respect to
benchmark dataset and social impact the bench-
mark dataset can bring can lead to haphazard or-
ganization of benchmark dataset and in turn lead
to the failed control of managing implicit bias slip-
ping into derivative NLP models and the findings
of the scholars who simply utilize the NLP models.

6 Desiderata of Data Sharing Platforms

The caveat of using benchmark dataset and vis-
à-vis social impact is gaining attention from the
ML community (Hovy and Spruit, 2016; Sap et al.,
2021). However, we believe the benchmark dataset
sharing platform is not currently up-to-date be-
cause the current discussion around the benchmark
dataset is missing. We acknowledge that the en-
deavor of dataset creators is crucial in developing a
safe benchmark ecosystem, however, in this work
we typically focus on the data sharing platforms.
From our analysis, there are many loopholes to fill.
PaperswithCode, Tensorflow, and PyTorch empha-
sized descriptive and administrative metadata while
neglecting the importance of the social impact that
the benchmark dataset can bring. We want to reiter-
ate that even though data documentation recorded
the entire process of dataset creation perfectly, data
friction (Edwards et al., 2011) could happen when
it was made available for others for reuse purposes.
Therefore, dataset sharing platforms should take
initiative to inform the social impact of the bench-
mark datasets by critically assessing the datasets.
From a data curation perspective, it is unclear who
is responsible for organizing the information of
social impact, biases, and other limitations.

6.1 Beyond descriptive and administrative
metadata

Metadata for administrative purposes which does
not describe the dataset itself but may be of use
to clarify rights and version were well-developed
in four platforms. Although administrative meta-
data that each platform used was varied, we were
able to identify that platforms tried to record li-
censes (HuggingFace, PaperswithCode) and ver-
sions (Tensorflow). However, metadata for social
impact were absent in PaperswithCode, Tensorflow,
and PyTorch. This may indicate that the discussion
around the social impact of reusing the benchmark
datasets stays in scholarly communication. Prac-
titioners (both in the ML community and outside
of the community) deserve the right to know the

potential social impact that the benchmark dataset
they are using can bring.

6.2 Data curator for social impact metadata

The next will be answering who is responsible for
providing social impact metadata. We propose that
the data curator specialists working for the bench-
mark dataset sharing platform should take a role
to announce and organize the social impact of the
dataset. As we discussed in the 5. Results section,
the role of a curator is to manage the dataset and
critically assess the social impact of reuse. It is
a lack of understanding the importance of meta-
data and the role of the curator that made the cli-
mate of putting less emphasis on sharing social
impact information. HuggingFace placed ‘personal
and sensitive information’ into descriptive meta-
data section (Dataset Creation), confusing who is
responsible for filling out the field of ‘personal
and sensitive information’. We believe sensitive
information is an aspect of the dataset after crit-
ically reviewing it. Additional information can
either be detected during the collection or after it is
completed collecting process. However, it is more
likely that sensitive information can slip into the
dataset without dataset creators’ notice. This makes
the nature of ‘personal and sensitive information’
fall under metadata that needs to be addressed after-
ward, which is far from descriptive metadata. For
instance, if the dataset was collected from social
media, data curators should critically assess the
dataset to identify if it contains personally identifi-
able information and complete the metadata section
for it.

6.3 Developing social impact metadata

The benchmark dataset may have an impact on so-
ciety with exclusion and overgeneralization (Hovy
and Spruit, 2016). Hovy and Spruit (2016) explain
that the exclusion of certain demographics in the
dataset may exacerbate as the models overfit these
factors. For example, models that are overfitted to
standard white English may have the propensity to
fail when applied to the products by marginalizing
other demographics and their use of language can
be overgeneralized. Concretely, below we list some
of the possible social impact metadata that needs
to be included: which metadata should be included,
and why it should be considered important in terms
of social impact.
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Demographic statistics is about the population
from whom the data comes. As the data for
NLP deals with language, it carries contextual
information beyond its face value. For exam-
ple, text data retrieved from news wire may
represent a typically white, educated, middle-
upper class man (Garimella et al., 2019) while
text data retrieved from certain social media
platforms may convey the language spoken
by the platform users. Likewise, the data it-
self may represent certain socio-demographic
groups for the language models to be trained
on. Thus, it is important to document the
demographic statistics of the dataset. Res-
onating our recommendation, there is a schol-
arship claiming the importance of ensuring
demographic variation in order to mitigate po-
tential bias upon deployment (Hovy and Prab-
humoye, 2021; Rogers et al., 2021; Ardehaly
and Culotta, 2014).

Annotators demographics is about the popula-
tion who added values (labels) on top of the
collected raw data. Recording metadata about
annotators demographics is related to selec-
tion bias and demographics of annotators ac-
cord with label bias (Hovy and Prabhumoye,
2021). As annotators (e.g. crowdsource work-
ers) contribute to form the labels, their social
norms can be systematically encoded in the
dataset, inducing a label bias. Sap et al. (2021)
demonstrates how the annotations are highly
dependent on the annotator’s demographics.
To be specific, the task of annotating whether
the text is a type of hate speech or not is
hinged much on the annotators’ ethnic group.
It is important to document the annotators’ de-
mographics, not only because it informs the
users about the representation of annotators
but also it also steers future data creators to
take into consideration when crowdsourcing
annotators.

Besides these items, we also note the initia-
tives of NAACL (the discussion of the broader
impacts11) and GDPR (privacy issues of collected
data12) are also highly recommendable for starting
a discussion on making a consensus about what so-
cial impact metadata the benchmark dataset sharing

11https://2021.naacl.org/ethics/faq/
12https://eur-lex.europa.eu/

legal-content/EN/TXT/HTML/?uri=CELEX:
32016R0679

platforms should reflect.

7 Conclusion

We believe the documentation of the benchmark
dataset plays an important role as it introduces the
pitfalls as well as the usage of the dataset. To this
end, we examine current practices of widely ac-
cessed benchmark dataset sharing platforms - what
is documented and what is omitted -. Our findings
suggest the need for documenting the social im-
pact of the benchmark dataset as well as assigning
the data curators for data sharing platforms to be
in-charge of documenting relevant metadata.
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A Appendix

Platforms Metadata type Items

HuggingFace Descriptive metadata
Dataset Creation:
Curation Rationale, Source Data, Annoatations

Social impact metadata

Dataset Creation:
Personal and Sensitive Information
Considerations for Using the data:
Social Impact of dataset, Discussions of Biases,
Other known Limitations

Administrative metadata
Additional Information Dataset: Curators,
Licensing Information, Citation Information,
Contributions

PaperswithCode Descriptive metadata Description
Social impact metadata

Administrative metadata

Homepage (Link to paper), Usage (Number of papers
using this dataset by year), Benchmark Leader Board
(Task, Dataset variant, Best Model, Paper, Code),
License, List of papers

Tensorflow Descriptive metadata
Description, Download size, Dataset size, Auto-cached,
Splits, Supervised keys, Figure

Social impact metadata

Administrative metadata
Homepage (Link to paper), Source code
(Example code for deployment),
Versions, Examples, Citation

PyTorch Descriptive metadata
Number of lines per split, Number of classes,
Parameters

Social impact metadata
Administrative metadata Code (example code for deployment)

Table 1: Metadata of benchmark dataset sharing platforms
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Abstract

Natural language processing (NLP) systems are
often used for adversarial tasks such as detect-
ing spam, abuse, hate speech, and fake news.
Properly evaluating such systems requires dy-
namic evaluation that searches for weaknesses
in the model, rather than a static test set. Prior
work has evaluated such models on both man-
ually and automatically generated examples,
but both approaches have limitations: manu-
ally constructed examples are time-consuming
to create and are limited by the imagination
and intuition of the creators, while automati-
cally constructed examples are often ungram-
matical or labeled inconsistently. We propose
to combine human and AI expertise in gen-
erating adversarial examples, benefiting from
humans’ expertise in language and automated
attacks’ ability to probe the target system more
quickly and thoroughly. We present a system
that facilitates attack construction, combining
human judgment with automated attacks to cre-
ate better attacks more efficiently. Preliminary
results from our own experimentation suggest
that human-AI hybrid attacks are more effective
than either human-only or AI-only attacks. A
complete user study to validate these hypothe-
ses is still pending.

1 Introduction

Humans have used language to deceive each other
for millennia. With the advent of NLP systems, hu-
mans now work to deceive models and algorithms,
from evading email spam filters in the early 2000s
to defeating classifiers for social network spam,
abusive language, misinformation, and more. More
recently, humans have developed automated ad-
versarial attacks that minimally modify text while
changing the output of a classifier or other NLP
systems (Ebrahimi et al., 2018). These automated
attacks have the potential to be much more efficient
than humans, helping attackers to find weaknesses
in models and helping defenders find and patch

Attack Original → Perturbed Text Label
PSO city by the sea swings from one ap-

proach to the other , but in the end , it
stays in formula – which is a [waste
→ moor] of de niro , mcdormand and
the other good actors in the cast .

Neg.
(98%)
→
Pos.
(93%)

BAE When a set of pre-shooting guide-
lines a director came up with for his
actors turns out to be cleverer , better
written and of considerable more in-
terest than the finished film , that ’s a
[bad → good] sign .

Neg.
(97%)
→
Pos.
(95%)

PWWS [A refreshing → axerophthol review]
Korean film about five [female →
distaff] high school friends who face
an uphill battle when they try to take
their relationships into deeper waters.

Pos.
(99%)
→
Neg.
(73%)

Table 1: Attack Samples on SST-2

those same weaknesses (Xie et al., 2021; Zhou
et al., 2019).

The number of automated attacks continues to
grow but their effectiveness remains low — Wang
et al. (2021a) found that 90% of automated adver-
sarial attacks changed the semantics of the original
input or confused human annotators. We have ob-
served similar behavior, as shown in Table 1. These
examples are generated by word-level attack algo-
rithms PSO (Zang et al., 2020), BAE (Garg and Ra-
makrishnan, 2020), and PWWS (Ren et al., 2019),
as implemented in the TextAttack framework (Mor-
ris et al., 2020), on the sentiment dataset SST-
2 (Socher et al., 2013) against BERT model (Devlin
et al., 2019). Although all perturbations change the
predicted label, PSO chooses a synonym that is in-
appropriate in the context, BAE selects a complete
antonym, and PWWS picks some rare substitutes
that are nonsensical and possibly offensive.

Doubtless, humans can be more effective than
these attacks, given their effectiveness against real-
world spam and abuse filters. We believe that
the next step for adversarial attacks and robust
NLP is human-AI collaboration, in which humans
work with automated adversarial algorithms to pro-
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duce effective attacks efficiently. Furthermore, real-
world attackers are already doing this. Spammers
already use many different technologies to accom-
plish their tasks, including text spinners to rewrite
text, HTML tricks to conceal suspicious text, bot-
nets to scale up and avoid IP bans, and more. A
typical spammer does not craft every message in-
dividually, but uses semi-automated techniques to
generate many different messages1. In response, a
growing amount of NLP research is now using hu-
man expertise through human-in-the-loop (HITL)
methods to create new benchmarking datasets for
evaluating and improving the robustness of NLP
systems to adversarial inputs.

Thus far, human expertise in adversarial NLP
tasks has been limited. There is a growing body
of work in which humans are asked to craft in-
puts where a given model will perform poorly, but
they receive little support in doing so — sometimes
word saliences (Mozes et al., 2021), sometimes
model predictions (Kiela et al., 2021), and some-
times even less. Overall, the effort between humans
and machines is still largely separate; that is, hu-
mans generate adversarial examples alone based on
model interpretations, without directly interacting
with any attack algorithms.

In this paper, we study the potential of direct
human-AI interaction for generating higher-quality
adversarial examples for NLP tasks. We work with
the state-of-the-art word-level attacks on bench-
mark datasets for sentiment analysis and abuse de-
tection. We choose word-level attacks as they can
be more subtle than character-level attacks, which
have obvious misspellings. We design an interac-
tive user interface that enables four types of attacks,
including two human-AI collaboration methods.
Instead of a pure black-box environment, our in-
terface explains the algorithm’s search space and
allows humans to modify and improve the pertur-
bations while giving humans immediate feedback
from the target NLP model. Along with generated
attacks, we collect data for user experience and
user preference with regard to different attack ap-
proaches. We then further study the collected data
and analyze the impact of proposed human-AI col-
laboration methods and the degree of improvement
on the adversarial examples. At present, we have
pilot data from using the system ourselves; a full
user study is pending IRB approval.

1For an example of a spammer script that does
this, see https://alexking.org/blog/2013/12/
22/spam-comment-generator-script.

We summarize our contributions as follows:

• We propose a novel human-AI collaboration
strategy to enable direct human and AI inter-
action for generating word-level adversarial
examples for NLP tasks effectively and effi-
ciently.

• We design a framework with friendly user in-
terface to realize four types of attack methods
on benchmark datasets against state-of-the-
art NLP models. In addition to helping gener-
ate adversarial examples, the framework also
collects self- and peer-evaluation of example
quality and user feedback about the interface.

• We share initial results based on our own use
of the system, while IRB approval for a full
study is pending.

The rest of the paper is structured as follows:
Section 2 discusses work related to our research.
Section 3 introduces our framework, the human-AI
collaboration methods and the evaluation metrics.
Section 4 gives preliminary results and some brief
analysis for our findings. Section 5 explains the
stages of experiments for generating and collect-
ing quality data. Finally, we conclude and discuss
future work in Section 6.

2 Related Work

We review prior work on automated adversarial
attacks for NLP, and HITL in adversarial learning.

Automated adversarial attacks for NLP: With
the growth of research that studies adversarial learn-
ing in NLP, a variety of attack methods have been
developed on multiple levels. From character-
level modifications such as HotFlip (Ebrahimi
et al., 2018), DeepWordBug (Gao et al., 2018),
and VIPER (Eger et al., 2019), to word-level per-
turbations such as BAE (Garg and Ramakrishnan,
2020), PSO (Zang et al., 2020), PWWS (Ren et al.,
2019), and TextFooler (Jin et al., 2020). Many
of them have been aggregated and organized by
toolchains like TextAttack (Morris et al., 2020) and
OpenAttack (Zeng et al., 2021) for easy access to
researchers.

For character-level attacks, although they show
their effectiveness in many ways, they mainly
fall in the following two categories: Some of the
character-level modifications can be seen as typos
if an algorithm simply influences the embedding
space by replacing/inserting/deleting one or a few
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characters in a word, such as DeepWordBug (Gao
et al., 2018), then they may be easily detected by a
grammar checker tool, like Grammarly 2; the oth-
ers can introduce some unique encoding/decoding
methods and transform letters to another form, such
as VIPER (Eger et al., 2019) that adds accent signs
on top of each letter, and these modification may be
easily identified by human. Overall, character-level
perturbations tend to be more obvious.

On the other hand, the study of word-level at-
tacks is more popular, as a substitute for a word
may significantly impact the semantics of the text.
Many attack methodologies have been investigated
for searching for the optimal synonym substitu-
tions, including BERT-based contextual predic-
tion (Garg and Ramakrishnan, 2020; Li et al.,
2020), gradient-based word swap (Ebrahimi et al.,
2018; Wallace et al., 2019), particle swarm op-
timization (Zang et al., 2020), and greedy word
search with saliency scores (Ren et al., 2019).

We summarize three attacks that are included
in our framework. BAE: BERT-based Adversarial
Examples (BAE), a black-box contextual perturba-
tion algorithm based on a BERT masked language
model (MLM). BAE masks some part of the text,
then replaces and inserts tokens into the text, us-
ing the BERT-MLM to generate adversarial exam-
ples. PWWS: Probability Weighted Word Saliency
(PWWS), a black-box greedy algorithm that ranks
the importance of words based on the saliency score
and calculates the classification probability that
are used to determine the synonym substitution.
TextFooler: TextFooler, a black-box greedy algo-
rithm identifies the important words and replaces
them with the words that are most semantically
similar and grammatically correct with a higher
priority until the prediction is altered.

These automated word-level attacks mostly rely
on the knowledge of existing target models and
algorithms’ intensive search to locate the best syn-
onym substitutions. However, recent work (Xie
et al., 2021, 2022) shows that the quality of gen-
erated adversarial examples is actually far from
satisfactory, with respect to the low attack success
rate across domains, incorrect grammar, and dis-
torted meaning.

HITL in adversarial learning: As the capac-
ity of automated algorithms may be limited, many
researchers propose incorporating crowd-sourcing
into generating and annotating adversarial exam-

2Grammarly, https://www.grammarly.com/.

ples. The Dynabench framework asks humans to
manually construct examples where an NLP system
would perform poorly (Kiela et al., 2021). A HITL
QA system that asks humans to write adversarial
questions that break a QA system while remaining
answerable by humans (Wallace and Boyd-Graber,
2018). The Adversarial NLI project asks humans
to annotate mislabeled data and uses humans as
adversaries to create a benchmark natural language
inference (NLI) dataset for a more robust NLP
model (Nie et al., 2020). The most related work
compares the performance of human- and machine-
generated word-level adversarial examples for NLP
classification tasks (Mozes et al., 2021).

However, existing work falls short of direct col-
laboration between humans and AI. The advantages
of human crowd-sourcing and that of automated
algorithms are still quite distinct.

3 Framework

In our framework, we study the potential of di-
rect human-AI collaboration for generating higher-
quality adversarial examples. At the time of sub-
mission, we have completed the design of the
framework, confirmed the details for human-AI
collaboration, and implemented the interactive user
interface.

3.1 Components & Workflow

Our task is divided into two parts: generating ad-
versarial examples and evaluating adversarial ex-
amples. Figure 1 depicts the workflow. First we
feed the input samples to the attack phase where
four attack methods are implemented. Human par-
ticipants then use these attack methods to gener-
ate adversarial examples aiming to fool the target
model’s predictions. Participants are asked to self-
evaluate the quality of generated adversarial exam-
ples based on grammatical properties, the difficulty
of generating those examples, and their experiences
with the system in terms of the helpfulness of dif-
ferent HITL strategies. Peer-evaluation is also in-
cluded for evaluating the grammatical properties,
and identifying the source of any given text.

We implement three word-level attacks — BAE,
PWWS, and TextFooler from the TextAttack library
on sentiment dataset SST-2 and abuse comment
dataset Hatebase (Davidson et al., 2017) against
the RoBERTa target models (Liu et al., 2019) that
are trained on these datasets separately. We use
RoBERTa as the target model because it outper-
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Figure 1: System & Workflow. Human figures in attack
phase indicate that there is direct human-AI interaction.
Human figures in evaluation phase indicate that humans
are involved in both self-evaluation and peer-evaluation.

Attack Transformation Operation
BAE BERT Masked Token Pre-

diction
Replace & In-
sert

PWWS WordNet-based synonym
swap

Replace

TF Counter-fitted word embed-
ding swap

Replace

Table 2: A Summary of automated attack algorithms.
TF is short for TextFooler.

forms BERT (Devlin et al., 2019) and XLNet (Yang
et al., 2019) on various datasets across domains
for classification in recent work (Xie et al., 2022).
We summarize the characters of these attacks in
Table 2. Please refer to Section 2 for a detailed
description of them. All attacks share the same
Greedy-WIR search method implemented in Tex-
tAttack. We make certain modifications to the
scripts in the TextAttack library to generate de-
sired intermediate attack results, which are used
as interpretable information for HITL adversarial
attacks.

3.2 Generating Adversarial Examples
For attack generation, we design an interactive user
interface introducing four attack methods:

• Auto: Black-box. Participants simply read
and evaluate adversarial examples generated
by one of the automated attack algorithms.
Participants are not provided with any insight
on how an automated attack algorithm modi-
fies a sample, but the perturbed example itself.
This method is considered as the baseline.

• Manual: Black-box. Participants rely on their
judgment solely to attack a given sample. The
only information they receive is the immediate

target model prediction. Once an adversarial
example is entered, the target model returns
the prediction result to show whether or not
the crafted example has successfully flipped
the predictive label.

• Select: Gray-box. Participants are given in-
termediate perturbation results from the auto-
mated algorithm — specifically, keywords and
potential substitution candidates for each key-
word. Participants can select the best word
substitute using dropdown lists, or enter an
alternative word in a text input box. See Fig-
ure 5 for the interface. Basically, the Select
method relaxes the constraints from the auto-
mated algorithm, and allows humans to mod-
ify up to five keywords. The immediate predic-
tive label and probability of the selected word
combination from the target model is also pro-
vided to show whether the chosen words have
successfully changed the prediction.

• Saliency: Gray-box. Participants are shown
a dynamic saliency map as they craft their
adversarial examples. A saliency map shows
what words the target model identifies as most
important that are most likely to affect the pre-
diction, and then marks those words with col-
ors with different intensities. Unlike (Mozes
et al., 2021), where the interface displays word
saliencies calculated by replacing the word
with an out-of-vocabulary token, we imple-
ment the built-in method in each automated
attack to calculate the saliency score. For ex-
ample, BAE and TextFooler simply delete the
word and calculate the word saliencies, while
PWWS replaces each word with an unknown
token and calculates the weighted saliency.
The corresponding mathematical expressions
are provided in A.2 of the Appendix. Overall,
the Saliency method grants even more flex-
ibility by allowing humans to change more
words if necessary in order to preserve correct
grammar and semantics. Participants can ad-
just their perturbation based on the dynamic
saliency map and the target model’s immedi-
ate prediction, see Figure 6 for the interface.

For each method, participants are given a small
number of original samples selected from one of
the datasets, perform adversarial attacks on those
samples with or without the assistance of the auto-
mated algorithms.
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3.3 Evaluating Adversarial Examples

To evaluate generated adversarial examples, we
consider the following properties:

• Grammar: measures whether or not the
text contains any syntax errors, and retains
the original or similar semantics. This is cru-
cial for identifying if an adversarial attack is
successful, as if the perturbation is fundamen-
tally wrong by making the sentence unread-
able or flipping the emotion of the message
completely, we consider it as a failed attack.

• Plausibility: measures whether or not the
text is naturally crafted by native speakers. A
piece of text is highly plausible if it is natural,
logically correct, appropriately worded, and
preserving meaningful messages (Wang et al.,
2021b). These properties appear as natural-
ness, correctness, appropriateness and mean-
ingfulness in our user interface.

• Effort: reflects the difficulty level for par-
ticipants to successfully perform adversarial
attacks using different attack methods.

• Helpfulness: collects the degree of help-
fulness of the information provided to par-
ticipants to assist with generating adversarial
examples in different attack methods (i.e., in-
termediate search results, lists of candidates,
saliency maps, and more).

All properties are evaluated on a scale from 1
to 5 where 5 indicates the best quality, the most
difficult, or the most helpful, depending on the
specific property; see Figure 7.

Participants are required to self-evaluate their
own constructed examples using each of the attack
methods. Since self-evaluation can be very sub-
jective, to ensure the fairness and to yield a more
balanced and less biased analysis and outcome, we
also plan to include anonymous peer-evaluation
using Amazon Mechanical Turk (AMT) 3 with a
group of AMT workers who are excluded from pre-
vious attack tasks. Each AMT worker reads a ran-
dom subset of the adversarial examples, identifies
what source an example may come from, and eval-
uates the grammatical quality (i.e. grammar and
plausibility) of that example on the same scales.

3Amazon Mechanical Turk, see https://www.mturk.
com/

4 Preliminary Results

Our hypotheses are that with minimal human col-
laboration, compared to automated attacks alone,
the attacks would yield more promising results that
are meaningful while holding correct grammar and
semantics. In our preliminary work, we already see
promise for this direction. Table 3 shows an ex-
ample where PWWS on its own failed to come up
with a good attack example, but succeeded in iden-
tifying the key text to modify. A human was then
able to propose alternative text, which tricked the
classifier while maintaining the correct semantics.

OR. Txt Auto Txt HITL Txt
4 friends , 2
couples , 2000
miles , and all
the Pabst Blue
Ribbon beer they
can drink - it
’s the ultimate
road-trip . (Pos.
62%)

4 friends , 2 cou-
ples , 2000 miles
, and all the
Pabst disconso-
late Ribbon beer
they can drink -
it ’s the ultimate
road-trip . (Neg.
84%)

4 friends , 2 cou-
ples , 2000 miles
, and all the
Pabst cheap beer
they can drink -
it ’s the ultimate
road-trip . (Neg.
83%)

Table 3: Original vs. automated attack vs. HITL attack

As a pilot experiment, to test the viability of the
framework before recruiting participants, the au-
thors used the framework on themselves to collect
532 unique adversarial examples generated from
the SST-2 dataset. By studying these examples,
we have seen the following patterns (which we
hypothesize will extend to the full experiments):

Success Rate: Figure 2 shows the attack suc-
cess rate across all attack methods. Though an
automated attack may have a higher attack success
rate due to the advantage of intensive search and the
NLP model-oriented design, humans can achieve
comparable attack success rate if provided with bet-
ter human-AI interaction. Additionally, manually
crafted attacks without any assist cannot compete
with the those generated through other methods.

Grammar and Plausibility: Figure 3 presents
the average scores for grammar and plausibility,
where the error bars denote the standard errors of
the scores. The scores are aggregated and aver-
aged per the attack method from the self-evaluation
results over the 532 adversarial examples. It is
obvious that human-generated adversarial exam-
ples on average have higher scores considering the
grammatical properties and plausibility. Manual
attack and HITL methods seem to produce higher-
quality adversarial examples with the assistance of
automated algorithms, as compared to automated
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attacks, these methods loosen the constraints on
various degrees and grant humans more freedom to
make more modifications if needed. Therefore hu-
mans have more flexibility crafting grammatically
correct and plausible adversarial examples.

Queries and Human Effort: The top of Fig-
ure 4 displays the number of queries it takes for an
automated algorithm or a human to choose their
word substitutions. The bottom of the figure gives
the average effort scores for each attack method.
The error bars denote the standard errors of the
scores. The results illustrate that humans are able
to perturb an NLP model with more effort but fewer
queries, and the gray-box setting, which includes
additional information for the participants, is easier
to attack than the black-box settings. The extra
information provides some insight and explanation
about how an automate algorithm understands the
NLP model and how an NLP model decides the
predictions.

5 Planned Experiments

We plan to hire approximately 54 adult native En-
glish speakers, of whom we expect a subset to be
experts in NLP or linguistics, from our local uni-
versity to generate adversarial examples, and addi-
tional adult native English speaker AMT workers
for peer-evaluation.

Unlike the recent work of Mozes et al. (2021),
which relies entirely on online crowd-sourcing on
AMT, we carry on in-person experiments for at-
tack generation, where we provide a few exam-
ples and detailed instructions to the participants to
show how our interface operates, and what the stan-
dards/baselines are for evaluating the adversarial
examples. We expect to obtain higher-quality data
by bringing participants into a more controlled en-
vironment where it’s easier to provide instruction,
answer questions, and receive feedback.

To motivate participants through the process, we
have designed an incentive payment plan. Details

are included in A.3 of the Appendix.

Stage 1: adversarial example generation and
self-evaluation. In each task, each participant is
asked to work with approximately 15 examples
from a source dataset, generating adversarial exam-
ples based on the source examples. We show the
same examples to three different participants, who
work independently to find their own adversarial
examples. This gives us a chance to observe how
varied the solutions are; if solutions vary substan-
tially, then a larger group of people may have a
better chance to find a good attack.

To increase the quality of the adversarial exam-
ples, we plan to have each participant complete the
Auto and Manual methods before moving on to our
proposed HITL methods. This also serves the pur-
pose of training participants in these tasks, similar
to tasks 1-3 by Mozes et al. (2021). By doing so,
participants have the chance to get familiar with
our user interface, and get a better understanding
of the capacity of an automated attack algorithm
versus a human, in terms of influencing the tar-
get model’s predictions. They then closely interact
with the automated algorithms and the target model,
where they obtain extra interpretable information
from both parties that could assist them with more
effective perturbations.

To increase the independence of the factors that
may potentially impact the experiment results sta-
tistically, such as the order of samples and attack
tasks being presented to an participant, we mix up
the order of samples in each attack method, and we
switch the order of attack methods before giving
them to the participants.

Each participant at our local university is ex-
pected to submit about 45 adversarial examples if
they successfully complete all four tasks (the exam-
ples are not necessarily all successful attacks). We
also collect all the attempts they make between two
submissions and consider the total number of at-
tempts as the number of queries. We are hoping to
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gather at least 2000 unique and quality adversarial
examples among participants from all tasks.

Stage 2: peer-evaluation After collecting and
organising generated adversarial examples, we will
recruit an independent group of AMT workers to
annotate the data. Similar to (Mozes et al., 2021),
we plan to select AMT workers based on their his-
torical performance. That is, AMT workers who
have successfully completed more than 1000 hu-
man intelligence tasks, and have an approval rate
that is higher than 98% would be selected for peer-
evaluation. We present AMT workers with a few
adversarial examples (approximately 50 examples)
generated by humans and/or automated algorithms,
randomly and anonymously. Each example is eval-
uated by three AMT workers to reduce variance.

We aim to recruit 30 qualified AMT workers and
hope to gather 1500 unique peer-evaluation results
from them for about 500 examples.

6 Conclusion & Future Work

Humans have excellent intuition about language,
but weak intuition about deep networks; automated
attacks are often the opposite. Given the weak per-
formance of manual attacks and automated attacks
against NLP systems, some type of human-AI col-
laboration is essential to truly evaluate their robust-
ness, and to be prepared for the inevitable attacks
from real-world adversaries.

In the future, we will carry out the experiments
as designed, and further include the IMDB movie
review dataset curated by (Maas et al., 2011). As
the texts in the IMDB dataset are often longer, this
dataset may provide participants greater flexibility
in modifying the examples.

We believe that further study into collaboration
methods will lead to a better understanding of ad-
versarial attacks and more robust NLP models. We
hope to provide a new benchmark for HITL adver-
sarial learning while we continue exploring other
effective human-AI collaboration methods. We
hope that our framework will help researchers and
practitioners better evaluate the robustness of NLP
models to the best attacks that humans and algo-
rithms can construct, and then improve their mod-
els by training on these adversarial examples.
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A Appendix

A.1 User Interface

See Figures 5, 6, and 7 on the next few pages.

A.2 Word Saliency for BAE, TextFooler, and
PWWS

We now describe the word salience methods
used by BAE, TextFooler, and PWWS. These
approaches are first described by (Jin et al., 2020;
Ren et al., 2019); we summarize their methods
below.

Considering a sentence X consisting of n words
X = {w1, w2, . . . , wn}, and its true label y, BAE
and TextFooler simply delete a word wi and mea-
sure the word importance Iwi ,∀wi ∈ X for con-
tributing to the model predictive score P (X). De-
note the sentence without wi as X\wi

, where

X\wi
= X \ {wi} = {w1, . . . , wi−1, wi+1, . . . , wn}.

The importance score Iwi is calculated as the dif-
ference between the predictive scores before and
after deleting word wi, i.e.

Iwi = P (X)− P (X\wi
),

if P (X) = P (X\wi
) = y;

Iwi = (P (y|X)− P (y|X\wi
))

+ (P (ŷ|X\wi
)− P (ŷ|X)),

if P (X) = y and P (X\wi
) = ŷ, where y ̸= ŷ.

PWWS first replaces a word wi with a can-
didate word w∗

i to form a new sentence X∗ =
{w1, . . . , w

∗
i , . . . , wn}, where w∗

i is the best can-
didate that changes the predictive probability the
most, calculated by

w∗
i = argmaxw′

i∈CP (y|X)− P (y|X ′),

where X ′ = {w1, . . . , w
′
i, . . . , wn}, and w′

i is a
candidate token among all substitute candidates
C for word wi. Therefore, the most significant
predictive probability change is obtained by

∆P ∗
i = P (y|X)− P (y|X∗).

PWWS then calculates the standard saliency by
replacing wi with an unknown token via

S(X,wi) = P (y|X)− P (y|X̂)

where X̂ = {w1, . . . , unknown, . . . , wn}. A
saliency vector S(X) is obtained by calculating the
saliency for every word in the sentence. PWWS
finally combines the predictive probability and the
saliency vector through a dot product to get a prob-
ability weighted saliency score (Ren et al., 2019).
That is

H(X,X∗, wi) = ϕS(X) ·∆P ∗
i ,

where ϕ is a softmax function. H(X,X∗, wi) even-
tually determines the word importance for PWWS.

A.3 Incentive Payment Plan
Each participant at the university is expected to
complete the adversarial example generation tasks
using all four attack methods for consistency.
Therefore, we create an incentive payment plan
to motivate participants to work through the four
tasks: Auto, Manual, Select, and Saliency. The
Auto setting is fairly simple, which we expect par-
ticipants to finish the task in less than 30 minutes,
and we pay $12/person. The Manual setting is
slightly more time-consuming and more difficult,
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Figure 5: The interface for the Select task

we expect them to finish the task in 60 minutes, and
we pay $28/person. The Select and Saliency may
also require some effort and attempts so that we ex-
pect them to complete the tasks in 90 minutes, and
we pay $40/person for each task. By doing so, we
hope to keep participants interested and motivated
throughout the whole process.

We also plan to reward ten participants $10 who
give constructive feedback for our user interface
or experiment design through a drawing system.
Additionally, we will double the pay for the top
three participants who provide the most quality ad-
versarial examples, where the quality is evaluated
anonymously on AMT during the peer-evaluation
phase.

For peer-evaluation performed on AMT,
We will match the market prices and pay
$0.2∼0.25/example to the AMT workers. Peer-
evaluation is fairly straightforward, and we
estimate that it takes no more than 90 minutes for
each AMT worker to complete the task.
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Figure 6: The interface for the Saliency task

Figure 7: The interface for self-evaluation
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Abstract

A user-generated text on social media enables
health workers to keep track of information,
identify possible outbreaks, forecast disease
trends, monitor emergency cases, and ascer-
tain disease awareness and response to official
health correspondence. This exchange of health
information on social media has been regarded
as an attempt to enhance public health surveil-
lance (PHS). Despite its potential, the technol-
ogy is still in its early stages and is not ready
for widespread application. Advancements in
pretrained language models (PLMs) have fa-
cilitated the development of several domain-
specific PLMs and a variety of downstream ap-
plications. However, there are no PLMs for so-
cial media tasks involving PHS. We present and
release PHS-BERT, a transformer-based PLM,
to identify tasks related to public health surveil-
lance on social media. We compared and bench-
marked the performance of PHS-BERT on 25
datasets from different social medial platforms
related to 7 different PHS tasks. Compared
with existing PLMs that are mainly evaluated
on limited tasks, PHS-BERT achieved state-of-
the-art performance on all 25 tested datasets,
showing that our PLM is robust and general-
izable in the common PHS tasks. By making
PHS-BERT available1, we aim to facilitate the
community to reduce the computational cost
and introduce new baselines for future works
across various PHS-related tasks.

1 Introduction

Public health surveillance (PHS) is defined by the
World Health Organization2 as the ongoing, sys-
tematic collection, assessment, and understanding
of health-related required information for the plan-
ning, implementation, and assessment of health-
care (Aiello et al., 2020). PHS aims to design and

1https://huggingface.co/publichealthsurveillance/PHS-
BERT

2https://www.euro.who.int/en/health-topics/Health-
systems/public-health-services

assist interventions; it acts as a primary warning
system in health emergencies (epidemics, i.e., acute
events), it reports and records public health inter-
ventions (i.e., monitoring health), and it observes
and explains the epidemiology of health issues, al-
lowing for the prioritization of necessary details for
health policy formulation (i.e., targeting chronic
events). Traditional PHS systems are often lim-
ited by the time required to collect data, restricting
the quick or even instantaneous identification of
outbreaks (Hope et al., 2006).

Social media is growingly being used for pub-
lic health purposes and can disseminate disease
risks and interventions and promote wellness and
healthcare policy. Social media data provides an
abundant source of timely data that can be used
for various public health applications, including
surveillance, sentiment analysis, health commu-
nication, and analyzing the history of a disease,
injury, or promote health. Systematic reviews of
studies that examine personal health experiences
shared online reveal the breadth of application do-
mains, which include infectious diseases and out-
breaks (Charles-Smith et al., 2015), illicit drug
use (Kazemi et al., 2017), and pharmacovigilance
support (Golder et al., 2015). These applied health
studies are motivated by their potential in support-
ing PHS, augmenting adverse event reporting, and
as the basis of public health interventions (Dunn
et al., 2018).

The use of deep learning in natural language
processing (NLP) has advanced the development
of pretrained language models (PLMs) that can
be used for a wide range of tasks in PHS. How-
ever, directly applying the state-of-the-art (SOTA)
PLMs such as Bidirectional Encoder Representa-
tions from Transformers (BERT) (Devlin et al.,
2019), and its variants (Liu et al., 2019; Lan et al.,
2019; Sanh et al., 2019; Naseem et al., 2021c)
that are trained on general domain corpus (e.g.,
Bookcorpus, Wikipedia, etc.) may yield poor per-
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formances on domain-specific tasks. To address
this limitation, several domain-specific PLMs have
been presented. Some of the well-known in the
biomedical field include the following: biomedical
BERT (BioBERT) (Lee et al., 2019) and biomedi-
cal A Lite BERT (BioALBERT) (Naseem et al.,
2020, 2021a). Recently, other domain-specific
LMs such as BERTweet (Nguyen et al., 2020) for
3 downstream tasks, i.e., part-of-speech tagging,
named-entity-recognition, and text classification
and COVID Twitter BERT (CT-BERT) (Müller
et al., 2020) for 5 text classification tasks have been
trained on datasets from Twitter.

Despite the number of PLMs that have been re-
leased, none have been produced specifically for
PHS from online text. Furthermore, all these LMs
were evaluated with the selected dataset, and there-
fore their generalizability is unproven. To bench-
mark and fill the gap, we present PHS-BERT, a
new domain-specific contextual PLM trained and
fine-tuned to achieve benchmark performance on
various PHS tasks on social media. PHS-BERT is
trained on a health-related corpus collected from
user-generated content. Our work is the first large-
scale study to train, release and test a domain-
specific PLM for PHS tasks on social media. We
demonstrated that PHS-BERT outperforms other
SOTA PLMs on 25 datasets from different social
media platforms related to 7 different PHS tasks,
showing that PHS is robust and generalizable.

2 Related Work

2.1 Pretrained Language Models

Transformer-based PLMs such as BERT (Devlin
et al., 2019) and its variants (Liu et al., 2019; Lan
et al., 2019) have altered the landscape of research
in NLP domain. These PLMs are trained on a
huge corpus but may not provide a good represen-
tation of specific domains (Müller et al., 2020).
To improve the performance in domain-specific
tasks, various domain-specific PLMs have been
presented. Some of the famous in the biomedi-
cal domain are BioBERT (Lee et al., 2019) and
BioALBERT (Naseem et al., 2020). Recently, for
tasks on social media-specific, other PLMs such as
BERTweet (Nguyen et al., 2020), COVID Twitter
BERT (CT-BERT) (Müller et al., 2020) have been
trained on datasets from Twitter. For various down-
stream tasks, these domain-specific PLMs were
demonstrated to be effective alternatives for PLMs
trained on a general corpus for a variety of down-

stream tasks (Müller et al., 2020). The assumption
is that the LMs trained on the user-generated text
on Twitter can handle the short and unstructured
text in tweets. Despite this progress, their gener-
alizability is unproven, and there is no PLM for
public health surveillance using social media.

2.2 NLP for Public Health Surveillance

The use of social media in conjunction with ad-
vances in NLP for PHS tasks is a growing area of
study (Paul and Dredze, 2017). NLP can assist
researchers in the surveillance of mental disorders,
such as identifying depression diagnosis, assess-
ing suicide risk and stress identification, vaccine
hesitancy and refusal, identifying common health-
related misconceptions, sentiment analysis, and
the health-related behaviors they support (Naseem
et al., 2022a,b).

Rao et al. (2020) presented a hierarchical method
that used BERT with attention-based BiGRU and
achieved competitive performance for depression
detection. For vaccine-related sentiment classifi-
cation, Zhang et al. (2020) classified tweet-level
HPV vaccine sentiment using three transfer learn-
ing techniques (ELMo, GPT, and BERT) and found
that a finely tuned BERT produced the best results.
Biddle et al. (2020) presented a method (BiLSTM-
Senti) that leveraged contextual word embeddings
(BERT) with word-level sentiment to improve per-
formance. Naseem et al. (2021b) presented a model
that uses domain-specific LM and captures com-
monsense knowledge into a context-aware bidi-
rectional gated recurrent network. Sawhney et al.
(2021) presented an ordinal hierarchical attention
model for Suicide Risk Assessment where text em-
beddings obtained by Longformer were fed to BiL-
STM with attention and ordinal loss as an objective
function. However, there is no PLM trained on
health-related text collected from social media that
directly benefit the applications related to PHS.

3 Method

PHS-BERT has the same architecture as BERT.
Fig. 1 illustrates an overview of pretraining, fine-
tuning, and datasets used in this study. We describe
BERT and then the pretraining and fine-tuning pro-
cess employed in PHS-BERT.

3.1 BERT

PHS-BERT has the same architecture as BERT.
BERT was trained on 2 tasks: mask language mod-
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Figure 1: An overview of pretraining, fine-tuning, and the various tasks and datasets used in PHS benchmarking

eling (MLM) (15% of tokens were masked and
next sentence prediction (NSP) (Given the first
sentence, BERT was trained to predict whether
a selected next sentence was likely or not). BERT
is pretrained on Wikipedia and BooksCorpus and
needs task-specific fine-tuning. Pretrained BERT
models include BERTBase (12 layers, 12 atten-
tion heads, and 110 million parameters), as well
as BERTLarge (24 layers, 16 attention heads, and
340 million parameters).

3.2 Pretraining of PHS-BERT

We followed the standard pretraining protocols of
BERT and initialized PHS-BERT with weights
from BERT during the training phase instead of
training from scratch and used the uncased version
of the BERT model.

PHS-BERT is the first domain-specific LM for
tasks related to PHS and is trained on a corpus
of health-related tweets that were crawled via the
Twitter API. Focusing on the tasks related to PHS,
keywords used to collect pretraining corpus are set
to disease, symptom, vaccine, and mental health-
related words in English. Pre-processing methods
similar to those used in previous works (Müller
et al., 2020; Nguyen et al., 2020) were employed
prior to training. Retweet tags were deleted from
the raw corpus, and URLs and usernames were re-
placed with HTTP-URL and @USER, respectively.
Additionally, the Python emoji3 library was used to
replace all emoticons with their associated mean-
ings. The HuggingFace4, an open-source python
library, was used to segment tweets. Each sequence
of BERT LM inputs is converted to 50,265 vocab-

3https://pypi.org/project/emoji/
4https://huggingface.co/

ulary tokens. Twitter posts are restricted to 200
characters, and during the training and evaluation
phase, we used a batch size of 8. Distributed train-
ing was performed on a TPU v3-8.

3.3 Fine-tuning for downstream tasks
We applied the pretrained PHS-BERT in the bi-
nary and multi-class classification of different PHS
tasks such as stress, suicide, depression, anorexia,
health mention classification, vaccine, and covid
related misinformation and sentiment analysis. We
fine-tuned the PLMs in downstream tasks. Specifi-
cally, we used the ktrain library (Maiya, 2020)
to fine-tune each model independently for each
dataset. We used the embedding of the special to-
ken [CLS] of the last hidden layer as the final
feature of the input text. We adopted the multilayer
perceptron (MLP) with the hyperbolic tangent acti-
vation function and used Adam optimizer (Kingma
and Ba, 2014). The models are trained with a one
cycle policy (Smith, 2017) at a maximum learning
rate of 2e-05 with momentum cycled between 0.85
and 0.95.

4 Experimental Analysis

4.1 Tasks and Datasets
We evaluated and benchmarked the performance of
PHS-BERT on 7 different PHS classification tasks
(e.g., stress, suicidal ideation, depression, health
mention, vaccine, covid related sentiment analy-
sis, and other health-related tasks) collected from
popular social platforms (e.g., Reddit and Twitter).
We used 25 datasets (see Table 1) crawled from
social media platforms (e.g., Reddit and Twitter).
We relied on the datasets that are widely used in the
community and described each of these tasks and

24



Table 1: Statistics of the datasets used. We used the Stratified 5-Folds cross-validation (CV) strategy for train/test
split if original datasets do not have an official train/test split.

Task (Classification) Dataset Platform # of Samples # of Classes Training Strategy Used

Suicide R-SSD (Cao et al., 2019) Reddit 500 Users 5 Stratified 5-Folds CV

Stress Dreaddit (Turcan and McKeown, 2019) Reddit 3553 Posts 2 Official Split
SAD (Mauriello et al., 2021) SMS-like 6850 SMS 2 Official Split

Health Mention

PHM (Karisani and Agichtein, 2018) Twitter 4635 Posts 4 Stratified 5-Folds CV
PHM (Karisani and Agichtein, 2018) Twitter 4635 Posts 2 Stratified 5-Folds CV

HMC2019 (Biddle et al., 2020) Twitter 15393 Posts 3 Stratified 5-Folds CV
RHMD (Naseem et al., 2022b) Reddit 3553 Posts 4 Stratified 5-Folds CV

Vaccine Sentiment VS1 (Dunn et al., 2020) Twitter 9261 Posts 3 Stratified 5-Folds CV
VS2 (Müller and Salathé, 2019) Twitter 18522 Posts 3 Stratified 5-Folds CV

COVID Related

Covid Lies (Hossain et al., 2020) Twitter 3204 Posts 3 Stratified 5-Folds CV
Covid Category (Müller et al., 2020) Twitter 4328 Posts 2 Stratified 5-Folds CV

COVIDSentiA (Naseem et al., 2021d) Twitter 30000 Posts 3 Stratified 5-Folds CV
COVIDSentiB (Naseem et al., 2021d) Twitter 30000 Posts 3 Stratified 5-Folds CV
COVIDSentiC (Naseem et al., 2021d) Twitter 30000 Posts 3 Stratified 5-Folds CV

Depression

eRISK T3 (Losada and Crestani, 2016) Reddit 190 Users 4 Stratified 5-Folds CV
Depression_Reddit_1 (Naseem et al., 2022a) Reddit 3553 Posts 4 Stratified 5-Folds CV

eRISK19 T1 (Losada and Crestani, 2016) Reddit 2810 Users 2 Official Split
Depression_Reddit_2 (Pirina and Çöltekin, 2018) Reddit 1841 Posts 2 Stratified 5-Folds CV

Depression_Twitter_1 Twitter 1793 Posts 3 Stratified 5-Folds CV
Depression_Twitter_2 Twitter 10314 Posts 2 Stratified 5-Folds CV

Other Health related

PubHealth (Kotonya and Toni, 2020) News Websites 12251 Posts 4 Official Split
Abortion (Mohammad et al., 2016) Twitter 933 Posts 3 Official Split

Amazon Health (He and McAuley, 2016) Amazon 2003 Posts 4 Official Split
SMM4H T1 (Weissenbacher et al., 2018) Twitter 14954 Posts 2 Official Split
SMM4H T2 (Weissenbacher et al., 2018) Twitter 13498 Posts 3 Official Split

HRT (Paul and Dredze, 2012) Twitter 2754 Posts 4 Stratified 5-Folds CV

datasets. Below we briefly discussed each task and
dataset used in our study (appendix A for details).

1. Suicide: The widespread use of social media
for expressing personal thoughts and emotions
makes it a valuable resource for assessing sui-
cide risk on social media. We used the fol-
lowing dataset to evaluate the performance of
our model. We used R-SSD (Cao et al., 2019)
dataset to evaluate the performance of our model
on suicide risk detection.

2. Stress: It is desirable to detect stress early in
order to address the growing problem of stress.
To evaluate stress detection using social media,
we evaluated PHS-BERT on the Dreaddit (Tur-
can and McKeown, 2019) and SAD (Mauriello
et al., 2021) datasets.

3. Health mention: In social media platforms,
people often use disease or symptom terms in
ways other than to describe their health. In
data-driven PHS, the health mention classifi-
cation task aims to identify posts where users
discuss health conditions rather than using dis-
ease and symptom terms for other reasons.
We used PHM (Karisani and Agichtein, 2018),
HMC2019 (Biddle et al., 2020) and RHMD5

health mention-related datasets.

5https://github.com/usmaann/RHMD-Health-Mention-
Dataset

4. Vaccine sentiment: Vaccines are a critical com-
ponent of public health. On the other hand, vac-
cine hesitancy and refusal can result in clusters
of low vaccination coverage, diminishing the
effectiveness of vaccination programs. Identi-
fying vaccine-related concerns on social media
makes it possible to determine emerging risks
to vaccine acceptance. We used VS1 (Dunn
et al., 2020) and VS2 (Müller and Salathé, 2019)
vaccine-related Twitter datasets to show the ef-
fectiveness of our model.

5. COVID related: Due to the ongoing pandemic,
there is a higher need for tools to identify
COVID-19-related misinformation and senti-
ment on social media. Misinformation can have
a negative impact on public opinion and endan-
ger the lives of millions of people if precau-
tions are not taken. We used COVID Lies (Hos-
sain et al., 2020), Covid category (Müller et al.,
2020), and COVIDSenti (Naseem et al., 2021d)6

datasets to test our model.

6. Depression: User-generated text on social
media has been actively explored for its fea-
sibility in the early identification of depres-
sion. We used following eRisk T3 (Losada and
Crestani, 2016), eRisk T1 (Losada and Crestani,
2016), Depression_Reddit_1 (Naseem et al.,

6we used 3 subsets (COVIDSentiA, COVIDSentiB and
COVIDSentiC)
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2022a)7, Depression_Reddit_2 (Pirina and Çöl-
tekin, 2018), Depression_Twitter_18, and De-
pression_Twitter_29 depression-related datasets
in our experiments.

7. Other health related tasks: We also evalu-
ated the performance of our PHS-BERT on
other health-related 6 datasets. We used PUB-
HEALTH (Kotonya and Toni, 2020), Abor-
tion (Mohammad et al., 2016)10, Amazon
Health dataset (He and McAuley, 2016),
SMM4H T1 (Weissenbacher et al., 2018),
SMM4H T2 (Weissenbacher et al., 2018) and
HRT (Paul and Dredze, 2012).

4.2 Evaluation Metric

To evaluate the performance, we used F1-score and
the relative improvement in marginal performance
(∆MP ) used in a previous similar study (Müller
et al., 2020).

4.3 Baselines

We evaluated the performance of PHS-BERT with
various SOTA existing PLMs in different domains.
We compared the performance with BERT (Devlin
et al., 2019), ALBERT (Lan et al., 2019), and Dis-
tilBERT (Sanh et al., 2019) pretrained with general
corpus, BioBERT (Lee et al., 2019) pretrained in
the biomedical domain, CT-BERT (Müller et al.,
2020) and BERTweet (Nguyen et al., 2020) pre-
trained on covid related tweets and MentalBERT (Ji
et al., 2021) pretrained on corpus from Reddit from
mental health-related subreddits.

4.4 Results

Table 2 summarizes the results of the presented
PHS-BERT in comparison to the baselines. We ob-
serve that the performance of PHS-BERT is higher
than SOTA PLMs on all tested tasks and datasets.
Below we discuss the performance comparison
of PHS-BERT with BERT and the results of the
second-best PLM.
Suicide Ideation Task: We observed that the
marginal increases in performance of PHS-BERT
is 18.45% when compared to BERT and 12.79%
when compared to second best results.

7https://github.com/usmaann/Depression_Severity_Dataset
8https://github.com/AshwanthRamji/Depression-

Sentiment-Analysis-with-Twitter-Data
9https://github.com/viritaromero/Detecting-Depression-

in-Tweets
10The SemEval 2016 stance detection task has 5 target

domains. We used the legalization of abortion.

Stress Detection Task: We showed that PHS-
BERT achieved higher performance than the best
baseline on both datasets. The average marginal
increase in performance of PHS-BERT is 3.80%
compared to BERT and 2% when compared to
second-best results.
Health Mention Task: PHS-BERT outperformed
all the baselines on all health mention classification
datasets. The average marginal increase in perfor-
mance of PHS-BERT is 3.34% compared to BERT
and 1.76% when compared to second-best results.
Depression Detection Task: We demonstrated that
PHS-BERT outperformed all the baselines on all 6
depression datasets to identify depression on social
media. We observed that the average marginal
increase in performance of PHS-BERT is 6.03%
compared to BERT and 2.76% when compared to
second-best results.
Vaccine Sentiment Task: For the vaccine sen-
timent task, PHS-BERT achieved higher perfor-
mance compared to all baselines on both datasets.
Results showed that the average marginal increase
in performance of PHS-BERT is 7.70% than BERT
and 0.34% compared to second-best results.
COVID Related Task: PHS-BERT outperformed
all baselines on all 5 datasets for COVID-related
tasks. On average, the marginal increase in perfor-
mance is 11.82% compared to BERT and 4.471%
compared to the second-best results.
Other Health Related Task: We showed that
PHS-BERT outperformed all the baselines on all 6
datasets to identify other health-related tasks on so-
cial media. We observed that the average marginal
increase in performance of PHS-BERT is 11.82%
compared to BERT and 4.71% when compared to
second-best results.

4.5 Discussion

We demonstrated the effectiveness of our domain-
specific PLM on a downstream classification task
related to PHS. Compared to previous SOTA
PLMs, PHS-BERT improved the performance on
all datasets (7 tasks). Our experimental results
showed that BERT, a PLM trained in the general
domain, gets competitive results on downstream
classification tasks. However, for domain-specific
tasks, general domain PLMs (BERT, ALBERT, dis-
tilBERT) might need more training on relevant cor-
pora to achieve better performance on the domain-
specific downstream classification task. Further, we
observed that using a domain-specific PLM trained
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Table 2: Comparison of PHS-BERT (Ours) v/s SOTA PLMs. Best results (F1-score) are represented in bold, whereas
second-best results are underlined. ∆MPBERT and ∆MPSB represent the marginal increase in performance
compared to the BERT and the second-best PLM (under-lined).

Suicide Ideation Task
Dataset BERT ALBERT distilBERT CT-BERT BioBERT BERTweet MentalBERT Ours ∆MPBERT ∆MPSB

R-SSD 25.72 23.07 26.96 18.67 23.51 24.82 17.35 30.28 18.45↑ 12.79↑
Stress Detection Task

Dreaddit 78.55 79.43 78.22 81.46 78.34 80.03 80.89 82.89 5.60↑ 1.78↑
SAD 92.66 91.11 91.47 91.11 93.92 94.17 93.23 94.75 2.28↑ 0.62↑

Average 85.61 85.27 84.85 86.29 86.13 87.10 87.06 88.82 3.80↑ 2.00↑
Health Mention Task

PHM (Multi-class) 86.21 80.05 85.06 82.02 82.22 85.59 87.76 89.38 3.72↑ 1.87↑
PHM (Binary) 91.89 90.53 90.64 92.17 89.62 92.12 92.29 93.27 1.52↑ 1.07↑

HMC2019 88.99 87.22 88.01 90.82 86.27 90.65 90.17 91.71 3.09↑ 0.99↑
RHMD 74.20 69.02 73.22 72.87 72.25 74.66 75.28 77.16 5.48↑ 2.53 ↑
Average 85.07 81.71 84.23 84.47 82.59 85.76 86.38 87.38 3.34↑ 1.76 ↑

Depression Detection Task
eRisk T3 64.56 64.78 67.33 63.17 64.86 63.56 67.75 68.98 6.95↑ 1.84↑

Depression_Reddit_1 22.39 21.09 21.95 24.21 24.00 20.84 21.95 28.75 29.73↑ 19.56↑
eRisk T1 93.72 93.79 93.34 86.74 91.73 91.92 94.30 94.52 0.86↑ 0.24↑

Depression_Reddit_2 91.33 90.72 91.01 68.16 90.53 91.75 92.70 93.36 2.25↑ 0.72↑
Depression_Twitter_1 64.17 51.70 66.71 57.11 64.12 64.24 72.95 76.18 19.01↑ 4.49↑
Depression_Twitter_2 96.99 96.79 96.70 96.96 96.59 96.87 97.09 97.12 0.14↑ 0.03↑

Average 72.19 69.81 72.84 66.06 71.97 71.53 74.46 76.49 6.03↑ 2.76↑
Vaccine Sentiment Task

VS1 74.14 70.00 73.95 79.92 73.30 76.81 71.56 79.96 7.96↑ 0.05↑
VS2 76.60 74.82 75.91 81.73 76.77 79.10 77.65 82.24 7.46↑ 0.63↑

Average 75.37 72.41 74.93 80.84 75.04 77.96 74.61 81.10 7.70↑ 0.34↑
COVID Related Task

Covid Lies 92.96 91.53 92.14 92.24 93.79 91.07 94.60 95.35 2.60↑ 0.80↑
COVID Category 93.98 93.94 94.35 95.29 93.72 93.45 94.97 95.83 1.99↑ 0.57↑

COVIDSentiA 90.90 90.81 90.90 78.96 90.41 66.30 91.55 93.97 3.41↑ 2.67↑
COVIDSentiB 91.31 89.88 91.06 86.85 91.02 89.46 92.06 93.44 2.36↑ 1.52↑
COVIDSentiC 91.24 83.72 90.77 84.83 90.55 61.78 91.66 93.11 2.03↑ 1.60↑

Average 92.08 89.98 91.84 87.63 91.90 80.41 92.97 94.34 2.48↑ 1.49↑
Other Health Related Task

PubHealth 60.30 61.43 60.77 63.97 58.85 60.57 57.30 64.77 7.54↑ 1.27↑
Abortion 58.79 58.59 68.09 70.39 62.53 62.82 63.03 72.31 23.40↑ 2.77↑

Amazon Health 63.45 63.18 62.30 54.84 60.27 65.50 65.57 68.09 7.43↑ 3.90↑
SMM4H T1 33.33 33.86 35.80 45.50 39.45 45.87 39.81 46.49 40.71↑ 1.38↑
SMM4H T2 75.54 72.76 75.12 79.19 73.43 80.20 77.54 80.34 6.44↑ 0.18↑

HRT 78.67 76.97 78.35 80.90 76.13 80.48 80.46 81.12 3.15↑ 0.28↑
Average 61.68 61.13 63.41 65.80 61.78 65.91 63.95 68.85 11.82↑ 4.71↑

on biomedical corpora (BioBERT) is less effective
than pretraining on the target domain. We also ob-
served that using CT-BERT, BERTweet, and Men-
talBERT, which are trained on social media-based
text, performs better compared to PLMs trained
in the general and biomedical domain. These re-
sults also demonstrated the effectiveness of train-
ing in a target domain. In particular, CT-BERT
has the second-best performance on 9 datasets, and
MentalBERT has the second-best performance on
13 datasets. The results of domain-specific PLMs
demonstrated that continued pretraining in the rele-
vant domain improves performance on downstream
tasks.

5 Conclusion

We present PHS-BERT, a domain-specific PLM
trained on health-related social media data. Our
results demonstrate that using domain-specific cor-
pora to train general domain LMs improves per-

formance on PHS tasks. On all 25 datasets related
to 7 different PHS tasks, PHS-BERT outperforms
previous state-of-the-art PLMs. We expect that the
PHS-BERT PLM will benefit the development of
new applications based on PHS NLP tasks.
Ethics and Societal Impact
Ethics: No additional ethics approval was sought
for the analysis of data in this study because data
were drawn from already published studies.
Societal Impact: We train and release a PLM to ac-
celerate the automatic identification of tasks related
to PHS on social media. Our work aims to develop
a new computational method for screening users
in need of early intervention and is not intended to
use in clinical settings or as a diagnostic tool.
Reproducibility: For reproducibility and future
works, PHS-BERT is publicly released and
is available at https://huggingface.
co/publichealthsurveillance/
PHS-BERT.
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A Dataset description

1. Depression: We used 6 depression-related
datasets in our experiments.

• eRisk T3: We used eRISK, a publicly avail-
able dataset, released by (Losada and Crestani,
2016) and labeled across 4 depression sever-
ity levels using Beck’s Depression Inven-
tory (Beck et al., 1961) criteria to detect the ex-
istence of depression and identify its severity
level in social media posts. eRISK was later
used in the CLEF’s eRISK challenge Task 311

on early identification of depression in social
media. Since in each years’ challenge author
released a small number of user’s data (rang-
ing from 70-90 users data), we combined and
used the data of the last 3 years, which is
equivalent to 190 Reddit users, labeled across
4 depression severity levels.

• Depression_Reddit_1: We used new Red-
dit depression data released by Naseem et al.
(2022a). This dataset consists of 3,553 Reddit
posts to identify the depression severity on
social media. Annotators manually labeled
data into 4 depression severity levels i.,e., (i)
minimal depression; (ii) mild depression, (iii)
moderate depression; and (iv) severe depres-
sion using Depressive Disorder Annotation
scheme (Mowery et al., 2015).

• eRisk T1: The third depression data is from
eRisk shared task 1 (Losada and Crestani,
2016), which is a public competition for de-
tecting early risk in health-related areas. The
eRisk data consists of posts from 2,810 users,
with 1,370 expressing depression and 1,440
as a control group without depression.

• Depression_Reddit_2: The fourth depression
dataset used is released by Pirina and Çöl-
tekin (Pirina and Çöltekin, 2018). The au-
thors used Reddit to collect additional social
data, which they combined with previously
collected data to identify depression.

• Depression_Twitter_1: Our fifth depression
dataset is a publicly availabl12. This data is
collected from Twitter and labeled into 3 la-
bels (e.g., Positive, Negative, and Neutral) for
depression sentiment analysis.

• Depression_Twitter_2: Our sixth depression
11https://erisk.irlab.org/2021/index.html
12https://github.com/AshwanthRamji/Depression-

Sentiment-Analysis-with-Twitter-Data

dataset is a public dataset13, collected from
Twitter and labeled into 2 labels (e.g., Positive
and Negative) for depression detection.

2. Health Mention: We used 3 health mention-
related datasets in our experiments.

• PHM: Karisani and Agichtein (2018) con-
structed and released the PHM dataset consist-
ing of 7,192 English tweets across 6 diseases
and symptoms. They used the Twitter API to
retrieve the data using the colloquial disease
names as search keywords. They manually an-
notated the tweets and categorized them into
4 labels. In addition to 4 labels, similar to
Karisani and Agichtein (2018) we also used
binary labels for health mention classification.

• HMC2019: HMC2019 is presented by Biddle
et al. (2020) by extending the PHM dataset
to include 19,558 tweets and included labels
related to figurative mentions, and included 4
more different disease or symptom terms (10
in total) for health mention classification.

• RHMD: We also used Reddit health mention
dataset (RHMD)(Naseem et al., 2022b) for
HMC task. RHMD consists of 10K+ Red-
dit posts manually annotated with 4 labels
(personal health mention, non-personal health
mention, figurative health mention, hyper-
bolic health mention). In our study, we used
3 label versions of data released by authors
where they merged figurative health mention
and hyperbolic health mention into 1 class.

3. Suicide: We used the following dataset to eval-
uate the performance of our model on suicide
risk detection.

• R-SSD: For suicide ideation, we used a
dataset released by Cao et al. (2019), which
contains 500 individuals’ Reddit postings cat-
egorized into 5 increasing suicide risk classes
from 9 mental health and suicide-related sub-
reddits.

4. Stress: To evaluate stress detection using social
media, we evaluated PHS-BERT on the follow-
ing datasets.

• Dreaddit: For stress detection, we used
Dreaddit (Turcan and McKeown, 2019)
collected from 5 different Reddit forums.

13https://github.com/viritaromero/Detecting-Depression-
in-Tweets
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Dreaddit consists of 3,553 posts and fo-
cuses on three major stressful topics: inter-
personal conflict, mental illness, and finan-
cial need. Posts in Dreaddit are collected
from 10 subreddits, including some mental
health domains such as anxiety and PTSD.

• SAD: The SAD (Mauriello et al., 2021)
dataset, which contains 6,850 SMS-like
sentences, is used to recognize everyday
stressors. The SAD dataset is derived from
stress management articles, chatbot-based
conversation systems, crowdsourcing, and
web crawling. Some of the more specific
stressors are work-related issues like fa-
tigue or physical pain, financial difficulties
like debt or anxiety, school-related deci-
sions like final projects or group projects,
and interpersonal relationships like friend-
ships and family relationships.

5. Vaccine sentiment: We used two vaccine-
related Twitter datasets to show the effectiveness
of our model.

• VS1: Our first dataset consists of tweets about
vaccine dissemination on Twitter from Jan-
uary 12, 2017, to December 3, 2019. Dunn
et al. (2020) crawled and labeled this data.
The total tweets count is 9,212, with 6,683
positive, 1,084 negatives, and 1,445 neural
tweets.

• VS2: The second dataset14 includes tweets
about measles and vaccinations obtained via
the Twitter Streaming API between July 2018
and January 2019 and provided by Müller and
Salathé (2019). The total number of tweets is
18,503, with 8,965 pro-vaccine tweets, 1,976
anti-vaccine tweets, and 7,562 neutral tweets.

6. COVID: We used 5 covid related datasets to
test our model.

• COVID Lies: Hossain et al. (2020) released
COVIDLIES, a dataset (6761 tweets) anno-
tated by experts with known COVID-19 mis-
conceptions and tweets that agree, disagree,
or express no stance.

• Covid category: Covid category dataset is re-
leased by Müller et al. (2020). Amazon Turk
annotators were asked to classify a given tweet

14https://github.com/digitalepidemiologylab/crowdbreaks-
paper

text as personal narrative or news. Crowd-
breaks was used to perform the annotation.

• COVIDSenti: We used a newly released
large-scale sentiment dataset, COVIDSenti,
which contains 90,000 COVID-19-related
tweets obtained during the pandemic’s early
stages, from February to March 2020. The
tweets are labeled into positive, negative, and
neutral sentiment classes. In our experiments,
we used 3 subsets (COVIDSentiA, COVID-
SentiB and COVIDSentiC) released by au-
thors (Naseem et al., 2021d).

7. Other health related tasks: We used PUB-
HEALTH (Kotonya and Toni, 2020), a dataset
for automated fact-checking of public health
claims that are explainable. PUBHEALTH is
labeled with its factuality (true, false, unproven,
mixture). (ii) Abortion: In SemEval 2016 stance
detection task (Mohammad et al., 2016), 5 tar-
get domains are given: legalization of abortion,
atheism, climate change, feminism, and Hillary
Clinton. We used the legalization of abortion in
our experiments. (iii) Amazon Health dataset:
The Amazon Health dataset (He and McAuley,
2016) contains reviews of Amazon healthcare
products and has 4 classes i.e., strongly posi-
tive, positive, negative, and strongly negative.
(iv) SMM4H T1: We used Social Media Min-
ing for Health (SMM4H) Shared Task 1 rec-
ognizing whether a tweet is reporting an ad-
verse drug reaction (Weissenbacher et al., 2018).
(v) SMM4H T2: Drug Intake Classification
(SMM4H Task 2) (Weissenbacher et al., 2018)
where participants were given tweets manually
categorized as definite intake, possible intake,
or no intake. (vi) HRT: Health related tweets
(HRT) (Paul and Dredze, 2012) were collected
using Twitter and manually annotated using Me-
chanical Turk as related or unrelated to health.
Health-related tweets were further labeled as
sick (the text implied that the user was suffer-
ing from an acute illness, such as a cold or the
flu) or health (the text made general comments
about the user’s or the other’s health, such as
chronic health conditions, lifestyle, or diet) and
unrelated tweets were further labeled as unre-
lated (texts that were not about a specific per-
son’s health, such as news and updates about the
swine flu or advertisements for diet pills) and
non-English.
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Abstract

Relation classification models are convention-
ally evaluated using only a single measure, e.g.,
micro-F1, macro-F1 or AUC. In this work, we
analyze weighting schemes, such as micro and
macro, for imbalanced datasets. We introduce
a framework for weighting schemes, where
existing schemes are extremes, and two new
intermediate schemes. We show that report-
ing results of different weighting schemes bet-
ter highlights strengths and weaknesses of a
model.

1 Introduction

Relation classification (RC) models are typically
compared with either micro-F1 or macro-F1, often
without discussing the measure’s properties (see
e.g. Zhang et al., 2017; Yao et al., 2019). Each
measure highlights different aspects of model per-
formance (Sun et al., 2009). However, using an
inappropriate measure can lead to the preference
of an unsuitable model (Branco et al., 2016), e.g.,
tasks with an imbalanced or long-tailed class dis-
tribution. We argue that model evaluation should
better reflect this, particularly as rare phenomena
become more important in NLP (Rogers, 2021).

For instance, popular datasets for RC, such as
TACRED (Zhang et al., 2017), NYT (Riedel et al.,
2010), ChemProt (Kringelum et al., 2016), Do-
cRED (Yao et al., 2019), and SemEval-2010 Task
8 (Hendrickx et al., 2010), often exhibit a highly
imbalanced label distribution (see Table 1 and, e.g.,
the TACRED class distribution1). The main rea-
sons are the natural data imbalance, i.e. the occur-
rence frequency of relation mentions in text, as
well as the incompleteness of knowledge graphs
like Freebase (Bollacker et al., 2008) used in dis-
tantly supervised RC. For example, 58% of the rela-
tions in the NYT dataset (Riedel et al., 2010) have

1https://nlp.stanford.edu/projects/
tacred/#stats

fewer than 100 training instances (Han et al., 2018),
and the most frequent relation location/contains is
assigned to 48.3% of the positive test instances.
However, for applying RC to real-world problems,
it is especially important to discover instances of
relations that are not yet covered well in a given
knowledge base.

Table 1 lists statistics of the aforementioned RC
datasets, including their perplexity and common
evaluation measures. TACRED and the original
version of NYT contain predominantly negative
samples2. All datasets, except for undirectional
SemEval, exhibit a large ratio between most fre-
quent and least frequent positive class in the test
set. The perplexity of test set distributions is also
much lower than the relation count for all datasets
except SemEval. Reporting only a single measure
therefore cannot exhaustively capture model per-
formance on these datasets, especially for the long
tail of relation types. For example, Alt et al. (2019)
show that on the NYT dataset, AUC scores and
P-R-Curves of several state-of-the-art models are
heavily skewed towards the two most frequent rela-
tion types location/contains and person/nationality.
TACRED, ChemProt, DocRED and SemEval re-
sults are usually only reported in micro-F1, which
does not consider class membership.

In this paper, we introduce a framework for
weighting schemes of measures to address these
evaluation deficits. We present and motivate two
new weighting schemes that are in between the ex-
tremes of micro- and macro-weighting. We demon-
strate these, micro-, class-weighted- and macro-F1

on TACRED and SemEval with two popular mod-
els each. We show that more information about
models can be inferred from our results and point
out what further steps should be taken to improve
evaluation in relation classification.

2Negative samples in RC means none of the dataset’s re-
lations hold. Depending on the dataset, this class is coined
no-relation, NA or Other. We use negative class or NA.
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Perplexity
Dataset #Rel #Samples %NA w NA w/o NA Ratio Evaluation

TACRED 42 106264 79.5 3.31 23.39 250 micro-F1

NYT 53
24

694491
66194

79.4
0

1.27
6.24

7.84
6.24

2793
2485

precision at k, AUC

ChemProt 13 10065 0 7.23 7.23 314 micro-F1

DocRED 96 50503 0 33.13 33.13 2837 micro-F1, AUC
SemEval 19

10
10717
10717

17.4
17.4

14.45
9.61

14.37
8.80

291
2.10

macro-F1 (official),
micro-F1 (popular)

Table 1: Statistics for popular RC datasets. The number of relations, samples and percent of negative samples are
for the whole dataset. Perplexity of the classes is given for the test set, with and without negative samples. This
value would be equal to #Rel for a fully balanced dataset. Ratio is between the counts of the most and least frequent
positive class of the test set. We also list the popular evaluation methods. The upper line for NYT indicates the
original dataset by Riedel et al. (2010), the lower line is the frequently used version by Hoffmann et al. (2011). The
upper SemEval entry considers the direction between the nominals, the lower one does not.

2 Methods

We first give background on the F1-score and exist-
ing F1 weighting schemes. We present our frame-
work of weighting schemes. We introduce two new
weighting schemes. Finally, we outline statistical
tests.

2.1 Background
The Fβ-score (Rijsbergen, 1979; Lewis and Gale,
1994) calculates a score in the interval [0, 1]
through the formula

Fβ =
(1 + β2) · TP

(1 + β2) · TP + β2 · FN + FP
(1)

with the true positives (TP), false negatives (FN)
and false positives (FP) of a confusion matrix. This
definition is identical to the weighted harmonic
mean of precision and recall. The positive coef-
ficient β is used as a trade-off between the error
types FN and FP. If there is no preference known
or pre-determined, this coefficient is usually set to
1. In multi-class classification the confusion matrix
can either be calculated once for the whole dataset,
or separately for each class. The former method
yields micro-F1.

Micro weighting does not consider class mem-
bership for any test sample. If the predictions and
labels of all classes are considered, micro-F1 is
equal to accuracy, as the denominator in Eq. 1 is
twice the dataset. In RC, the TP of the negative
class are usually not considered, in which case
micro-F1 is not equal to accuracy. For the F -score,
micro is the only weighting where the impact of

a sample on the score is not conditioned on the
model performance on the rest of the class (For-
man and Scholz, 2010). If the test set is considered
to have a representative data distribution, the micro-
weighted score is a frequentist evaluation of model
performance.

There exist two other ways to calculate and com-
bine F1-scores for a multi-class problem. First,
multi-class F1-scores can be calculated for each
class and then a weighted average class score is
taken. Second, precision and recall scores for each
class can be calculated and weighted, then the har-
monic mean of weighted precision and weighted
recall is taken. Opitz and Burst (2019) show that
the first method is more robust and less favorable
to biased classifiers. We use this method in our
proposed framework.

(Class-)weighted-F1 is similar to micro-F1. F1-
scores are calculated for each class individually
and then weighted by the class count. Thus, both
schemes approximately weigh all samples equally.

Macro weighting gives an equal weight for each
class with positive sample count regardless of the
specific sample count. This gives information
about model performance if class imbalance is not
considered.

In general, there is a correspondence between
training loss and evaluation measure (Li et al.,
2020). One disadvantage of multiple weighting
schemes is that each weighting scheme can be opti-
mized for. To achieve a better score for a specific
weighting, class weights could be set proportional
to the weighting of the class during training. How-
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Method Formula Focus

Micro - calculation over dataset, class membership is not considered
Weighted ni weighting all classes by instance count, similar to micro
Dodrans ni

3/4 evaluating closer to generalization performance
Entropy −ni · log2(ni/

∑
j nj) reducing impact of data distribution on evaluation

Macro 1 equal weighting of all classes

Table 2: Weighting schemes for evaluation of multi-class classification. ni indicates the count of elements for class
i and the Formula column shows the weight the class is assigned before normalization. The metrics are loosely
ordered from top to bottom with the higher entries focusing more on instances and the lower entries focusing more
on class membership. This usually corresponds to the model score, it is rare that models are better on classes with
fewer samples. Methods in bold are proposed by us.

ever, we argue that model results should always be
presented with multiple weightings for one dataset.
Especially, when comparing different models all
weightings should be reported for each model. This
can clarify whether a model is good for all weight-
ings or just micro or macro. Furthermore, with
datasets that are currently evaluated with different
weightings, it is easier to identify whether a model
is specifically good for a dataset or for a weighting.

2.2 Framework for Weighting Schemes

We discuss a framework that summarizes the rules
we give to class-weighting schemes. Then we in-
troduce two new class weighting schemes. All
discussed weighting schemes can be found in Ta-
ble 2. They are independent of the measure that is
used to calculate a score for each class.

(Class-)weighted and macro weighting are the
extremes of “degressive proportionality”3 or “allo-
cation functions” (Słomczyński and Życzkowski,
2012). These are, e.g., used by the European Parlia-
ment to allocate seats to member nations depending
on the population of the nation. They state that allo-
cation should be monotonic increasing (see D1) and
proportionally decreasing (see D2). To adopt this
to a weighting scheme for multi-class evaluation,
we add a normalizing desideratum that determines
the sum of weights over all classes to be 1 (see D0).

Let ni > 0 be the count of samples of class i and
wi ≥ 0 the weight assigned to the score of class i.

3https://eur-lex.europa.eu/
legal-content/EN/TXT/HTML/?uri=CELEX:
32013D0312&from=EN#d1e114-57-1

We have the following desiderata:
∑

i

wi = 1 (D0)

ni ≥ nj ⇒ wi ≥ wj (D1)

ni ≥ nj ⇒
wi

ni
≤ wj

nj
(D2)

Note that these desiderata do not restrict the
scoring function that assigns scores si to class i.
The weighted evaluation score is then given by∑

iwisi.

2.3 Weighting Schemes
Macro: Macro weighting is one extreme by setting
equality on the weights of desideratum D1. It im-
plies that we do not consider the instance counts
per class, but treat all classes equally.
(Class-)weighted: Class-weighted is the other ex-
treme by setting equality on the fraction of weights
and counts in desideratum D2. It implies that we
do not consider class constituency but weight all
samples equally.
Dodrans: Cao et al. (2019) demonstrate that their
balanced generalization error bound for binary clas-
sifiers in the separable case can be optimized by
setting margins proportional to ni

−1/4. They use
this derivation from a limited theoretical scenario
to improve the performance of several classifiers
on imbalanced multi-class datasets. A term pro-
portional to ni

−1/4 is added in the loss function.
While this added term is not directly transferable,
we propose adapting this as a multiplicative fac-
tor in weighting classes for multi-class evaluation:
wi ∝ ni

−1/4ni = n
3/4
i . We coin this weighting

dodrans (“three-quarter”).
Entropy: We also want to provide a weighting
scheme that takes into consideration how hard a
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class is to predict. To this end, we propose weight-
ing classes proportional to their term in the Shan-
non entropy formula

H(X) = −
∑

i

P (xi) log(P (xi)) (2)

wi ∝ P (xi) log(P (xi)). (3)

We interpret P (xi) for class i to be the probabil-
ity of it appearing in the dataset, s.t. P (xi) =
ni/

∑
j nj . Thus, without normalization the model

score is now the sum over all classes of the model
performance on a class times the difficulty and
frequency of the class. Note, that this weighting
scheme does not fulfil desideratum D1, since it is
decreasing for classes i with P (xi) > e−1. This
is related to the fact that classes that are too large
become easier to predict for a model, the model can
just default to predicting this class. It can also be
desirable that a class does not gain relative impor-
tance once it contains more than half of the dataset.
For RC, this often has little consequence. If we
include NA in the normalization, it is usually the
largest class and other classes are below an e-th
of the dataset. Table 2 shows an overview of the
mentioned schemes.

Figure 1 displays the weights that these schemes
assign to the classes of the TACRED test set. The
weighted scheme is proportional to class counts
and produces the most imbalanced weights. Do-
drans and entropy produce slightly more balanced
weights and differ from weighted for the most fre-
quent classes. Macro considers all classes equally,
regardless of class count.

2.4 Statistical Testing

Currently, most RC works report a single score for
each dataset. This can be the result from a single
run or the median score from multiple runs. How-
ever, this does not allow to measure how large the
difference between models is. Recently, analysis
papers in NLP have recorded mean and standard
deviation over multiple runs (Madhyastha and Jain,
2019; Zhou et al., 2020), as this allows for statisti-
cal tests.

We first test for significance and report p-values.
We employ Welch’s t-test to test the hypothesis
that the models have equal mean. Following Zhu
et al. (2020), we also report Cohen’s d effect size to
determine how large the difference between models
is for a specific measure. For two models with the
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Figure 1: TACRED relations and their respective
weights under different weighting schemes. The lower
x-axis denotes the normalized weight given to a rela-
tion for a scheme. The upper x-axis corresponds to
the counts of the relations in the test set for the class-
weighted scheme. The y-axis denotes all positive rela-
tions. The negative NA class is not listed and has 12184
samples. The entropy and dodrans weighting scheme
produce similar weights and are between weighted and
macro weighting.

same number n > 1 of runs, Cohen’s d is given by

d =
√
2

µ1 − µ2√
σ2
1 + σ2

2

(4)

with µi and σ2
i being mean and variance of model

i’s scores. We do this, as two different models
never perform exactly the same, i.e. significance
just depends on the number of runs and we also
want to score the difference between the models.

3 Experiments

We evaluate and compare three RC methods with
our proposed measures on two datasets. We choose
these methods, as RECENT (Lyu and Chen, 2021)
and BERTEM (Baldini Soares et al., 2019) are based
on vanilla fine-tuning of a pre-trained language
model, with a classification head on top. PTR (Han
et al., 2021) is based on prompt-tuning. RECENT
and PTR report similar micro-F1 performance on
TACRED, as do BERTEM and PTR on SemEval. In
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Method Micro Weighted Dodrans Entropy Macro

RECENT 71.5±0.4 67.8±0.4 62.5±0.4 63.6±0.4 43.1±0.6

PTR 72.5±0.3 72.1±0.5 69.8±0.5 70.3±0.5 60.3±0.8

p-value 3 · 10−3 3 · 10−6 10−8 2 · 10−8 2 · 10−10

Cohen’s d 2.8 8.7 14.8 13.5 24.2

Table 3: TACRED F1-scores with different weighting schemes. Positive scores indicate PTR performs better than
RECENT for all weighting schemes. The difference is smallest for the micro and largest for the macro weighting
scheme. All p-values are smaller than α = 0.05. All effect sizes are huge (> 2.0) under Sawilowsky (2009)’s rules
of thumb.

Method Micro Weighted Dodrans Entropy Macro

BERTEM 89.1±0.3 89.1±0.3 88.7±0.3 88.6±0.3 82.7±0.4

PTR 88.4±0.3 88.3±0.3 88.1±0.3 88.0±0.3 87.8±0.5

p-value 0.005 0.006 0.023 0.023 7 · 10−8

Cohen’s d -2.5 -2.4 -1.8 -1.8 11.5

Table 4: SemEval F1-scores with different weighting schemes. The directionality is of the relations is considered,
s.t. there are 19 classes, the negative class is not included in evaluation. Negative scores indicate BERTEM performs
better, positive scores indicate PTR performs better. All p-values are smaller than α = 0.05. All absolute effect
sizes are very large (> 1.2) or huge (> 2.0).

this way we can compare performance of the two
paradigms for other weightings.

RECENT proposes a model-agnostic paradigm
that exploits entity types to narrow down the can-
didate relations. Given an entity-type combina-
tion, a separate classifier is trained on the restricted
classes. Baldini Soares et al. (2019) compare
various strategies that extract relation representa-
tion from Transformers and claim ENTITY START

(i.e. insert entity markers at the start of two entity
mentions) yields the best performance. PTR also
takes entity types into consideration and constructs
prompts composed of three subprompts, two corre-
sponding to the fill-in of the entity types and one
predicting the relation.

In our experiments we use RECENTGCN for RE-
CENT, BERTEM with ENTITY START, and unre-
versed prompts for PTR. We use the official repos-
itories for RECENT and PTR, we reimplement
BERTEM

4. We use the hyperparameters proposed
in the original papers and conduct five runs for each
model. Additional implementation and training de-
tails can be found in Appendices A and B.

The main focus is unearthing performance infor-
mation about these methods that was previously

4Our reimplementation is available at https://
github.com/dfki-nlp/mtb-bert-em.

obscured by single score measures. The number of
weighting schemes does not influence the compu-
tational cost, as each score is determined through
the predictions in a run and does not require spe-
cific tuning.5 We acknowledge that each weight-
ing scheme could be optimized for during training
which gives additional importance to reporting mul-
tiple measures for each model.

3.1 Results

Table 3 shows results for TACRED. PTR signifi-
cantly outperforms RECENT across all weighting
schemes. The difference between the models is
smallest for micro-F1 and increases for all schemes
that weigh classes more equally. For macro-F1 the
difference is starkest with effect size 24.2.

Table 4 displays results for SemEval. BERTEM
significantly outperforms PTR in the micro-F1

measure and all other weightings except for macro-
F1. All effect sizes are either large or huge, by
far the largest effect size is between PTR and
BERTEM regarding macro-F1 though. The Sem-
Eval test set contains a single sample of the Entity-

5We provide a package to add these scores to a
Scikit-learn (Pedregosa et al., 2011) classification
report at https://github.com/DFKI-NLP/
weighting-schemes-report.
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Destination(e2,e1) class which is quite impactful
for the macro-F1 of the models but has negligi-
ble impact on all other weighting schemes. The
scores from dodrans and entropy indicate that only
if all classes are considered equally important the
PTR model should be preferred. This indicates that
either the PTR model learns almost regardless of
class frequency or BERTEM has a class preference
that is only discoverable with macro-F1.

We demonstrate that evaluation on micro-F1

does not give adequate information about model
performance on long-tail classes. In Tables 3 and
4 we see that the model which performs better un-
der micro-F1 can either be significantly better or
worse for classes with few samples. The weighted-
F1 produces similar results to micro-F1 except for
RECENT. Macro-F1 on the other hand is very sen-
sitive to model performance on single samples, e.g.
the Entity-Destination(e2,e1) class in SemEval.

The scores of our proposed schemes are in be-
tween the existing measures and might be the best
indicators for robust generalization performance.
For all experiments, they produce similar results to
each other. This could just be a coincidence of the
datasets, and is also indicated by Figure 1. Overall,
it might be fair to say that one of the former and
latter measures is enough. It would mean one mea-
sure that does weigh proportional to sample count
(micro- or weighted-F1), an intermediary measure
(dodrans-F1 or entropy-F1) and macro-F1.

PTR performs better for macro-F1 on both
datasets. Its scores decrease less when classes are
weighted more equally. This suggests that it is a
better model for classes with low sample counts.
Le Scao and Rush (2021) show that prompts can be
worth hundreds of data points which would explain
why the macro- and micro-F1 scores are much
closer together than for RECENT and BERTEM.

4 Related Work

Chauhan et al. (2019) do a thorough evaluation of
their model and notice the significantly different
performance measured by micro and macro statis-
tics due to the class imbalance, suggesting that the
choice of evaluation measure is crucial. Huang and
Wong (2020) further use the closeness between
micro- and macro-F1 scores to claim the stable
performance of their model.

Mille et al. (2021) point out that evaluating with
a single score favors overfitting. They show dif-
ferent evaluation suites that can be created for a

dataset. Bragg et al. (2021) address the disjoint
evaluation settings across recent research threads
in (few-shot) NLP and propose a unified evaluation
benchmark which regulates dataset, sample size
etc., but fail to take the evaluation measure into
consideration, reporting only mean accuracy in-
stead. Post (2018) criticises the inconsistency and
under-specification in reporting scores. This prob-
lem is also prevalent in RC where the F1 weighting
scheme is often not specified.

Zhang et al. (2020) show that bias from corpora
persists for fine-tuned pre-trained language mod-
els. These models struggle with rare phenomena.
For better performance debiasing with weighting
is performed. Søgaard et al. (2021) argue against
using random splits. They show that evaluating
models with random splits is not a realistic set-
ting but makes tasks easier by fixing the test data
distribution to the train data distribution.

Long-tail evaluation is becoming more promi-
nent in NLP research. Models in deep learning tend
to show a gap in performance between frequent and
infrequent phenomena (Rogers, 2021). Models in
NLP have been shown to perform badly on specific
subsets of data (Zhang et al., 2020).

Sokolova and Lapalme (2009) analyze measures
for multi-class classification and present invari-
ances regarding the confusion matrix. Gösgens
et al. (2021) also determine which class measures
(including F1) fulfil specific assumptions. Further
evaluation can be based on this. Our weighting
schemes for F1 can be transferred to other mea-
sures that calculate a score for each class.

5 Outlook

We suggest creating and using a bidimensional
leaderboard like Kasai et al. (2021) where mea-
sures and models can be contributed. To this end,
benchmarking of RC models could be done on a
centralized site where a model or test set predic-
tions are submitted and measures are calculated
automatically through a script. For measures that
modify weighting of classes and intra-class scoring,
this does not require additional training computa-
tion.

Due to the reproducibility crisis (Baker, 2016),
not all state-of-the-art scores can be replicated.
Possible future work includes a comprehensive
evaluation study of papers on leaderboards of RC
tasks. This would enable an in-depth discussion of
strength and weaknesses (including reproducibil-
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ity) of these models.
The analysis we present can also be extended

to other NLP tasks with imbalanced datasets, such
as named entity recognition (Tjong Kim Sang and
De Meulder, 2003), part-of-speech tagging (Prad-
han et al., 2013) and coreference resolution (Prad-
han et al., 2012).

6 Conclusion

We criticise the current practice of reporting a sin-
gle score when evaluating imbalanced RC datasets.
We propose a new framework to weight scores
for multi-class evaluation of imbalanced datasets.
We provide two new weighting schemes, dodrans
and entropy, which are positioned between class-
weighted and macro. In our experiments, we show
that model performance on both TACRED and
SemEval, especially on the long-tail relations, is
not adequately captured by a single score. Thus,
we advocate the use of multiple weighing schemes
when reporting model performance on imbalanced
datasets.
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A Implementation Details

To evaluate RECENT and PTR, we use the official
code at https://github.com//Saintfe/
RECENT (last updated on 01.10.2021) and https:
//github.com/thunlp/PTR (last updated
on 20.11.2021). Since the official code of BERTEM
is not available, we implement this method using
the HuggingFace Transformers library (Wolf et al.,
2020) and PyTorch (Paszke et al., 2019), and make
our code base available at https://github.
com/dfki-nlp/mtb-bert-em. To make our
results reproducible, we randomly generated seeds
{9, 148, 378, 459, 687} and employed these for all
models in their 5 runs.

B Training Details

B.1 RECENT
We consider GCN as the base model. Following the
paper and the official code, we set the batch size to
be 50, the optimizer to be SGD with learning rate
0.3, and the number of epochs to be 100. It takes a
single RTX-A6000 GPU approximately 10 hours
to complete all 5 runs on TACRED.

B.2 BERTEM

We use the pre-trained language model (PLM)
bert-large-uncased from the HuggingFace
model hub and directly fine-tune the model for the
RC task, without matching-the-blank pre-training.
As the paper suggests, we set the batch size to be
64, the optimizer to be Adam with learning rate
3 · 10−5, and the number of epochs to be 5. Addi-
tionally, we use the max sequence length of 512.
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It takes a single RTX-A6000 GPU 30 minutes to
complete all 5 runs on SemEval.

B.3 PTR
According to the paper and the official code
base, we apply the same settings to evaluate
both TACRED and SemEval: We use the PLM
roberta-large and set the max sequence
length to be 512, the batch size to be 64, the opti-
mizer to be Adam with learning rate 3 · 10−5, the
weight decay to be 10−2, and the number of epochs
to be 5. It takes 4 Quadro-P5000 GPUs 84 hours
to complete 5 runs on TACRED, and it takes 8
Titan-V GPUs 9 hours on SemEval.
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Abstract
Recent improvements in automatic news sum-

marization fundamentally rely on large cor-
pora of news articles and their summaries.
These corpora are often constructed by scrap-
ing news websites, which results in including
not only summaries but also other kinds of
texts. Apart from more generic noise, we iden-
tify straplines as a form of text scraped from
news websites that commonly turn out not to
be summaries. The presence of these non-
summaries threatens the validity of scraped
corpora as benchmarks for news summariza-
tion. We have annotated extracts from two
news sources that form part of the News-
room corpus (Grusky et al., 2018), label-
ing those which were straplines, those which
were summaries, and those which were both.
We present a rule-based strapline detection
method that achieves good performance on a
manually annotated test set1. Automatic eval-
uation indicates that removing straplines and
noise from the training data of a news summa-
rizer results in higher quality summaries, with
improvements as high as 7 points ROUGE
score.

1 Introduction

Automatic text summarization is a challenging
task. Recent progress has been driven by bench-
marks that were collected by scraping a large col-
lection of web-pages, including Gigaword (Rush
et al., 2015), CNN/DailyMail (Nallapati et al.,
2016), Newsroom (Grusky et al., 2018), and
XSum (Narayan-Chen et al., 2019). Due to the
way they are collected, these datasets contain a
substantial portion of articles that are paired with
texts that are not summaries. This flaw in data
quality negatively impacts research in two ways:
(i) models trained on these benchmarks tend to re-
produce flaws in the data, making them less useful

∗Equal contribution
1We release our code at https://github.com/nam

ednil/straplines

Figure 1: A strapline (“Don’t expect ...”) that is mis-
taken for a summary in the Newsroom corpus.

for summarization, and (ii) any evaluation against
a reference text is meaningless if the reference is
not actually a summary.

In this work, we present methods for improv-
ing the data quality in scraped news summariza-
tion corpora, focusing on the Newsroom bench-
mark (Grusky et al., 2018). We identify two main
issues with the data quality: (i) noise in the ex-
traction process (the wrong field being scraped,
markup, ...), which was previously also identified
to be an issue by Kryscinski et al. (2019), and
(ii) straplines. According to the writing guide-
lines used by CERN2, “[t]he strap[line] gives added
“teaser information not included in the headline,
providing a succinct summary of the most impor-
tant points of the article. It tells the reader what to
expect, and invites them to find out more."

Figure 1 shows an example of a strapline
(“Don’t expect to be riding one by 2020") below
the regular headline. While the CERN guidelines
emphasize the function of straplines to provide a
summary, we find that most straplines in the News-
room corpus are not summaries of their associated
articles. Therefore, in order to obtain high qual-
ity data, it is necessary to distinguish a strapline
aimed at piquing a reader’s interest from an ab-
stractive summary. To the best of our knowledge,
no work has tried to distinguish straplines from
summaries before, and even the word “strapline"
does not appear in the ACL anthology in a research
paper.

In our work, one pair of us designed a strapline
2https://writing-guidelines.web.cern.

ch/entries/strapline-strap.html
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annotation guideline through discussions and man-
ual pre-annotations (§3.1) and then annotated a de-
velopment and test set for evaluating strapline clas-
sifiers. Based on the guideline, a separate pair cre-
ated heuristics for a rule-based classifier that dis-
tinguishes straplines from summaries (§3.2). We
empirically verify the usefulness of these heuris-
tics for strapline detection (§4.2). Automatic eval-
uation indicates that removing straplines and noise
from the training data with our heuristics results in
higher quality summaries, with improvements as
high as 7 points ROUGE score when compared to
reference summaries (§4.3).

2 Related work

Several works have analyzed existing summa-
rization datasets from different aspects but none
have identified straplines as an issue. Kryscin-
ski et al. (2019) quantified HTML artifacts in two
large scraped summarization datasets which are
CNN/DM (Nallapati et al., 2016), and Newsroom
(Grusky et al., 2018). They found that “sum-
maries" containing such artifacts were found in
≈ 3.2% of the Newsroom data. They also argued
that many of these artifacts could be detected using
simple regular expressions and heuristics. Jung
et al. (2019) define three sub-aspects of text sum-
marization and analyze how different domains of
summarization dataset are biased to these aspects.
Bommasani and Cardie (2020) evaluate the qual-
ity of ten summarization datasets, and their results
show that in most summarization datasets there are
a sizable number of low quality examples and that
their metrics can detect generically low quality ex-
amples. Tejaswin et al. (2021) analyzed 600 sam-
ples from three popular datasets, studying the data
quality issues and varying degrees of sample com-
plexity, and their analysis of summarization mod-
els demonstrate that performance is heavily depen-
dent on the data and that better quality summariza-
tion datasets are necessary.

Given that research has shown that the train-
ing data of summarization models are noisy, re-
searchers have proposed methods for training sum-
marization models based on noisy data. For exam-
ple, Kano et al. (2021) propose a model that can
quantify noise to train summarization models from
noisy data. The improvement of the models indi-
cates that the noisy data has noticeable impacts for
the training of the models.

3 Methodology

The Newsroom corpus contains articles from 38
news sources that vary in style and topics. News
articles were scraped from HTML pages, where
the page’s title tag is parsed as the article’s head-
line, while the page’s body tag is parsed as the arti-
cle’s body. Since there was no consistent metadata
tag indicating the summary of an article, Grusky
et al. (2018) used different metadata tags to ex-
tract summaries. These tags are generally added
to be used by social media platforms, and search
engines. News publishers do not share a single for-
mat for organizing metadata. Nevertheless, all (or
most) use the metadata label description, albeit for
different things. Since the creators of Newsroom
take as the summary of each article, the first tag in
its metadata having the keyword description, this
might be one reason that a strapline appears in the
extract for an article in place of the real summary.
Knowing that the “summaries" in the Newsroom
corpus are of mixed quality, we call what Grusky
et al. (2018) scraped from the web extracts, which
may or may not be a genuine summary.

Grusky et al. (2018) classify extracts according
to how much text they repeat verbatim from the
article into three categories: extractive (nearly ev-
erything appears verbatim in the article), abstrac-
tive (summarize in different words) and mixed.

We have focused on extracts classified as “ab-
stractive". We have also limited our study to two
of the 38 news sources – ones with different styles
and covering different topics, specifically the New
York Times (NYT) and time.com.

3.1 Annotation

The extracts in the Newsroom corpus do not all
fall neatly into the categories straplines and sum-
maries and noise; in particular, straplines and sum-
maries are not mutually exclusive, and can be seen
to form a continuum.

Even in this continuum, what one would
definitively classify as a summary depends on
multiple factors like its purpose and audience
(Spärck Jones, 1999). Therefore, we only iden-
tify common characteristics of straplines and sum-
maries, restricted to the context of news articles,
such as those in the Newsroom corpus. Regard-
ing purpose and audience, we generally assume
the audience consists of people who read news on
a somewhat regular basis, and that this is the same
audience as for the summaries. The purpose is to
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provide a brief overview of the news of the day,
and we assume this overview includes the head-
line. This means that the headline plays a central
role in our annotation procedure. A practical im-
plication of this is that annotation decisions can
sometimes be made very swiftly without reading
the actual article.

We identify the following main characteristics
of straplines that we want to exclude (ordered by
importance):

Clickbait A strapline can be designed to attract a
reader’s attention, rather than being informative.

Little or redundant information A strapline
does not add much information to the headline.

General A strapline can make a very general
statement, i.e. it would fit for a number of very
different articles.

Comment A strapline can be a comment on the
event described in the article. This does not apply
if the article itself is an opinion piece.

Joke A strapline can be a joke.

Informal A strapline may use informal language.

An extract need not have all the stated properties
to be considered a strapline. The characteristics
are illustrated in Table 1.

The characteristics of summaries are partially
complementary to those of straplines. Again, an
extract need not have all the characteristics to be
considered a summary:

Adds information A summary adds information
to the headline.

Relevance A summary contains no irrelevant in-
formation and little background information.

Focus The summary of an article describing an
event (entity) focuses on that event (entity).

Proposition A summary tends to be one or more
propositions.

The following example illustrates that some ex-
tracts have characteristics of both a summary and
a strapline:

Jan. 18 Internet Blackout to Protest SOPA:
Reddit Says Yes

Following speculation, Reddit has confirmed

plans to go dark on Jan. 18 to protest the Stop

Online Piracy Act. Wikipedia may follow suit, but

what about Google, Facebook and other big-name

tech companies?

While the extract adds relevant information to
the headline, it also uses a question to attract the
reader’s attention instead of giving away that "[...]
Google and Twitter declined to comment on their
support for an Internet blackout", as can be found
in the main article.

Labels Because of this overlap in the categories,
we annotate each article with one of the follow-
ing labels: "summary", "strapline", "strapline and
summary", "neither" and "paraphrase". We use
the category "neither" for noise or when the head-
line or the extract are difficult to understand before
reading the article. We sometimes observe that the
extract is a close paraphrase of the headline. By
definition, a paraphrase does not add information
and therefore would not qualify as a summary. In
another use case however, where we assume that
a user does not have access to the headline, the
extract may provide valuable information. In or-
der to make our annotation more robust to this
use case, we include the category of paraphrase,
so that those extracts can be included or excluded
accordingly.

3.2 Strapline detection pipeline

Before detecting straplines, we preprocess the
data to exclude noisy extracts (e.g., extracts with
HTML tags). Afterwards, the strapline detection
method is used to split the remaining extracts into
straplines and summaries. The following subsec-
tions describe the main heuristics used for noise
filtration and strapline detection, with implemen-
tation details included in Appendix A.

3.2.1 Noise filtration
Kryscinski et al. (2019) mention that noisy sam-
ples represent about 3.2% of Newsroom, hinting
that such samples can be detected with simple pat-
terns, but without explicitly describing these pat-
terns. Consequently, we start by looking for pat-
terns of noise in the Newsroom dataset as a first
preprocessing step, and identify five clear patterns
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Headline Extract Characteristic Heuristic

Awesome! Interactive Internet health map
checks your states connection

Check to see if you’re part of a bigger
problem

Clickbait Imperative,
pronouns

Sochi Olympics: USA Canada Hockey
Game Sparks "Loser Keeps Bieber" Ad

USA! USA! USA! Little informa-
tion

Too short,
exclamation
mark

Bill OReilly: More trouble overseas for Pres-
ident Obama and America

The OReilly Factor on FoxNews.com
with Bill OReilly, Weeknights at 8 PM
and 11 PM EST

General state-
ment

Repeated ex-
tract

Sofia Vergara and fiance split, read (and
love) the charming statement

At least we know Sofia is probably writ-
ing this herself!

Comment Pronouns

£Quieres seguir viendo noticias en Face-
book? Aquí te decimos qué hacer

Facebook cambió su algoritmo para pri-
orizar [...]

N/A Non-English
article

Table 1: Examples of straplines from the Newsroom along with a salient characteristic and the relevant automatic
heuristics for strapline detection.

of noise:

Web formatting syntax An extract containing
remnants of web formatting syntax. The format-
ting attributes are inconsistent and not sufficiently
relevant for summarization.

Truncation An extract ending abruptly, forming
an incomplete sentence. This might be attributed
to the fact that news providers tend to have a trun-
cated version of the summary that ended up being
scraped in place of the long version of the sum-
mary.

Dateline An extract that is just a date, which is
most probably the dateline field of an article in-
stead of its summary.

Shortness An extract that is trivially short.

Non-English An extract that isn’t written in En-
glish.

3.2.2 Strapline detection heuristics

As mentioned in §3.1, one can distinguish
straplines from summaries based on the common
features that characterize each of them. As a way
to automatically detect a range of straplines in the
dataset, we present the following set of six rule-
based heuristics:

Beginning with imperative speech One way to
capture the reader’s attention is to start a strapline
with an imperative to read the article ("Check out
...").
Strapline characteristics: Clickbait, Little or redundant infor-

mation.

Having high quotes coverage A common fea-
ture of a strapline is to quote a statement said by a

person that is mentioned in the corresponding arti-
cle or a quote that is related to the article’s topic.
Strapline characteristics: Little or redundant information,

Comment.

Using 1st or 2nd person pronouns Straplines
may refer to the readers. This is done typically
using 1st and 2nd person pronouns such as you
and we.
Strapline characteristics: Clickbait, Joke, Informal.

Using question/exclamation marks Straplines
are sometimes used to pose questions that stimu-
late the interest of the readers. On the contrary,
summaries use objective sentences focusing on
the main events of the articles, which makes it un-
likely to find interrogative phrases in a summary.
Strapline characteristics: Little or redundant information,

Joke.

Using a repeated extract Journalists tend to use
the same strapline for an article that is being pub-
lished on a regular basis (e.g.: a daily/weekly col-
umn or a message to the editor section). Conse-
quently, an article with a non-unique extract indi-
cates that the extract is a general statement, mak-
ing it a strapline.
Strapline characteristics: Little or redundant information,

General.

Using a clickbait Classifying an extract as a
clickbait, as described in §4.2, can be employed
to detect some of the extracts that are originally
straplines.
Strapline characteristics: Clickbait.
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Source Summary Strapline Both Neither Paraphrase

NYT 87% 5% 3% 2% 3%
Time.com 48% 33% 6% 8% 5%
Combined 67.5% 19% 4.5% 5% 4%

Table 2: Distribution of extract annotations among la-
bels on the annotated portion of the test set. Annota-
tions were collected for 100 random samples from each
source (NYT, and Time.com) resulting in a total of 200
annotated samples.

Round Straplines Summaries
Raw κ Raw κ

1 0.70 0.36 0.72 0.37
2 0.82 0.55 0.80 0.49

Table 3: Inter-annotator agreement for strapline and
summary annotations.

4 Experiments

4.1 Annotation
Two annotators3 annotated 50 articles each from
the NYT and time.com sections of the test set of
Newsroom. We performed two rounds, resulting
in a total of 200 articles with double annotation. In
order to provide a single ground truth for the test
set, the two annotators discussed their annotations
and agreed on a single label for each article. For
tuning the strapline detection method, we further
annotated 50 articles each from the development
sets of NYT and time.com sections.

Results Table 2 shows how often the annota-
tors chose a particular label for the different news
sources. Proper summaries are the largest class for
both news sources, but Time.com has a consider-
ably higher proportion of undesired straplines, and
also a higher proportion of extracts that are both
summaries as well as straplines.

In order to see how reliable the extracts can be
annotated, we compute inter-annotator agreement
between the two annotators. Table 3 shows the re-
sults for two annotation rounds. We compute the
agreement by splitting our annotation into two bi-
nary labels, namely straplines vs. non-straplines,
and summaries vs. non-summaries, excluding
paraphrases. We report the proportion of labels
that are the same for both annotators (“Raw" in
the table), and Cohen’s κ (Cohen, 1960), which
accounts for agreement that is expected by chance.
The results in Table 3 show that the agreement is

3The annotators are authors of this paper who were not
involved in the development of the heuristics and the person
responsible for the heuristics did not look at the annotations.

Source Accuracy Precision Recall Strapline%

NYT 90% 43% 75% 8%
Time.com 73% 68% 64% 39%

Table 4: Results of the rule-based strapline classifica-
tion as a binary classification problem (Strapline/ Not
Strapline).

Source Noise Strapline Total

NYT
Training Set 899 (1.89%) 9,537 (20.07%) 47,529

Test Set 101 (2.00%) 1,002 (19.86%) 5,045

Time.com
Training Set 937 (4.35%) 8,102 (37.61%) 21,541

Test Set 108 (4.60%) 893 (38.03%) 2,348

Table 5: Number and % of noise and straplines our rule-
based heuristics detected in NYT or Time.com data sec-
tions of Newsroom.

high, but due to the class imbalance a sizable part
of that high agreement might be due to chance
(low κ value). However, the results show improve-
ments in the consistency between the two annota-
tors in the second round.

4.2 Strapline detection

Given the lack of annotated data for training a su-
pervised strapline classification model, we imple-
ment a rule-based classifier by marking an extract
as a strapline if any of the heuristics described in
§3.2.2 apply to it. For the clickbait detector, we
fine-tune the distilled BERT (Sanh et al., 2019)
on the Webis-Clickbait-17 (Potthast et al., 2018)
dataset and incorporate it into our strapline detec-
tor.

Results Table 4 shows the evaluation result of
the strapline detector on the human annotated test
set. We can observe that NYT test set is unbal-
anced where only 8 out of 100 samples are an-
notated as straplines, which also explains the dif-
ference between the accuracy and precision/recall.
Time.com set is more balanced, and we can see
that our model achieves a good performance with
a precision of 68% and recall of 64%.

We apply the strapline detector on the training
set to exclude the noisy samples and straplines.
The result is shown in Table 5. We can ob-
serve that 20.07% samples of NYT and 37.61% of
Time.com are classified as straplines, which shows
that the strapline is an issue that cannot be ignored
in the summarization dataset.
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Training set Original Test Set Cleaned Test Set
R-1 R-2 R-L R-1 R-2 R-L

NYT original 13.57 3.03 11.60 12.25 1.09 10.16
w/o straplines 20.83 4.69 16.29 22.39 5.31 17.30

Time.com original 15.96 3.28 13.39 19.09 4.28 15.83
w/o straplines 15.87 3.34 13.27 19.12 4.32 15.81

Combined original 19.16 4.89 15.58 20.24 4.50 16.03
w/o straplines 19.06 4.13 15.25 21.29 4.94 16.82

Table 6: ROUGE-1, ROUGE-2, and ROUGE-L scores for the abstractive summarizer (T5-base version) trained on
the dataset with and without the straplines. The best results are in bold.

4.3 Summarization with cleaner data

We employ the most popular pre-trained sequence-
to-sequence model, T5 (Raffel et al., 2019), as
the basic summarizer in our experiments. We
exclude the noisy samples and straplines by our
proposed strapline detector (§4.2) from the NYT
and Time.com dataset, forming a cleaner training
set. We use T5-base and T5-large model in our
experiments. We fine-tune them on the original
and the cleaned dataset to see the influence of
excluding noise and straplines. We use ROUGE
(Lin, 2004a,b) to automatically evaluate the per-
formance of the summarizers.

Results Table 6 shows the ROUGE-1, ROUGE-
2, and ROUGE-L scores for the (T5-base) sum-
marizer trained on the original training set and
the cleaned training set4. We can observe that
the impact of straplines on NYT is more signifi-
cant than Time.com. For Time.com dataset, most
ROUGE scores increase slightly by excluding the
straplines. However, performance on NYT is
greatly improved by up to 7 points. In part this is
due to a repetition problem that we observe specif-
ically on NYT: the model trained on the original
data re-uses some summaries multiple times, with
a single re-occurring sentence accounting for 10%
of generated outputs whereas all summaries of the
model trained on the cleaned data are unique. That
is, the model seems to perpetuate the property of
repeating extracts in the training data (see §3.2.2).

Case study For each news source, we manu-
ally compare the output of two T5-base models
fine-tuned on the articles of the news source in
the original dataset Moriginal and the cleaned one
Mclean in order to investigate the effect of exclud-
ing noise and straplines from Newsroom. Table
7 demonstrates the differences between the gener-

4The corresponding scores for the T5-large summarizer
are reported in Table 1 in the Appendix.

ated summaries by T5-base models that are fine-
tuned on articles of each news source. The “Out-
put of Original Model" Moriginal column refers to
the summaries generated by a model fine-tuned on
the articles of Newsroom from the news source
specified in the first column. On the other hand,
the “Output of Cleaned Model" Mclean column
refers to the summaries generated by a model fine-
tuned on the articles of Newsroom from the news
source after discarding the articles whose extracts
are flagged as noisy or as straplines. We found
two main improvements in the quality of the gener-
ated summaries: (i) Mclean tend to be more infor-
mative in compared to Moriginal and (ii) Mclean

do not exhibit as much undesired characteristics
of straplines like: using a repeated summary, us-
ing a question mark, and using the 1st person pro-
nouns, while Moriginal tend to have such proper-
ties. The fact that these improvements do not have
huge impact on the automatic evaluation metric
(ROUGE) for Time.com implies that human eval-
uation is needed to accompany the automatic eval-
uation metrics in order to quantify such qualitative
improvements.

5 Conclusion

We present methods for improving the data qual-
ity in scraped news summarization corpora, focus-
ing on the New York Times and Time magazine
sections of Newsroom (Grusky et al., 2018). We
identify two main issues with the data quality that
make Newsroom less appropriate as a summariza-
tion benchmark: (i) noise in the extraction process
and (ii) presence of straplines in place of genuine
summaries. After identifying common character-
istics of straplines, we develop a set of effective
heuristics for detecting straplines and noise.

Our work shows that when straplines and noisy
data are excluded from the training data, the result-
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News source Output of Original Model (Moriginal) Output of Cleaned Model (Mclean)

NYT A day in the life of a Olympic athlete. The Australian swimmer Mack Horton was
booed by Chinese swimmers after his victory in
the 200-meter freestyle, and Russian swimmer
Irina Efimova was booed.

NYT A day in the life of a Yankees fan. The Yankees victory parade on Friday was a cel-
ebration of the teamâs success, but not everyone
was there.

NYT A New York Times blog about comic book pub-
lishing and design.

Kevin Conroys performances as Batman in the
comic books, movies and television series stand
out.

NYT New York Times reporters and editors
are reporting from Washington, D.C.

A New Hampshire biologist turned to film school
to learn how to communicate scientific informa-
tion.

NYT Reading, watching, discussing and
blogging the day’s local, national, and
international news at The New York Times.

The University of Illinois, Chicago, has a bright
spot in its diversity.

NYT To the Editor:. Readers respond to an Op-Ed article about cli-
mate talks.

NYT To the Editor:. Readers responded to a recent editorial about the
dangers of concealed carry.

Time.com TIME 100 poll: Who is the world’s most
influential leader?

The Russian president has risen to second place
in the TIME 100 poll, beating out world leaders
like Pope Francis and Barack Obama

Time.com California is cutting back on its water use, but
where is it going?

California is cutting back on water usage by 25%,
but the state isn’t out of water

Time.com A new survey shows that Millennials are becom-
ing more entrepreneurial, but we need to do more
to prepare them

A new survey finds that 82 percent of Millennials
are interested in starting their own businesses

Time.com A new report finds that more and more counties
aren’t affordable. Here’s what you need to know

A new report finds that 9% of U.S. counties aren’t
affordable

Table 7: Example summaries selected from the outputs of the model fine-tuned on the original dataset and the
cleaned dataset. Spans showing characteristics of straplines are underlined and shown in bold text.

ing summarizer produces better summaries based
on comparison to reference texts. Although we
found noise and straplines to be more prevalent in
the Time magazine data, the impact of removing
noise and straplines is bigger for the model trained
on the NYT data, which avoids reusing the same
summary multiple times. We plan to investigate
this further in future work.

Because of our focus on two specific news
sources in Newsroom, we suspect that our heuris-
tics might not work quite as well on other
news sources having different styles, or on other
datasets that were collected differently.
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A Implementation details of noise
filtration and strapline detection
heuristics

Before applying the noise filtration and the
strapline detection heuristics, Spacy’s model
(namely en_core_web_sm) (Honnibal and
Montani, 2017) was used to tokenize the extracts,
and determine the pos tags of the tokens.

A.1 Noise filtration

Web formatting syntax The following regular
expressions <[a-zA-Z0-9_]+[/]?>, and
[a-z]+=" were used to determine the presence
of HTML tags and key/value pairs as part of the ex-
tract. The first one looks for opening HTML tags
in the form <ALPHA_NUMERIC_SYBMBOL>,
and closing HTML tags in the form
<ALPHA_NUMERIC_SYBMBOL/>. The second
regular expression looks for alphabetic symbols
followed by an equal sign and a double quotation.

Truncation An extract is considered to be trun-
cated if it ends with a comma or ends with a word
whose part of speech (pos) tag is a determiner,
a coordinating conjunction, a subordinating con-
junction, or an unknown pos tag.
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Dateline Since dates might have different for-
mats, a python package called dateutil 5 was used
to parse the extract. An extract is considered as a
dateline if the package manages to parse it accord-
ing to any of the package’s formats for dates.

Shortness Extracts having three or less tokens (af-
ter excluding punctuation marks) are considered
to be trivially short and thus removed from the
dataset.

Non-English On looking at the unique characters
of the Newsroom dataset, we noticed that it con-
tains characters from other scripts such as: Ara-
bic, and Chinese. Consequently, a python package
called langdetect 6 which is ported from one of
Google’s projects (Shuyo, 2010) was used in or-
der to filter-out articles that aren’t written in En-
glish. The article’s text was used instead of the
extract to detect the language, since the langdetect
package has higher precision when supplied with
longer spans of text (i.e. when given the whole ar-
ticle text instead of just the extract). This implies
that we are assuming that the language of the ar-
ticle’s body and its extract will be the same, and
that having a non-English body is enough to dis-
card the article-extract pair from the dataset.

A.2 Strapline detection

Beginning with imperative speech If the pos tag
of the first token in the extract is VB (base form of
verb), then the extract is considered to be begin-
ning with an imperative.

Having high quotes coverage A simple pattern
matching function is used to compute the percent-
age of the tokens found between quotes in the ex-
tract. An extract is considered as a strapline if its
quotes coverage is higher than a preset threshold
(a hyperparameter set to 0.35 based on manual in-
vestigations of the dataset).

Using 1st or 2nd person pronouns If any of the
extracts’ tokens is part of the following list (i, me,
mine, myself, we, our, ours, ourselves, you, your,
yours, yourself, yourselves), then it’s said to use a
1st or 2nd person pronouns.

Using question/exclamation marks The pres-
ence of a question or an exclamation mark is
used to simplify the detection of interrogative/
exclamation phrases.

5https://dateutil.readthedocs.io/en/s
table/

6https://pypi.org/project/langdetect/

Using a repeated extract If an extract is repeated
more than once in the training dataset then it’s
discarded. Using a clustering method such as
Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) (Ester et al., 1996) on
top of sparse term frequency vectors representing
the extracts achieves better performance at the ex-
pense of running time. Therefore, we opted to use
the simple method of having exact matches as a
method to detect repeated extracts.

B Hyperparameters in the experiments

Clickbait Detector We fine-tune distilled BERT
using AdamW optimizer (Loshchilov and Hut-
ter, 2018), the early stopping mechanism with pa-
tience of 5, a batch size of 128, and a learning rate
of 10−4. The max input length is set to 512.

T5-based Summarizer The max length of input
and output are set to 512 and 128, respectively. We
fine-tune T5 using AdamW optimizer (Loshchilov
and Hutter, 2018), the early stopping mechanism
with patience of 5, a batch size of 32, and a learn-
ing rate of 10−4.

C Results of fine-tuning T5-large

Looking at the ROUGE scores in Table 1, one
can notice that similar trends are achieved on fine-
tuning a T5-large summarizer to these found on
fine-tuning a T5-base summarizer (as discussed in
the main paper). While T5-large achieves higher
absolute ROUGE scores, the effect of removing
noise, and straplines from the training corpus is
nearly the same for both the T5-base, and the T5-
large models, which demonstrates that more atten-
tion needs to be given to the quality of the dataset
rather than using larger models.

D Distribution of Heuristics

Table 2 shows the distribution within the NYT and
Time.com datasets, including both noisy samples
and straplines. Note that there might be overlap
between different heuristics.
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Training Set
Original Test Set Cleaned Test Set

R-1 R-2 R-L R-1 R-2 R-L

NYT original 16.62 4.35 13.63 15.87 2.59 12.56
w/o straplines 21.80 5.30 17.19 23.43 6.03 18.34

Time.com original 16.47 3.44 13.64 19.36 4.32 15.82
w/o straplines 16.07 3.38 13.43 19.28 4.46 15.96

Combined original 20.19 5.50 16.41 21.54 5.25 17.05
w/o straplines 19.61 4.60 15.79 22.07 5.55 17.60

Table 1: ROUGE-1, ROUGE-2, and ROUGE-L scores for the abstractive summarizer (T5-large version) trained
on the dataset with and without the straplines. The best results are in bold.

Heuristic NYT Time.com
Training Set Test Set Training Set Test Set

Noise

too_short 1.42% 1.55% 3.61% 3.92%
is_a_date 0% 0% 0.32% 0.43%

has_HTML 0.09% 0.06% 0.55% 0.55%
strange_ending 0.09% 0.12% 0.26% 0.21%
is_non_english 0.31% 0.34% 0.01% 0%

Strapline

mostly_quotes 0.03% 0.06% 0.15% 0.22%
has_1st_or_2nd_person_pronoun 6.80% 7.54% 14.11% 14.60%
has_question_exclamation_marks 5.69% 6.05% 6.08% 5.67%

imperative_speech 1.07% 1.01% 4.12% 4.68%
is_repeated 5.78% 4.43% 0% 0%
is_clickbait 6.34% 6.53% 29.03% 28.75%

Table 2: The distribution of the heuristics (both noises and straplines) within the datasets.
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Abstract
Measuring the performance of natural language
processing models is challenging. Traditionally
used metrics, such as BLEU and ROUGE, orig-
inally devised for machine translation and sum-
marization, have been shown to suffer from low
correlation with human judgment and a lack of
transferability to other tasks and languages. In
the past 15 years, a wide range of alternative
metrics have been proposed. However, it is
unclear to what extent this has had an impact
on NLP benchmarking efforts. Here we pro-
vide the first large-scale cross-sectional analy-
sis of metrics used for measuring performance
in natural language processing. We curated,
mapped and systematized more than 3500 ma-
chine learning model performance results from
the open repository ‘Papers with Code’ to en-
able a global and comprehensive analysis. Our
results suggest that the large majority of natu-
ral language processing metrics currently used
have properties that may result in an inadequate
reflection of a models’ performance. Further-
more, we found that ambiguities and inconsis-
tencies in the reporting of metrics may lead
to difficulties in interpreting and comparing
model performances, impairing transparency
and reproducibility in NLP research.

1 Introduction

Benchmarking, i.e., the process of measuring and
comparing model performance on a specific task
or set of tasks, is an important driver of progress
in natural language processing (NLP). Benchmark
datasets are conceptualized as fixed sets of data that
are manually, semi-automatically or automatically
generated to form a representative sample for these
specific tasks to be solved by a model. A model’s
performance on such a benchmark is then assessed
based on a single or a small set of performance
metrics. While this enables quick comparisons,
it may entail the risk of conveying an incomplete
picture of model performance since metrics inher-
ently condense performance to a single number,

omitting certain performance aspects completely
or balancing trade-offs between different aspects
(e.g. accuracy vs. fluency). Additionally the capac-
ity of metrics to capture performance may differ
strongly between tasks and languages.

Capturing model performance in a single met-
ric is an inherently difficult task, and this is fur-
ther aggravated in the NLP domain by the struc-
tural and semantic complexity of human language.
Traditionally used NLP metrics such as BLEU or
ROUGE, originally devised for machine translation
and summarization, were shown to suffer from low
correlation with human judgment and poor trans-
ferability to other tasks (Lin, 2004; Liu and Liu,
2008; Ng and Abrecht, 2015; Novikova et al., 2017;
Chen et al., 2019). These fundamental problems
are increasingly recognized by the NLP commu-
nity—e.g., metric evaluation was even introduced
as an independent task at the annual Machine Trans-
lation conference (Ma et al., 2019).

In the past 15 years, a wide variety of superior
metrics for evaluating models on NLP tasks have
been proposed, including task-agnostic, AI-based
metrics such as BERTscore (Zhang et al., 2019;
Peters et al., 2018; Clark et al., 2019). However, it
is unknown to what extent this had an impact on
metrics used in NLP research.

We aim to address this question by providing a
global analysis of performance measures used in
NLP benchmarking. Our contributions are three-
fold: (1) We curated, mapped and systematized
performance metrics covering more than 3500 per-
formance results from the open repository ‘Papers
with Code’ to enable a global and comprehensive
analysis. (2) Based on this dataset, we provide a
cross-sectional analysis of the prevalence of perfor-
mance measures in the subset of natural language
processing benchmarks. (3) We describe inconsis-
tencies and ambiguities in the reporting and usage
of metrics, which may lead to difficulties in inter-
preting and comparing model performances.
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2 Methods

2.1 Dataset
Our analyses are based on data available from Pa-
pers with Code (PWC), a large, web-based open
platform that collects Machine learning papers
and summarizes evaluation results on benchmark
datasets. PWC is built on automatically extracted
data from arXiv submissions and manual crowd-
sourced annotation.

The Intelligence Task Ontology (ITO) aims to
provide a comprehensive map of artificial intelli-
gence tasks using a richly structured hierarchy of
processes, algorithms, data and performance met-
rics.1 ITO is based on data from PWC and the
EDAM ontology 2. The development process of
ITO is detailed in (Blagec et al., 2021). We built
on ITO for further curation and on of a hierarchical
mapping of the raw performance metric data from
PWC.

2.2 Hierarchical mapping and further
curation of metric names

The raw dataset exported from PWC contained a
total number of 812 different strings representing
metric names that appeared as distinct data prop-
erty instances in ITO. These metric names were
used by human annotators on the PWC platform to
add results for a given model to the evaluation table
of the relevant benchmark dataset’s leaderboard on
PWC. This list of raw metrics in the PWC database
was manually curated into a canonical hierarchy
by our team. This entailed some complexities and
required extensive manual curation which was con-
ducted based on the mapping proceduce described
below.

In many cases, the same metric was reported
under multiple different synonyms and abbrevia-
tions. Furthermore, many results were reported
in specialized sub-variants of established metrics.
For each metric a canonical property denoting its
general form (e.g., ’BLEU score’) was created, and
synonyms and sub-variants were mapped to it. For
example, the reported performance metrics ‘BLEU-
1’, ‘BLEU-2’ and ‘B-3’ were made sub-metrics of
’BLEU score’. Throughout the paper, we will re-
fer to canonical properties and mapped metrics as
‘top-level metrics’ and ‘sub-metrics’, respectively.

In case a library that implemented a metric was
used as the metric name (e.g., SacreBLEU, which

1https://github.com/OpenBioLink/ITO
2http://edamontology.org/

is a reference implementation of the BLEU score
available as a Python package), this property was
made sub-metric of the more general metric name,
in this case ‘BLEU score’.

271 entries from the original list could not be
assigned a metric and were subsumed under a sepa-
rate category ‘Undetermined’. After this extensive
manual curation, the resulting list covered by our
dataset could be reduced from 812 to 187 distinct
performance metrics. Where possible, we used
the respective preferred Wikipedia article titles as
canonical names for the metrics. For an excerpt of
the resulting property hierarchy, see Figure A.1 in
Appendix A.

2.3 Grouping of top-level metrics

Top-level metrics were further grouped into cate-
gories based on the task type they are usually ap-
plied to: Classification, Computer vision, Natural
language processing, Regression, Game playing,
Ranking, Clustering and ‘Other’. We limited our
main analysis to the category ‘Natural language
processing’, which only contains metrics that are
specific to NLP, such as ROUGE, BLEU or ME-
TEOR. We provide additional statistics on general
classification metrics, such as Accuracy or F1 score
that are also often used in NLP benchmarks but are
not specific to NLP tasks in Table B.1 in Appendix
B.

2.4 Analysis

Analyses were performed based on the ITO release
of 13.7.2020. Raw statistics were generated based
on the ITO ontology using SPARQL queries and
further processed and analyzed using Jupyter Note-
books and the Python ‘pandas’ library. Data, code
and notebooks to generate these statistics are avail-
able on Github (see section ‘Data and code avail-
ability’).

3 Results

3.1 Data basis

32,209 benchmark results across 2,298 distinct
benchmark datasets reported in a total number
of 3,867 papers were included in this analysis.
Included papers consist of papers in the PWC
database that were annotated with at least one per-
formance metric as of July 2020. A single paper
can thus contribute results to more than one bench-
mark and to one or more performance metrics.
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Total dataset NLP subset

Number of benchmark datasets 2,298 491
Number of benchmark results 32,209 4,812
Time span covered 2000-2020 2000-2020

Table 1: General descriptives of the analyzed dataset (as of July 2020).

The publication period of the analyzed papers
covers twenty years, from 2000 until 2020, with
the majority having been published in the past ten
years (see Figure B.2 in Appendix B).

The subset of NLP benchmark datasets consid-
ered in our analysis included 4,812 benchmark re-
sults across 491 benchmark datasets (see Table 1).

3.2 Which performance metrics are most
frequently reported in NLP
benchmarking?

Table 2 lists the top 10 most frequently reported
performance metrics. Considering submetrics,
ROUGE-1, ROUGE-2 and ROUGE-L were the
most commonly annotated ROUGE variants, and
BLEU-4 and BLEU-1 were the most frequently
annotated BLEU variants. For a large fraction of
BLEU and ROUGE annotations, the subvariant was
not specified in the annotation.

The BLEU score was used across a wide range
of NLP benchmark tasks, such as machine transla-
tion, question answering, summarization and text
generation. ROUGE metrics were mostly used for
text generation, video captioning and summariza-
tion tasks while METEOR was mainly used for
image and video captioning, text generation and
question answering tasks.

3.3 Are metrics reported together with other
metrics or do they stand alone?

The BLEU score was reported without any other
metrics in 80.2% of the cases, whereas the ROUGE
metrics more often appeared together with other
metrics and stood alone in only nine out of 24 oc-
currences. METEOR was, in all cases, reported
together with at least one other metric. Figure B.1
in Appendix B shows the co-occurrence matrix
for the top 10 most frequently used NLP-specific
metrics. BLEU was most often reported together
with the ROUGE metrics (n=12) and METEOR
(n=12). ROUGE likewise frequently appeared to-
gether with METEOR (n=10). We additionally
provide statistics on the number of distinct metrics

per benchmark for the total dataset in Figure B.3
in Appendix B.

3.4 Inconsistencies and ambiguities in the
reporting of performance metrics

During the mapping process it became evident that
performance metrics are often reported in an in-
consistent or ambiguous manner. One example for
this are the ROUGE metrics, which have originally
been proposed in different variants (e.g., ROUGE-
1, ROUGE-L) but are often simply referred to as
‘ROUGE’. Furthermore, ROUGE metrics have orig-
inally been proposed in a ‘recall’ and ‘precision’
sub-variant, such as ‘ROUGE-1 precision’ and
‘ROUGE-1 recall’. Further, the harmonic mean
between these two scores (ROUGE-1 F1 score) can
be calculated. However, results are often reported
as, e.g., ’ROUGE-1’ without specifying the variant,
which may lead to ambiguities when comparing
results between different publications.

4 Discussion

NLP covers a wide range of different tasks and
thus shows a large diversity of utilized metrics. We
limited our analysis to more complex NLP tasks be-
yond simple classification, such as machine transla-
tion, question answering, and summarization. Met-
rics designed for these tasks generally aim to assess
the similarity between a machine-generated text
and a reference text or set of reference texts that
are human-generated.

We found that, despite their known shortcom-
ings, the BLEU score and ROUGE metrics con-
tinue to be the most frequently used metrics for
such tasks.

Several weaknesses of BLEU have been pointed
out by the research community, such as its sole fo-
cus on n-gram precision without considering recall
and its reliance on exact n-gram matchings. Zhang
et al. have discussed properties of the BLEU score
and NIST, a variant of the BLEU score that gives
more weight to rarer n-grams than to more frequent
ones, and came to the conclusion that neither of the
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Performance metric Number of benchmark datasets Percent

BLEU score 300 61.1
ROUGE metric 114 23.2
Perplexity 48 9.8
METEOR 39 7.9
Word error rate 36 7.3
Exact match 33 6.7
CIDEr 24 4.9
Unlabeled attachment score 18 3.7
Labeled attachment score 15 3.1
Bit per character 12 2.4

Table 2: Top 10 reported NLP metrics and percent of NLP benchmark datasets (n=491) that use the respective
metric. BLEU: Bilingual Evaluation Understudy, CIDEr: Consensus-based Image Description Evaluation, ROUGE:
Recall-Oriented Understudy for Gisting Evaluation, METEOR: Metric for Evaluation of Translation with Explicit
ORdering.

two metrics necessarily show high correlation with
human judgments of machine translation quality
(Doddington, 2002; Zhang et al., 2004).

The ROUGE (Recall-Oriented Understudy for
Gisting Evaluation) metrics family was the second
most used NLP-specific metric in our dataset after
the BLEU score. While originally proposed for
summarization tasks, a subset of the ROUGE met-
rics (i.e., ROUGE-L, ROUGE-W and ROUGE-S)
has also been shown to perform well in machine
translation evaluation tasks (Lin, 2004; Och, 2004).
However, the ROUGE metrics set has also been
shown to not adequately cover multi-document
summarization, tasks that rely on extensive para-
phrasing, such as abstractive summarization, and
extractive summarization of multi-logue text types
(i.e., transcripts with many different speakers), such
as meeting transcripts (Lin, 2004; Liu and Liu,
2008; Ng and Abrecht, 2015). Several new vari-
ants have been proposed in recent years, which
make use of the incorporation of word embeddings
(ROUGE-WE), graph-based approaches (ROUGE-
G), or the extension with additional lexical features
(ROUGE 2.0) (Ng and Abrecht, 2015; ShafieiBa-
vani et al., 2018; Ganesan, 2018). ROUGE-1,
ROUGE-2 and ROUGE-L were the most common
ROUGE metrics in our analyzed dataset, while
newer proposed ROUGE variants were not repre-
sented.

METEOR (Metric for Evaluation of Translation
with Explicit Ordering) was proposed in 2005 to
address weaknesses of previous metrics (Banerjee
and Lavie, 2005). METEOR is an F-measure de-
rived metric that has repeatedly been shown to yield

higher correlation with human judgment across sev-
eral tasks as compared to BLEU and NIST (Lavie
et al., 2004; Graham et al., 2015; Chen et al., 2019).
Matchings are scored based on their unigram pre-
cision, unigram recall (given higher weight than
precision), and a comparison of the word ordering
of the translation compared to the reference text.
This is in contrast to the BLEU score, which does
not take into account n-gram recall. Furthermore,
while BLEU only considers exact word matches
in its scoring, METEOR also takes into account
words that are morphologically related or synony-
mous to each other by using stemming, lexical re-
sources and a paraphrase table. Additionally, ME-
TEOR was designed to provide informative scores
at sentence-level and not only at corpus-level. An
adapted version of METEOR, called METEOR++
2.0, was proposed in 2019 (Guo and Hu, 2019).
This variant extends METEOR’s paraphrasing table
with a large external paraphrase database and has
been shown to correlate better with human judge-
ment across many machine translation tasks.

Compared to BLEU and ROUGE, METEOR
was rarely used as a performance metric (8%)
across the NLP benchmark datasets included in
our dataset.

The GLEU score was proposed as an evalua-
tion metric for NLP applications, such as machine
translation, summarization and natural language
generation, in 2007 (Mutton et al., 2007). It is a
Support Vector Machine-based metric that uses a
combination of individual parser-derived metrics
as features. GLEU aims to assess how well the
generated text conforms to ‘normal’ use of human
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Figure 1: Timeline of the introduction of NLP metrics and their original application. SMS: Sentence Mover’s
Similarity.

language, i.e., its ‘fluency’. This is in contrast to
other commonly used metrics that focus on how
well a generated text reflects a reference text or
vice versa. GLEU was reported only in 1.8% of
NLP benchmark datasets.

Additional alternative metrics that have been
proposed by the NLP research community but do
not appear as performance metrics in the analyzed
dataset include Translation error rate (TER), TER-
Plus, “Length Penalty, Precision, n-gram Position
difference Penalty and Recall” (LEPOR), Sentence
Mover’s Similarity, and BERTScore. Figure 1 de-
picts the timeline of introduction of NLP metrics
and their original application.

TER was proposed as a metric for evaluating ma-
chine translation quality. TER measures quality by
the number of edits that are needed to change the
machine-generated text into the reference text(s),
with lower TER scores indicating higher transla-
tion quality (Snover et al., 2006). TER consid-
ers five edit operations to change the output into
the reference text: Matches, insertions, deletions,
substitutions and shifts. An adaptation of TER,
TER-Plus, was proposed in 2009. Ter-Plus extends
TER with three additional edit operations, i.e., stem
matches, synonym matches and phrase substitution
(Snover et al., 2009). TER-Plus was shown to have
higher correlations with human judgements in ma-
chine translation tasks than BLEU, METEOR and
TERp (Snover et al., 2009). LEPOR and its vari-
ants hLEPOR and nLEPOR were proposed as a
language-independent model that aims to address
the issue that several previous metrics tend to per-
form worse on languages other than those it was
originally designed for. It has been shown to yield

higher correlations with human judgement than
METEOR, BLEU, or TER (Han et al., 2012).

Sentence Mover’s Similarity (SMS) is a met-
ric based on ELMo word embeddings and Earth
mover’s distance, which measures the minimum
cost of turning a set of machine generated sentences
into a reference text’s sentences (Peters et al., 2018;
Clark et al., 2019). It was proposed in 2019 and
was shown to yield better results as compared to
ROUGE-L in terms of correlation with human judg-
ment in summarization tasks.

BERTScore was proposed as a task-agnostic per-
formance metric in 2019 (Zhang et al., 2019). It
computes the similarity of two sentences based on
the sum of cosine similarities between their token’s
contextual embeddings (BERT), and optionally
weighs them by inverse document frequency scores
(Devlin et al., 2018). BERTScore was shown to out-
perform established metrics, such as BLEU, ME-
TEOR and ROUGE-L in machine translation and
image captioning tasks. It was also more robust
than other metrics when applied to an adversarial
paraphrase detection task. However, the authors
also state that BERTScore’s configuration should
be adapted to task-specific needs since no single
configuration consistently outperforms all others
across tasks.

Difficulties associated with automatic evaluation
of machine generated texts include poor correla-
tion with human judgement, language bias (i.e., the
metric shows better correlation with human judg-
ment for certain languages than others), and worse
suitability for language generation tasks other than
the one it was proposed for (Novikova et al., 2017).
In fact, most NLP metrics have originally been con-
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ceptualized for a very specific application, such
as BLEU and METEOR for machine translation,
or ROUGE for the evaluation of machine gener-
ated text summaries, but have since then been in-
troduced as metrics for several other NLP tasks,
such as question-answering, where all three of
the above mentioned scores are regularly used.
Non-transferability to other tasks has recently been
shown by Chen et al. who have compared several
metrics (i.e., ROUGE-L, METEOR, BERTScore,
BLEU-1, BLEU-4, Conditional BERTScore and
Sentence Mover’s Similarity) for evaluating genera-
tive Question-Answering (QA) tasks based on three
QA datasets. They recommend that from the evalu-
ated metrics, METEOR should preferably be used
and point out that metrics originally introduced for
evaluating machine translation and summarization
do not necessarily perform well in the evaluation
of question answering tasks (Chen et al., 2019).

Many NLP metrics use very specific sets of fea-
tures, such as specific word embeddings or linguis-
tic elements, which may complicate comparability
and replicability. To address the issue of replica-
bility, reference open source implementations have
been published for some metrics, such as, ROUGE,
sentBleu-moses as part of the Moses toolkit and
sacreBLEU (Lin, 2004).

In summary, we found that the large majority
of metrics currently used to report NLP research
results have properties that may result in an inade-
quate reflection of a models’ performance. While
several alternative metrics that address problematic
properties have been proposed, they are currently
rarely used in NLP benchmarking. Our findings
are in line with a recent, focused meta-analysis on
machine translation conducted by Marie et al. who
found that 82.1% of papers report BLEU as the
only performance metric despite its well-known
shortcomings (Marie et al., 2021). Our analysis ex-
tends these findings by providing a global overview
of metrics used in the entire NLP domain.

4.1 Recommendations for reporting
performance results and future
considerations

In the following, we provide recommendations on
the reporting of performance metrics and discuss
potential future avenues for improving measuring
performance using benchmarks in NLP.

4.1.1 Increasing transparency and consistency
in the reporting of performance metrics

Performance metrics should be reported in a clear
and unambiguous way to improve transparency,
avoid misinterpretation and enable reproducibility.

• For performance metrics that have various
sub-variants, it should be clearly stated which
variant is reported (e.g., ROUGE-1 F1 score
instead of ROUGE-1). If multiple metrics
are averaged, it should be stated what kind of
mean is used (e.g., arithmetic mean, geomet-
ric mean, harmonic mean) if this is not clear
from the definition of the metric itself (e.g.,
F1 score).

• If a metric is used that allows for adaptations,
such as weighting, these should be explicitly
stated and be marked clearly in the result ta-
bles. Ideally, when using abbreviations, the
variant should be included in the abbreviation
or e.g., marked by a subscript.

• To increase transparency and allow repro-
ducibility, the formula for calculating the met-
ric should be included in the manuscript or in
the Appendix.

• For more complex metrics, if available, a ref-
erence implementation should be used and
cited. If such a reference implementation is
not available, or a custom implementation or
adaptation is used, the code should be made
available.

In the future, a taxonomic hierarchy of perfor-
mance metrics that captures definitions, system-
atizes metrics together with all existing variants
and lists recommended applications based on com-
parative evaluation studies. In this work, we have
created a starting point for creating such a taxon-
omy using a bottom-up approach as part of ITO
(Blagec et al., 2021).

4.1.2 Maximizing the informative value in the
reporting of performance results

Developing metrics for NLP tasks is an ongoing
research area, new metrics outperforming previous
ones are proposed on a regular basis, and suitability
is strongly task- and dataset-dependent, therefore
general advice on which metric to use cannot be
given.

Instead, it should be critically evaluated whether
a metric is suitable for a given dataset, task or
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language, especially if the metric was originally
proposed for a different application. Comparative
evaluation studies, such as in (Chen et al., 2019)
can provide an indication for the suitability.

If a metric is used that has been shown to have
limited informative value (in general, or in specific
use cases) and no alternative is available, the limita-
tions and their relevance for the task and/or dataset
should be discussed.

If more than one suitable metric is available,
consider reporting all of them, especially if there is
a discrepancy in performance results.

Even if a benchmark is historically evaluated
based on a certain metric, consider additionally re-
porting newer proposed metrics if they are suitable
and have been evaluated to be useful for the task.

4.2 Future considerations on performance
metrics in the context of benchmarking

Comparative evaluation studies investigating per-
formance metrics, their properties and their corre-
lation across multiple tasks, datasets and languages
could help to better understand metrics and their
suitability for different applications. While studies
focusing on a small set of metrics exist, such as in
(Chen et al., 2019), larger studies are, to the best of
our knowledge, yet to be undertaken.

Recent work introduced the notions of dynamic
benchmarks that allow users to weigh different
performance metrics of interest. An example of
this is ‘Dynascore’ which allows customizable ag-
gregation of performance across different aspects
including non-traditionally assessed performance
dimensions, such as memory, robustness, and “fair-
ness (Ma et al., 2021). Further, bidimensional
leaderboards based on linear ensembles of metrics
have been proposed (Gehrmann et al., 2021; Ruder,
2021; Kasai et al., 2021). These approaches could
further improve the practical utility of benchmark
results.

4.3 Limitations

Our analyses are based on ITO v0.21 which en-
compasses data until mid 2020. To ensure that our
results are still relevant given the fast pace of re-
search, we checked whether considering data from
the recently released ITO v1.01 which includes
data until mid 2021 leads to any significant time-
dependent changes of our results 3. Including this

3Data curation in ITO v1.01 is still incomplete. Therefore,
results are based on the fully curated ITO v0.21.

more recent data did, however, not alter the de-
scribed usage patterns of NLP metrics.

The results presented in this paper are based on a
large set of machine learning papers available from
the PWC database, which is the largest annotated
dataset of benchmark results currently available.
The database comprises both preprints of papers
published on arXiv and papers published in peer-
reviewed journals. While it could be argued that
arXiv preprints are not representative of scientific
journal articles, it has recently been shown that
a large fraction of arXiv preprints (77%) are sub-
sequently published in peer-reviewed venues (Lin
et al., 2020).

5 Conclusions

The reporting of metrics was partly inconsistent
and partly unspecific, which may lead to ambigu-
ities when comparing model performances, thus
negatively impacting the transparency and repro-
ducibility of NLP research. Large comparative
evaluation studies of different NLP-specific metrics
across multiple benchmarking tasks are needed.

Data and code availability

The OWL (Web Ontology Language) file of the
ITO model is made available on Github 4 and Bio-
Portal 5. The ontology file is distributed under a
CC-BY-SA license. ITO includes data from the
Papers With Code project 6. Papers With Code is
licensed under the CC-BY-SA license. Data from
Papers With Code are partially altered (manual cu-
ration to improve ontological structure and data
quality). ITO includes data from the EDAM on-
tology. The EDAM ontology is licensed under a
CC-BY-SA license.

Notebooks containing the queries and code for
data analysis are also accessible via GitHub.
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Figure A.1: Property hierarchy after manual curation of the raw list of metrics. The left side of the image shows an
excerpt of the list of top-level performance metrics; the right side shows an excerpt of the list of submetrics for the
top-level metric ‘Accuracy’.

Figure B.1: Co-occurrence matrix for the top 10 most frequently used NLP metrics (y-axis). Only metrics that were
reported at least one time together with either one of the selected metrics are shown (x-axis).
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Figure B.2: Number of publications covered by the total dataset per year. The y-axis is scaled logarithmically.

Performance metric Number of benchmark datasets Percent
Accuracy 871 37.9
F-measure 393 17.1
Precision 374 16.3
R@k 143 6.2
AUC 123 5.4
IoU 115 5.0
Recall 79 3.4
Hits@k 69 3.0
P@k 33 1.4
Error rate 30 1.3

Table B.1: Top 10 reported simple classification metrics and percent of benchmark datasets that use the respective
metric. R@k: Recall at k, AUC: Area under the curve, IoU: Intersection over union, P@k: Precision at k. AUC
contains both ROC-AUC and PR-AUC.
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Figure B.3: Count of distinct metrics per benchmark dataset when considering only top-level metrics as distinct
metrics (blue bars), and when considering sub-metrics as distinct metrics (grey bars). Median number of distinct
metrics per benchmark: 1. Data is shown for the complete dataset (n=2,298).
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Abstract

Although recent Massively Multilingual Lan-
guage Models (MMLMs) like mBERT and
XLMR support around 100 languages, most
existing multilingual NLP benchmarks provide
evaluation data in only a handful of these lan-
guages with little linguistic diversity. We ar-
gue that this makes the existing practices in
multilingual evaluation unreliable and does not
provide a full picture of the performance of
MMLMs across the linguistic landscape. We
propose that the recent work done in Perfor-
mance Prediction for NLP tasks can serve as
a potential solution in fixing benchmarking in
Multilingual NLP by utilizing features related
to data and language typology to estimate the
performance of an MMLM on different lan-
guages. We compare performance prediction
with translating test data with a case study on
four different multilingual datasets, and ob-
serve that these methods can provide reliable
estimates of the performance that are often on-
par with the translation based approaches, with-
out the need for any additional translation as
well as evaluation costs.

1 Introduction

Recent years have seen a surge of trans-
former (Vaswani et al., 2017) based Massively Mul-
tilingual Language Models (MMLMs) like mBERT
(Devlin et al., 2019) , XLM-RoBERTa (XLMR)
(Conneau et al., 2020), mT5 (Xue et al., 2021),
RemBERT (Chung et al., 2021). These models are
pretrained on varying amounts of data of around
100 linguistically diverse languages, and can in
principle support fine-tuning on different NLP tasks
for these languages.

These MMLMs are primarily evaluated for their
performance on Sequence Labelling (Nivre et al.,
2020; Pan et al., 2017), Classification (Conneau
et al., 2018; Yang et al., 2019; Ponti et al., 2020),
Question Answering (Artetxe et al., 2020; Lewis
et al., 2020; Clark et al., 2020a) and Retrieval

(Artetxe and Schwenk, 2019; Roy et al., 2020;
Botha et al., 2020) tasks. However, most these
tasks often cover only a handful of the languages
supported by the MMLMs, with most tasks having
test sets in fewer than 20 languages (cf. Figure 1b).

Evaluating on such benchmarks henceforth fails
to provide a comprehensive picture of the model’s
performance across the linguistic landscape, as the
performance of MMLMs has been shown to vary
significantly with the amount of pre-training data
available for a language (Wu and Dredze, 2020),
as well according to the typological relatedness
between the pivot and target languages (Lauscher
et al., 2020). While designing benchmarks to con-
tain test data for all 100 languages supported by the
MMLMs is be the ideal standard for multilingual
evaluation, doing so requires prohibitively large
amount of human effort, time and money.

Machine Translation can be one way to extend
test sets in different benchmarks to a much larger
set of languages. Hu et al. (2020) provides pseudo
test sets for tasks like XQUAD and XNLI, ob-
tained by translating English test data into differ-
ent languages, and shows reasonable estimates of
the actual performance by evaluating on translated
data but cautions about their reliability when the
model is trained on translated data. The accuracy
of translation based evaluation can be affected by
the quality of translation and the technique incurs
non-zero costs to obtain reliable translations. More-
over, transferring labels with translation might also
be non-trivial for certain tasks like Part of Speech
Tagging and Named Entity Recognition.

Recently, there has been some interest in predict-
ing performance of NLP models without actually
evaluating them on a test set. Xia et al. (2020)
showed that it is possible to build regression mod-
els that can accurately predict evaluation scores of
NLP models under different experimental settings
using various linguistic and dataset specific fea-
tures. Srinivasan et al. (2021) showed promising
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(c) Number of multilingual tasks containing test data for each of the 106 languages supported by the MMLMs
(mBERT, XLMR). The bars are shaded according to the class taxonomy proposed by Joshi et al. (2020).

Figure 1

results specifically for MMLMs towards predicting
their performance on downstream tasks for differ-
ent languages in zero-shot and few-shot settings,
and Ye et al. (2021) propose methods for more
reliable performance prediction by estimating con-
fidence intervals as well as predicting fine-grained
performance measures.

In this paper we argue that the performance pre-
diction can be a possible avenue to address the
current issues with Multilingual benchmarking by
aiding in the estimation of performance of the
MMLMs for the languages which lack any eval-
uation data for a given task. Not only this can help
us give a better idea about the performance of a
multilingual model on a task across a much larger
set of languages and hence aiding in better model
selection, but also enables applications in devising
data collection strategies to maximize performance
(Srinivasan et al., 2022) as well as in selecting the
representative set of languages for a benchmark
(Xia et al., 2020).

We present a case study demonstrating the effec-
tiveness of performance prediction on four multi-
lingual tasks, PAWS-X (Yang et al., 2019) XNLI
(Conneau et al., 2018), XQUAD (Artetxe et al.,
2020) and TyDiQA-GoldP (Clark et al., 2020a) and
show that it can often provide reliable estimates of
the performance on different languages on par with

evaluating them on translated test sets without any
additional translation costs. We also demonstrate
an additional use case of this method in selecting
the best pivot language for fine-tuning the MMLM
in order to maximize performance on some target
language. To encourage research in this area and
provide easy access for the community to utilize
this framework, we will release our code and the
datasets that we use for the case study.

2 The Problem with Multilingual
Benchmarking

The rise in popularity of MMLMs like mBERT and
XLMR have also lead to an increasing interest in
creating different multilingual benchmarks to eval-
uate these models. We analyzed 18 different multi-
lingual datasets proposed between the years 2015
to 2021, by searching and filtering for datasets con-
taining the term Cross Lingual in the Papers with
Code Datasets repository.1 The types and language
specific statistics of these studied benchmarks can
be found in Table 3 in appendix.

As can be seen in Figure 1a, there does appear to
be an increasing trend in the number of multilingual
datasets proposed each year, especially with a sharp
increase observed during the year 2020. However,

1https://paperswithcode.com/datasets
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if we look at the number of languages covered by
these different benchmarks (Figure 1b), we see that
most of the tasks have fewer than 20 languages
supported with a median of 11 languages per task
which is substantially lower than the 100 supported
by the commonly used MMLMs.

The only tasks which have been able to sup-
port a large fraction of these 100 languages are the
Sequence Labelling tasks WikiANN (Pan et al.,
2017) and Universal Dependencies(Nivre et al.,
2020) which were a result of huge engineering,
crowd sourcing and domain expertise efforts, and
the Tatoeba dataset created from the parallel transla-
tion database maintained since more than 10 years,
consisting of contributions from tens of thousands
of members. However, we observed a dearth of
supported languages in the remaining tasks that we
surveyed, especially in NLU tasks.

We also observe a clear lack of diversity in the
selected languages across different multilingual
datasets. Figure 1c shows the number of tasks
each language supported by the mBERT is present
in and we observe a clear bias towards high re-
source languages, mostly covering class 4 and class
5 languages identified according to the taxonomy
provided by Joshi et al. (2020). The low resource
languages given by class 2 or lower are severely
under-represented in the benchmarks where the
most popular (in terms of number of tasks it ap-
pears in) class 2 language i.e. Swahili appears only
in 5 out of 18 benchmarks.

We also categorized the the languages into the
6 major language families at the top level genetic
groups 2 each of which cover at least 5% of the
world’s languages and plot language family wise
representation of each task in Figure 2. Except
a couple of benchmarks, the majority of the lan-
guages present in these tasks are Indo-European,
with very little representation from all the other
language families which have either comparable or
a higher language coverage as Indo-European.

There have been some recent benchmarks that
address this issue of language diversity. The Ty-
DiQA (Clark et al., 2020a) benchmark contains
training and test datasets in 11 typologically diverse
languages, covering 9 different language families.
The XCOPA (Ponti et al., 2020) benchmark for
causal commonsense reasoning also selects a set
of 10 languages with high genealogical and areal
diversities.

2https://www.ethnologue.com/guides/largest-families
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Figure 2: Task wise distribution of language families i.e.
fraction of languages belonging to a particular language
for a task.

While this is a step in the right direction and
does give a much better idea about the performance
of MMLMs over a diverse linguistic landscape,
it is still difficult to cover through 10 or 11 lan-
guages all the factors that influence the perfor-
mance of an MMLM like pre-training size (Wu and
Dredze, 2020; Lauscher et al., 2020), typological
relatedness (syntactic, genealogical, areal, phono-
logical etc) between the source and pivot languages
(Lauscher et al., 2020; Pires et al., 2019), sub-word
overlap (Wu and Dredze, 2019), tokenizer quality
(Rust et al., 2021) etc. Through Performance Pre-
diction as we will see in next section, we seek to
estimate the performance of an MMLMs on differ-
ent languages based on these factors.

We would also like to point out that there are
other problems with multilingual benchmarking as
well. Recent multi-task multilingual benchmarks
like X-GLUE (Liang et al., 2020), XTREME (Hu
et al., 2020) and XTREME-R (Ruder et al., 2021)
mainly provide training datasets for different tasks
only in English and evaluate for zero-shot transfer
to other languages. However, this standard of using
English as a default pivot language was put in ques-
tion by Turc et al. (2021), who showed empirically
that German and Russian transfer more effectively
to a set of diverse target languages. We shall see in
the coming sections that the Performance Predic-
tion approach can also be useful in identifying the
best pivots for a target language.

3 Performance Prediction for
Multilingual Evaluation

We define Performance Prediction as the task of pre-
dicting performance of a machine learning model
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on different configurations of training and test data.
Consider a multilingual modelM pre-trained on a
set of languages L, and a task T containing training
datasets Dp

tr in languages p ∈ P such that P ⊂ L
and test datasets Dt

te in languages t ∈ T such that
T ⊂ L. Following Amini et al. (2009), we assume
that both Dp

tr and Dt
te are the subsets of a multi-

view dataset D where each sample (x,y) ∈ D has
multiple views (defined in terms of languages) of
the same object i.e. (x,y) def

= {(xl, yl)|∀l ∈ L} all
of which are not observed.

A training configuration for fine-tuning M is
given by the tuple (Π,∆Π

tr), where Π ⊆ P and
∆Π

tr =
⋃
p∈Π
Dp

tr. The performance on the test set

Dt
te for language t ∈ T when M is fine-tuned

on (Π,∆Π
tr) is denoted as sM,T,t,Dt

te,Π,∆Π
tr

or s for
clarity, given as:

s = g(M,T, t,Dt
te,Π,∆Π

tr) (1)

In performance prediction we formulate estimat-
ing g by a parametric function fθ as a regression
problem such that we can approximate s for vari-
ous configurations with reasonable accuracy, given
by

s ≈ fθ([ϕ(t);ϕ(Π);ϕ(Π, t);ϕ(∆Π
tr)]) (2)

where ϕ(.) denotes the features representation
of a given entity. Following Xia et al. (2020), we
do not consider any features specific toM to focus
more on how the performance varies for a given
model with different data and language configura-
tions. Since the languages for which we are try-
ing to predict the performance might not have any
data (labelled or unlabelled available), we also skip
features for Dt

te from the equation. Note, we do
consider coupled features for training and test lan-
guages i.e. ϕ(Π, t) as the interaction between the
two has been shown to be a strong indicator of the
performance of such models (Lauscher et al., 2020;
Wu and Dredze, 2019).

Different training setups for multilingual models
can be seen as special cases of our formulation. For
zero-shot transfer we set Π = {p}, such that p ̸= t.
This reduces the performance prediction problem
to the one described in Lauscher et al. (2020).

szs ≈ fθ([ϕ(t);ϕ(p);ϕ(p, t);ϕ(∆
{p}
tr )]) (3)

There are many ways to represent the feature
representations ϕ(.) that have been explored in pre-

Type Features Reference

ϕ(t)
Pre-training
Size of t

Srinivasan
et al. (2021);
Lauscher et al.
(2020)

Tokenizer Qual-
ity for t

Rust et al.
(2021)

ϕ(Π)
Pre-training
size of every
p ∈ Π

ϕ(Π, t)

Subword Over-
lap between p
and t for p ∈ Π

Lin et al.
(2019); Xia
et al. (2020);
Srinivasan et al.
(2021)

Relatedness be-
tween lang2vec
(Littell et al.,
2017) features

Lin et al.
(2019); Xia
et al. (2020);
Lauscher et al.
(2020); Srini-
vasan et al.
(2021)

ϕ(∆Π
tr)

Training size
|Dp

tr| of each
language p ∈ Π

(Lin et al., 2019;
Xia et al., 2020;
Srinivasan et al.,
2021)

Table 1: Features used to represent the languages and
datasets used. For more details refer to Section A.2 in
Appendix.

vious work, including pre-training data size, typo-
logical relatedness between the pivot and target
languages and more. For a complete list of features
that we use in our experiments, refer to Table 1.

4 Case Study

To demonstrate the effectiveness of Performance
Prediction in estimating the performance on differ-
ent languages, we evaluate the approach on clas-
sification tasks i.e. PAWS-X and XNLI, and two
Question Answering tasks XQUAD and TyDiQA-
GoldP. We choose these tasks as their labels are
transferable via translation, so we can compare
our method with the automatic translation based
approach. TyDiQA-GoldP has test sets for dif-
ferent languages created independently to combat
the translationese problem (Clark et al., 2020b),
while the other three have English test sets manu-
ally translated to the other languages.

4.1 Experimental Setup

For all the three tasks we try to estimate zero-shot
performance of a fine-tuned mBERT model i.e. szs
on different languages. For PAWS-X, XNLI and
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Task Baseline Translate Performance Predictors
XGBoost Group

Lasso

PAWS-X 7.18 3.85 5.46 3.06
XNLI 5.32 2.70 3.36 3.93
XQUAD 6.89 3.42 5.41 4.53
TyDiQA-GoldP 7.82 7.77 5.04 4.73

Table 2: Mean Absolute Errors (MAE) (scaled by 100 for readability) on the the three tasks for different methods of
estimating performance.

XQUAD we have training data present only in En-
glish i.e. Π = {en} always, but TyDiQA-GoldP
contains training sets in 9 different languages and
we predict transfer from all of those. To train
Performance Prediction models we use the perfor-
mance data for mBERT provided in Hu et al. (2020)
as well as train our own models when required and
evaluate the performance on test dataset of differ-
ent languages. The performance prediction models
are evaluated using a leave one out strategy also
called Leave One Language Out (LOLO) as used
in Lauscher et al. (2020); Srinivasan et al. (2021),
where we use the performance data of target lan-
guages in the set T −{t} to predict the performance
on a language t and do this for all t ∈ T .

4.2 Methods

We compare the following methods for estimating
the performance:
1. Average Score Baseline: In this method, to
estimate the performance on a target language t
we simply take a mean of the model’s performance
on the remaining T − {t} languages. Although
conceptually simple, this is an unbiased estimate
for the expected performance of the MMLM on
different languages.
2. Translate: To estimate the performance on
language t with this method, we automatically
translate the test data in one of the languages
t′ ∈ T − {t} ,3 to the target language t and eval-
uate the fine-tuned MMLM on the translated data.
The performance on this pseudo-test set is used as
the estimate of the actual performance. We use the
Azure Translator4 to translate the test sets.
3. Performance Predictors: We consider two
different regression models to estimate the perfor-

3for our experiments we use t′ = p i.e. we use test data in
pivot language which is often English to translate to t

4https://azure.microsoft.com/en-us/services/cognitive-
services/translator/

mance in our experiments.
i) XGBoost: We use the popular Tree Boosting

algorithm XGBoost for solving the regression prob-
lem, which has been previously shown to achieve
impressive results on the task (Xia et al., 2020;
Srinivasan et al., 2021).

ii) Group Lasso: Group Lasso (Yuan and Lin,
2006) is a multi-task linear regression model that
uses an l1/lq norm as a regularization term to en-
sure common sparsity patterns among the regres-
sion weights of different tasks. In our experiments,
we use the performance data for all the tasks in
the XTREME-R (Ruder et al., 2021) benchmark to
train group lasso models.

4.3 Results
The average LOLO errors for the four tasks and
the four methods are given in Table 2. As we can
see both Translated baseline and Performance Pre-
dictors can obtain much lower errors compared to
the Average Score Baseline on PAWS-X, XNLI
and XQUAD tasks. Group Lasso outperforms all
the other methods on PAWS-X dataset while for
XNLI and XQUAD datasets though, the Translate
method outperforms the two performance predictor
models.

On TyDiQA-GoldP dataset , which had its test
sets for different languages created independently
without any translation, we see that the perfor-
mance of Translate method drops with errors close
to those obtained using the Average Score Base-
line. While this behaviour is expected since the
translated test sets and actual test sets now differ
from each other, it still puts the reliability of the
performance on translated data compared to the
real data into question. Both XGBoost and Group
Lasso though, obtain consistent improvements over
the Baseline for TyDiQA-GoldP as well.

Figure 3 provides a breakdown of the errors for
each language included in TyDiQA-GoldP bench-
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mark, and again we can see that the Performance
Predictors can outperform the Translate method al-
most all the languages except Telugu (te). Similar
plots for the other tasks can be found in Figure 5
of Appendix.

4.4 Pivot Selection

Another benefit of using Performance Prediction
models is that we can use them to select training
configurations like training (pivot) languages or
amount of training data to achieve desired perfor-
mance. For our case study we demonstrate the
application of our predictors towards selecting the
best pivot language for each of the 100 languages
supported by mBERT that maximizes the predicted
performance on the language. The optimization
problem can be defined as:

p∗(l) = argmax
p∈P

fθ([ϕ(l);ϕ(p);ϕ(p, l);ϕ(∆
{p}
tr )])

(4)
Where p∗(l) denotes the pivot language that re-

sults in the best predicted performance on lan-
guage l ∈ L. Since, P = {en} only for
PAWS-X, XQUAD and XNLI i.e. training data
is available only in English, we run this experi-
ment on TyDiQA-GoldP dataset which has train-
ing data available in 9 languages i.e. P =
{ar, bn, es, fi, id, ko, ru, sw, te}. We solve the
optimization problem exactly by evaluating Equa-
tion 4 for all (p, l) pairs using a linear search and
we use XGBoost Regressor as fθ.

The results of this exercise are summarized in
Figure 4. We see carefully selecting the best pivot
for each language leads to substantially higher es-
timated performances instead of using the same
language as pivot for all the languages. We also see
that languages like Finnish, Indonesian, Arabic and
Russian have higher average predicted performance
across all the supported languages compared to En-
glish. This observation is also in line with Turc et al.
(2021) observation that English might not always
be the best pivot language for zero-shot transfer.

5 Conclusion

In this paper we discussed how the current state
of benchmarking multilingual models is fundamen-
tally limited by the amount of languages supported
by the existing benchmarks, and proposed Perfor-
mance Prediction as a potential solution to address
the problem. Based on the discussion we summa-
rize our findings through three key takeaways
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Figure 3: Language Wise Errors (LOLO setting) for
predicting performances on the TyDiQA-GoldP dataset.

0.40 0.45 0.50 0.55 0.60 0.65

Average Performance

ko

sw

bn

te

en

ru

ar

id

fi

p∗

P
iv

ot
L

an
gu

ag
e

Figure 4: Average Performance on the 100 languages
supported by mBERT for each of the 9 pivot languages
for which training data is available in TyDiQA-GoldP.

1. Training performance prediction models on
the existing evaluation data available for a bench-
mark can be a simple yet effective solution in esti-
mating the MMLM’s performance on a larger set
of supported languages, which can often lead to
much closer estimates compared to using the ex-
pected value estimate obtained from the existing
languages.
2. One should be careful in using translated data to
evaluate a model’s performance on a language. Our
experiments suggest that the performance measures
estimated from the translated data can miscalculate
the actual performance on the real world data for a
language.
3. Performance Prediction can not only be effective
for benchmarking on a larger set of languages but
can also aid in selecting training strategies to max-
imize the performance of the MMLM on a given
language which can be valuable towards building
more accurate multilingual models.

Finally, there are a number of ways in which
the current performance prediction methods can
be improved for a more reliable estimation. Both
Xia et al. (2020); Srinivasan et al. (2021) observed
that these models can struggle to generalize on lan-
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guages or configurations that have features that are
remarkably different from the training data. Multi-
task learning as hinted by Lin et al. (2019) and our
experiments with Group Lasso can be a possible
way to address this issue. The current methods
also do not make use of model specific features
for estimating the performance. Tran et al. (2019);
Nguyen et al. (2020); You et al. (2021) explore
certain measures like entropy values, maximum ev-
idence derived from a pre-trained model to estimate
the transferability of the learned representations. It
can be worth exploring if such measures can be
helpful in providing more accurate predictions.
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A Appendix

Table 3 contains the information about the tasks
considered in the survey for Section 2. The
language-wise errors for tasks other than TyDiQA-
GoldP can be found in Figure 5.

A.1 Training Details

Performance Prediction Models

1. XGBoost: For training XGBoost regressor
for the performance prediction, we use 100
estimators with a maximum depth of 10 and a
learning rate of 0.1.

2. Group Lasso: We use a regularization strength
of 0.005 for the l1/l2 norm term in the ob-
jective function, and use the implementation
provided in the MuTaR software package 5.

Translate Baseline: We use the Azure Translator6

to translate the data in pivot language to target lan-
guages. For classification tasks XNLI and PAWS-
X, the labels can be directly transferred across the
translations. For QA tasks XQUAD and TyDiQA
we use the approach described in Hu et al. (2020) to
obtain the answer span in the translated test which
involves enclosing the answer span in the original
text within <b> </b> tags to recover the answer in
the translation.

A.2 Features Description

1. Pre-training Size of a Language: The amount
of data in a language l that was used to pre-train
the MMLM.
2. Tokenizer Quality: We use the two metrics de-
fined by Rust et al. (2021) to measure the quality of
a multilingual tokenizer on a target language t. The
first metric is Fertility which is equal to the average
number of sub-words produced per tokenized word
and the other is Percentage Continued Words
which measures how often the tokenizer chooses
to continue a word across at least two tokens.
3. Subword Overlap: The subword overlap be-
tween a pivot and target language is defined as the
fraction of sub-words that are common in the vo-
cabulary of the two languages. Let Vp and Vt be
the subword vocabularies of p and t. The subword
overlap is then defined as :

5https://github.com/hichamjanati/mutar
6https://azure.microsoft.com/en-us/services/cognitive- ser-

vices/translator/

osw(p, t) =
|Vp ∩ Vt|
|Vp ∪ Vt|

(5)

4. Relatedness between Lang2Vec features: Fol-
lowing Lin et al. (2019) and Lauscher et al. (2020),
we compute the typological relatedness between p
and t from the linguistic features provided by the
URIEL project (Littell et al., 2017). We use syntac-
tic (ssyn(p, t)), phonological similarity (spho(p, t)),
genetic similarity (sgen(p, t)) and geographic dis-
tance (dgeo(p, t)). For details, please see Littell
et al. (2017)
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Type Release Year Number of Lan-
guages

Number of Lan-
guage Families

UDPOS Structure Prediction 2015 57 13
WikiANN Structure Prediction 2017 100 15
XNLI Classification 2018 15 7
XCOPA Classification 2020 10 10
XQUAD Question Answering 2020 11 6
MLQA Question Answering 2020 7 4
TyDiQA Question Answering 2020 11 9
MewsliX Retrieval 2020 11 5
LAReQA Retrieval 2020 11 6
PAWSX Sentence Classification 2019 7 4
BUCC Retrieval 2016 4 2
MLDoc Classification 2018 8 3
QALD-9 Question Answering 2022 9 2
xSID Classification 2021 11 6
WikiNEuRal Structure Prediction 2021 8 1
WikiLingua Summarization 2020 18 9
XL-BEL Retrieval 2021 10 7
Tatoeba Retrieval 2019 73 14

Table 3: The list of tasks surveyed for the discussion in Section 2.
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(a) Language-Wise Errors for PAWS-X dataset.
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(b) Language-Wise Errors for XNLI dataset.
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Abstract

Behavioural testing—verifying system capa-
bilities by validating human-designed input-
output pairs—is an alternative evaluation
method of natural language processing sys-
tems proposed to address the shortcomings of
the standard approach: computing metrics on
held-out data. While behavioural tests capture
human prior knowledge and insights, there has
been little exploration on how to leverage them
for model training and development. With this
in mind, we explore behaviour-aware learning
by examining several fine-tuning schemes us-
ing HATECHECK, a suite of functional tests
for hate speech detection systems. To ad-
dress potential pitfalls of training on data orig-
inally intended for evaluation, we train and
evaluate models on different configurations of
HATECHECK by holding out categories of test
cases, which enables us to estimate perfor-
mance on potentially overlooked system prop-
erties. The fine-tuning procedure led to im-
provements in the classification accuracy of
held-out functionalities and identity groups,
suggesting that models can potentially gen-
eralise to overlooked functionalities. How-
ever, performance on held-out functionality
classes and i.i.d. hate speech detection data
decreased, which indicates that generalisation
occurs mostly across functionalities from the
same class and that the procedure led to over-
fitting to the HATECHECK data distribution.

1 Introduction

The standard method for evaluating natural lan-
guage processing (NLP) systems—computing met-
rics on held-out data—may be a good indicator of
model correctness, but tends to overestimate perfor-
mance in the wild (Ribeiro et al., 2020), does not in-
dicate possible sources of models failure (Wu et al.,
2019) and overlooks potential dataset biases (Niven
and Kao, 2019; McCoy et al., 2019; Zellers et al.,
2019).

Behavioural testing of NLP models (Röttger

et al., 2021; Ribeiro et al., 2020) has been proposed
as an additional evaluation methodology, where
system functionalities are validated by checking
specific input-output behaviour of the system. This
is done through challenge sets: expert-crafted input-
output pairs that capture human prior knowledge
and intuition about how an agent should perform
the task (Linzen, 2020) and enable systematic veri-
fication of system capabilities (Belinkov and Glass,
2019).

For the purposes of this paper, we consider a be-
havioural test suite to be a collection of test cases,
input-output pairs that describe an expected be-
haviour. Each case assesses a specific functionality,
which are grouped into functionality classes. For
example, test cases in HATECHECK (Röttger et al.,
2021), a test suite for hate speech detection, include
(“[IDENTITY] belong in a zoo.”, hateful), (“No
[IDENTITY] deserves to die.”, non-hateful) and
(“I had this queer feeling we were being watched”,
non-hateful). These cases assess the functionali-
ties: implicit derogation of a protected group or its
members, non-hate expressed using negated hate-
ful statement and non-hateful homonyms of slurs1.
These functionalities are grouped into the deroga-
tion, slur usage and negation classes. A test suite
may also contain aspects, relevant properties of
test cases that are orthogonal to the functionalities.
An example of aspect in HATECHECK is the set of
possible targeted identity groups.

While behavioural testing has been designed as
a diagnostics tool, whether and how to leverage it
for model training and development has seen lit-
tle exploration, even though the human insights
encoded in the test cases could potentially lead
to more robust and trustworthy models. However,
naively using behavioural testing for both training
and evaluation is a risky affair—giving models ac-
cess to the test cases could clue them into spurious

1E.g., queer can be used as a slur for LGBT+ people, but
also means strange, odd.
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correlations and lead to overestimation of model
performance (Linzen, 2020). We view these risks
as strong motivation to explore such settings, in
order to gain insights into the vulnerability of be-
havioural tests to gaming and over-optimisation.

We explore three questions regarding behaviour-
aware learning:

Q1: Do models generalise across test cases from
the same functionality? This is a sanity check:
test cases from the same functionality share sim-
ilar patterns—sometimes generated by the same
template—so we expect that behaviour-aware learn-
ing leads to better performance on test cases from
functionalities seen during training.

Q2: Do models generalise from covered func-
tionalities to held-out ones? By examining how
behaviour-aware learning affects performance on
held-out functionalities, we can estimate the ro-
bustness of the approach to potentially overlooked
phenomena. Equivalently, performance decrease is
an indicator of overfitting to functionalities covered
during training.

Q3: Do models generalise from test cases to the
target task? Improvements in the target task perfor-
mance, as measured by independent and identically
distributed (i.i.d.) data, would indicate that a model
was able to extract the knowledge encoded in the
behavioural tests. Conversely, a decrease in target
task performance would signal overfitting to the
behavioural test distribution.

In this paper, we explore behaviour-aware learn-
ing by fine-tuning pre-trained BERT (Devlin et al.,
2019) models on HATECHECK2. We experiment
with several splitting methods and evaluate on dif-
ferent sets of held-out data: test cases for covered
functionalities (Q1), test cases for held-out func-
tionalities (Q2), and hate speech detection i.i.d.
data (Q3). In addition to HATECHECK’s function-
alities, we consider performance on held-out func-
tionality classes and identity groups. By investi-
gating our research questions, we address poten-
tial pitfalls and identify promising approaches for
behaviour-aware learning3.

2Due to the nature of the task, this paper contains examples
of abusive and hateful language. All examples are quoted
verbatim, except for slurs and profanity, in which case we
replace the first vowel with an asterisk.

3Our code is available on https://github.com/p
eluz/checking-hatecheck-code.

2 Related work

Traditional NLP benchmarks are created from text
corpora assembled to reflect the naturally-occurring
data distribution, which may fail to sufficiently
capture important phenomena. Challenge sets
were created as an additional evaluation frame-
work, characterised by greater control over data
that enables testing for specific linguistic phenom-
ena (Belinkov and Glass, 2019). Ribeiro et al.
(2020) proposed CHECKLIST as a task-agnostic
evaluation methodology with different test types
that range from template-generated challenge sets
to perturbation-based tests that enable checking
behaviour on unlabelled texts. Inspired by CHECK-
LIST, Röttger et al. (2021) created HATECHECK,
a test suite for hate speech detection models com-
posed of hand-crafted and template-generated test
cases whose design was motivated by interviews
with civil society stakeholders.

Using challenge data and behavioural tests to
explicitly drive model development and training
has largely gone unexplored. McCoy et al. (2019)
created HANS, a challenge set for natural language
inference (NLI) designed to contradict classifica-
tion heuristics that exploit spurious correlations
in NLI datasets. They used the HANS templates
to augment NLI training data, which helped pre-
vent models from adopting such heuristics, though
the improvement on held-out cases was inconsis-
tent. Liu et al. (2019) proposed inoculation by
fine-tuning, where a model originally trained on
a non-challenge dataset is fine-tuned on a few ex-
amples from a challenge set and then evaluated
on both datasets. They do not assess generalisa-
tion from covered to held-out functionalities, as
they use samples from the same functionality for
training and testing.

To the best of our knowledge, we are the first to
examine cross-functional behaviour-aware learning
by fine-tuning models on different configurations of
test suite and task data and evaluating performance
across multiple generalisation axes.

3 Cross-functional analysis of
behaviour-aware learning

We experiment with different training configura-
tions by fine-tuning a pre-trained model on data
from two distributions: the task and the test suite.
The model is fine-tuned either on one of the distri-
butions or on both sequentially, first on the task and
then on the test suite. We compare the performance
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of the resulting models on both data distributions
to assess the impact of behaviour-aware learning
considering both task and challenge data.

Test suites have limited coverage: the included
functionalities, functionality classes and aspects
are only subsets of the phenomena of interest.
For example, HATECHECK covers seven protected
groups, which are particular samples of the full set
of communities targeted by hate speech. Therefore,
naive evaluation of models fine-tuned using test
suite data can lead to overestimating their perfor-
mance: models can overfit to the covered phenom-
ena and pass the tests, but fail cases from uncov-
ered phenomena (e.g., hate targeted at an uncovered
identity group). Since we cannot directly evaluate
performance on uncovered cases, we use perfor-
mance on held-out sets of functionality, functional-
ity classes and aspects as a proxy for generalisation
across those three axes, as described in sections 3.2
and 3.4.

3.1 Task data
We use two hate speech detection datasets (David-
son et al., 2017; Founta et al., 2018) as source of
task data. Both are composed of tweets annotated
by crowdsourced workers. The Davidson et al.
(2017) dataset contains 24,783 tweets annotated as
either hateful, offensive or neither, while the Founta
et al. (2018) dataset contains 99,996 tweets an-
notated as hateful, abusive, spam or normal. We
use the versions of the datasets made available4

by Röttger et al. (2021), in which all labels other
than hateful are collapsed into a single non-hateful
label to match HATECHECK binary labels. The
data is imbalanced: hateful cases comprise 5.8%
and 5.0% of the datasets, respectively. We fol-
low (Röttger et al., 2021) and use a 80%-10%-10%
train-validation-test split for each of them.

3.2 Test suite data
We use HATECHECK (Röttger et al., 2021) as the
test suite. It contains 3,728 test cases that cover
29 functionalities grouped into 11 classes. Röttger
et al. (2021) created the set of functionalities based
on interviews with 21 employees from NGOs that
work with online hate. 18 of the functionalities
deal with distinct expressions of hate, while the
remaining 11 cover contrastive non-hate. The test
cases were either automatically generated using

4Available at https://github.com/paul-rott
ger/hatecheck-experiments/tree/master/Da
ta.

A

B

HateCheck All FuncOut ClassOut IdentOut

Figure 1: Illustration of our splitting techniques for
HATECHECK. The first column shows a simplified ver-
sion of HATECHECK with two functionality classes (A
and B) that each contain test cases targeting three iden-
tity groups (denoted by suns, stars and hearts) grouped
into three functionalities (denoted by the rectangles). In
all splitting schemes, test cases are randomly split be-
tween training and evaluation sets, as indicated by the
curved lines; the difference lies in whether a set of test
cases with specific properties not covered in training
is held-out for evaluation. All split: no fixed set held
out. FuncOut split: test cases from one functionality
held out. ClassOut split: test cases from one function-
ality class held out. IdentOut split: test cases targeting
a identity group held out. In all configurations, evalu-
ation samples are then randomly split between valida-
tion and test sets.

templates or created individually. We repeat the list
of functionalities, classes and test case examples
from Röttger et al. (2021) in Appendix A.

Röttger et al. (2021) define hate speech as “abuse
that is targeted at a protected group or at its mem-
bers for being a part of that group”, while pro-
tected groups are defined based on “age, disability,
gender identity, familial status, pregnancy, race,
national or ethnic origins, religion, sex or sexual
orientation”. HATECHECK covers seven protected
groups: women (gender), trans people (gender iden-
tity), gay people (sexual orientation), black people
(race), disabled people (disability), Muslims (reli-
gion) and immigrants (national origin). In addition
to the gold label (hateful or non-hateful), each test
is labelled with the targeted group.

When fine-tuning on test suite data, we use one
of several splitting methods, as illustrated in Fig-
ure 1:

All A random 50%-25%-25% train-validation-
test split.

FuncOut We first hold out all test cases from a
given functionality and randomly split the remain-
ing cases into a 50%-50% train-evaluation split. We
divide the union of held-out and evaluation split
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cases into a 50%-50% validation-test split. The
process is repeated for each functionality, resulting
in 29 split configurations.

IdentOut The same as FuncOut, but test cases
relating to each identity group are held out, result-
ing in 7 split configurations.

ClassOut Similar to the previous two, but entire
functionality classes are held out, resulting in 11
split configurations.

3.3 Training configurations

We consider the following training configurations:
Task-only Models are fine-tuned only on the

task data. We denote the task-only configura-
tions as Davidson and Founta, depending on which
dataset was used for training.

Test suite-only Models are fine-tuned only on
test suite data. We denote the test suite-only config-
urations by the name of the splitting method used.

Task and test suite Models are sequentially fine-
tuned first on task data and then on test suite data.
We denote these configurations as [Task data]-[Test
suite split]. For example, in the Davidson-FuncOut
configuration, models are first fine-tuned on the
Davidson split and then on the FuncOut splits.

3.4 Evaluation

We evaluate the models that result from each train-
ing configuration on both task and test suite data.
For task evaluation (Q3), due to the label imbal-
ance, we report the macro F1 score computed on
Davidson or Founta test sets. For test suite eval-
uation, we follow Röttger et al. (2021), and use
the accuracy as the classification metric. We mea-
sure generalisation to covered functionalities and
identities (Q1) by computing the All test set perfor-
mance.

We aggregate performance on IdentOut test sets
in the following way: for each of the seven Ident-
Out split configurations we fine-tune the model on
the train split and use it to compute the held-out
test predictions and the covered test accuracy (Fig-
ure 1). We compute the accuracy on the union
of the seven held-out prediction sets as the held-
out performance measure, and the average covered
test accuracy as the covered performance measure5.

5Covered and held-out aggregation methods are different
because each of the seven held-out test sets targets a single
identity group. Consequently computing the accuracy on each
set and averaging them all would result in the average identity
group accuracy instead of the overall test accuracy.
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Figure 2: Performance on All split test set: models fine-
tuned on HATECHECK outperform the ones trained
only on task data.

The same method is used to aggregate performance
on FuncOut and ClassOut sets.

The obtained held-out accuracies are measures
of generalisation to held-out identity groups, func-
tionalities and functionality classes (Q2). Addi-
tionally, FuncOut and ClassOut test sets are used
to contrast generalisation to related (intra-class)
and unrelated (extra-class) functionalities: in the
former case, a model that has no access to F14
(hate expressed using negated positive statement),
will be trained on F15 (non-hate expressed using
negated hateful statement) cases; in the latter, there
are no negation samples in the train split.

3.5 Experimental setting

All models start from a pre-trained uncased BERT-
base model6. When fine-tuning, we follow Röttger
et al. (2021) and use cross-entropy with class
weights inversely proportional to class frequency
as the loss function and AdamW (Loshchilov and
Hutter, 2019) as the optimiser. We also search for
the best values for batch size, learning rate and
number of epochs through grid search, selecting
the configuration with the smallest validation loss.

4 Results and discussion

Covered functionalities performance (Q1) Fig-
ure 2 exhibits performance on HATECHECK All
split. All models fine-tuned on HATECHECK

greatly outperformed models fine-tuned only on
task data. That is, fine-tuning on HateCheck with
access to all functionalities and identity groups
improved performance on the test suite. Prior fine-
tuning on task data did not make a relevant dif-

6Model card available in https://huggingface.co
/bert-base-uncased.

78



A
cc
ur
ac
y

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Davidson-FuncOut Founta-FuncOut

Covered Held-out

(a) FuncOut.

A
cc
ur
ac
y

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Davidson-IdentOut Founta-IdentOut

Covered Held-out

(b) IdentOut.
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Figure 3: Performance comparison between covered and held-out phenomena on FuncOut, IdentOut and HeldOut
test sets: accuracy for covered phenomena is consistently better, though discrepancy magnitude varies across
phenomena of interest.
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(b) IdentOut.
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Figure 4: Held-out performance change after fine-tuning on HATECHECK: accuracy improves for held-out func-
tionalities and identity groups, but decreases for held-out functionality classes.
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Figure 5: Performance on the task test sets: macro
F1 score decreases after fine-tuning on HATECHECK.
Scores also decrease when models are evaluated on the
task dataset thsey were not fine-tuned on (domain gap).

ference: Davidson-All, Founta-All and All per-
formance differences were not statistically signifi-
cant7.

Held-out functionalities performance (Q2)
Figure 3 contrasts covered and held-out average
accuracies in the FuncOut, IdentOut and ClassOut
test sets. Unsurprisingly, scores are higher for cov-

7For this and all other statements about statistical signif-
icance, we use two-tailed binomial testing when comparing
accuracies, and randomisation testing (Yeh, 2000) when com-
paring macro F1 scores. We consider performances to be
significantly different when p-value ≤ 0.05. Appendix B lists
the p-values for all performed tests.

ered phenomena. That said, the gap is much wider
for functionalities than it is for identities, which
suggests that it is easier to generalise to held-out
identity groups than it is for functionalities. The
way HATECHECK was constructed may explain
this: examples from different functionalities are
fundamentally different, as each template generates
test cases for only one functionality. Cases target-
ing different identity groups, on the other hand, are
generated by the same templates using different
identity identifiers. The gap between covered and
held-out performance was largest in the ClassOut
setting, suggesting poorer extra-class generalisa-
tion capabilities when compared with intra-class
and identity group generalisation.

Figure 4 shows the impact of fine-tuning on
HATECHECK by contrasting performance before
and after the procedure. Accuracy increased sig-
nificantly for held-out functionalities and identity
groups: models fine-tuned on HATECHECK out-
performed their counterparts trained only on either
Davidson or Founta. The performance increase
was greater in the IdentOut setting, which we take
to be further evidence of the greater generalisation
between identity groups than between functionali-
ties.

While the fine-tuning procedure contributed pos-
itively to performance in the FuncOut setting, the
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Sample (top: Davidson et al. (2017); bottom: Founta et al. (2018)) Gold label pbefore pafter

“you need to accept the fact that you’re both hipster f*ggots.” hateful 97.85% 0.19%
“or a southern b*tch like me who will blow a persons heart out of their back w / one
shot!!!!”

non-hateful 98.18% 0.35%

“you old bitter, salty ass n*ccas make my flesh crawl off my bones! such b*tches you
are! dont argue just accept it”

hateful 4.76% 99.75%

“wonder how many us citizens have joined isis after listening to joe scarborough trash
this " black president? " good job joe!!”

non-hateful 2.23% 99.62%

“i w a n t s c h o l a r s h i p t o s t u d y please sir listen to me” non-hateful 98.46% 1.39%

“ i hate how n*ggas try to hide / lie about things, we find out everything” hateful 98.44% 0.06%
“sc 11ari22chipis26aqu24ari3 so pinkslug got flamingochick head, koalapaws, stickbu-
glegs, belly is slug.”

non-hateful 97.69% 0.10%

“i’m like gawd damn you dirty b*tch” hateful 9.23% 93.28%
“hate when n*ggas want my undivided attention like i have a son bitch” non-hateful 1.74% 99.93%
“fuck men they’re disgusting” hateful 21.35% 98.42%

Table 1: Samples with largest change in model prediction for each hate speech detection task. pbefore and pafter
correspond to gold label probability output by the model before and after the fine-tuning procedure.

same did not happen in the ClassOut scenario.
There was a statistically insignificant accuracy de-
crease for held-out classes after fine-tuning on the
test suite. This further strengthens the hypothesis
that generalisation seems to occur mostly among
functionalities from the same functionality class.

Task data performance (Q3) Figure 5 com-
pares model performance on the task test sets8.
Macro F1 scores decreases significantly after fine-
tuning on HATECHECK. This could be due to mod-
els overfitting to the HATECHECK data and because
of the domain gap between the challenge and non-
challenge data distributions.

The results also show the domain gap between
the two task datasets: models perform better on
the data they were fine-tuned on originally, even
after further fine-tuning on HATECHECK. There-
fore, while the decrease in performance indicates
forgetting, models still retain some domain knowl-
edge after fine-tuning on HATECHECK. This is
further supported by All severely underperforming
configurations with access to task data.

To further investigate the deterioration in perfor-
mance caused by fine-tuning on HATECHECK, we
select the target data samples with largest change in
prediction. That is, given a sample s and the gold
label probabilities pbefore(s) and pafter(s) predicted
before and after fine-tuning on HATECHECK, we
calculate for each sample the change in prediction:

∆p(s) = pafter(s)− pbefore(s).
Then, for each hate speech detection dataset, we

8Our results are similar to the ones reported by Röttger
et al. (2021): we got micro/macro F1 scores of 90.56%/69.70%
and 93.19%/71.73% for Davidson and Founta. Röttger et al.
(2021) reported 91.5%/70.8% and 92.9%/70.3% respectively.

select the samples with:

1. Largest deterioration for hateful:

argmins ∆p(s), s ∈ H .

2. 2. Largest deterioration for non-hateful:

argmins ∆p(s), s ∈ Hc.

3. 3. Largest improvement for hateful:

argmaxs ∆p(s), s ∈ H .

4. Largest improvement for non-hateful:

argmaxs ∆p(s), s ∈ Hc.

Where H and Hc are the sets of samples labeled
as hateful and non-hateful, respectively.

Table 1 presents the results of this procedure.
The first four samples from each dataset corre-
spond to the four items above. While the reason for
the change in prediction is not always clear, some
of the samples relate to specific functionalities in
HATECHECK. The second sample from Davidson
et al. (2017) contains threatening language (F5 and
F6). In HATECHECK, this is always associated
with hateful language, which may have biased the
model towards that prediction. The third sample
from the same dataset contains a misspelt slur that
could have been identified by models fine-tuned on
HATECHECK, potentially due to having had access
to test cases from the spell variations functionalities
(F25-29).

The last case from each dataset was selected
(among the samples with a large change) due to the
insights they offer. The fifth sample from David-
son et al. (2017), although clearly non-hateful,
was predicted as hateful after model fine-tuning
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on HATECHECK. The spell variations function-
alities are always associated with hateful samples,
which could have biased the model in that direction.
Functionality F28 in particular checks specifically
for hateful texts with added space between char-
acters. It would be interesting to examine if lever-
aging other types of tests (e.g. perturbation-based
invariance tests) for training could help prevent
exploiting such spurious correlations. The fifth
sample from (Founta et al., 2018) is interesting
because the model was able to correct the previ-
ously wrong prediction even though the identity
“men” is not covered by HATECHECK, further ev-
idence of generalisation to other identity groups.
This is particularly important when we consider
the limited coverage of HATECHECK regarding
protected groups—the analysis is limited to seven
groups, leaving out numerous communities (e.g.,
from other religious or ethnic backgrounds) that
are targeted by hate speech.

5 Conclusion

We have presented a cross-functional analysis of
behaviour-aware learning for hate speech detection.
By examining several fine-tuning configurations
and holding out different sets of test cases, we have
estimated generalisation over different system prop-
erties. We have found that the procedure brought
improvements over held-out functionalities and pro-
tected groups, though performance on i.i.d. task
data and held-out functionality classes decreased.
Furthermore, the qualitative analysis has shown
how properties from challenge datasets can pro-
duce unintended consequences. After fine-tuning
on HATECHECK, models learned to associate some
spelling variations with hateful language because
of how the test suite was constructed.

These results suggest that, while there was gen-
eralisation to held-out phenomena, the models have
overfitted to HATECHECK distribution. They also
confirm the importance of considering the perfor-
mance on both challenge and i.i.d. data: the models
fine-tuned on HATECHECK passed the functional
tests with flying colours, but task performance mea-
sured by the non-challenge datasets decreased.
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Class Functionality Example Test Case Gold Label n

Derogation F1: Expression of strong negative emotions (ex-
plicit)

"I hate [IDENTITY]." hateful 140

F2: Description using very negative attributes
(explicit)

"[IDENTITY] are disgusting." hateful 140

F3: Dehumanisation (explicit) "[IDENTITY] are scum." hateful 140
F4: Implicit derogation "[IDENTITY] belong in a zoo." hateful 140

Threatening language F5: Direct threat "I want to kill all [IDENTITY]" hateful 133
F6: Threat as normative statement "[IDENTITY] should all be killed." hateful 140

Slur usage F7: Hate expressed using slur "You are just a [SLUR] to me." hateful 144
F8: Non-hateful homonyms of slurs "They are building a new dyke near the beach." non-hateful 30
F9: Reclaimed slurs "Y’all some haters, this n*gga a genius." non-hateful 81

Profanity usage F10: Hate expressed using profanity "These [IDENTITY] should shut the f*ck up
once and for all."

hateful 140

F11: Non-hateful use of profanity "F*cking hell, what a day." non-hateful 100

Pronoun reference F12: Hate expressed through reference in sub-
sequent clauses

"I have met many [IDENTITY] and I hate every
single one of them."

hateful 140

F13: Hate expressed through reference in sub-
sequent sentences

"[IDENTITY] think they’re special. I hate
them."

hateful 133

Negation F14: Hate expressed using negated positive
statement

"[IDENTITY] lives do not matter." hateful 140

F15: Non-hate expressed using negated hateful
statement

"No [IDENTITY] deserves to die." non-hateful 133

Phrasing F16: Hate phrased as a question "Why is it that all [IDENTITY] are repulsive?" hateful 140
F17: Hate phrased as an opinion "I find all [IDENTITY] disgusting." hateful 133

Non-hate grp. ident. F18: Neutral statements using protected group
identifiers

"We are a group of [IDENTITY]." non-hateful 126

F19: Positive statements using protected group
identifiers

"I love [IDENTITY]." non-hateful 189

Counter speech F20: Denouncements of hate that quote it "Statements like ‘[IDENTITY] are scum’ are
deeply hurtful."

non-hateful 173

F21: Denouncements of hate that make direct
reference to it

"You have to stop calling [IDENTITY] disgust-
ing."

non-hateful 141

Abuse against F22: Abuse targeted at objects "I really can’t stand cauliflower." non-hateful 65
non-prot. targets F23: Abuse targeted at individuals (not as mem-

ber of a prot. group)
"You make me sick." non-hateful 65

F24: Abuse targeted at non-protected groups
(e.g. professions)

"Artists are parasites to our society." non-hateful 62

Spelling variations F25: Swaps of adjacent characters "I haet [IDENTITY]." hateful 133
F26: Missing characters "[IDENTITY] are a cancr." hateful 140
F27: Missing word boundaries "Deathto all [IDENTITY]." hateful 141
F28: Added spaces between chars "I want to k i l l all [IDENTITY]." hateful 173
F29: Leet speak spellings " I h4te [IDENTITY]." hateful 173

Table 2: The 11 classes and 29 functionalities covered by HATECHECK, with n test cases each. Adapted from
Röttger et al. (2021).

Compared approaches Test set Evaluation metric p-value

Davidson-All and Davidson All test set Accuracy < .001
Founta-All and Founta All test set Accuracy < .001
Davidson-All and Founta-All All test set Accuracy .774
Davidson-All and All All test set Accuracy .219
Founta-All and All All test set Accuracy .727
Davidson-FuncOut and Davidson FuncOut held-out test set Accuracy < .001
Founta-FuncOut and Founta FuncOut held-out test set Accuracy < .001
Davidson-IdentOut and Davidson IdentOut held-out test set Accuracy < .001
Founta-IdentOut and Founta IdentOut held-out test set Accuracy < .001
Davidson-ClassOut and Davidson ClassOut held-out test set Accuracy .723
Founta-ClassOut and Founta ClassOut held-out test set Accuracy .174
Davidson-All and Davidson Davidson test set Macro F1 score < .001
Davidson-All and Davidson Founta test set Macro F1 score < .001
Founta-All and Founta Davidson test set Macro F1 score .020
Founta-All and Founta Founta test set Macro F1 score < .001
Davidson-All and All Davidson test set Macro F1 score < .001
Founta-All and All Founta test set Macro F1 score < .001

Table 3: p-value for each statistical significance test. For each test, the null hypothesis is that there is no difference
between the compared approaches with respect to performance on the given test set as measured by the given
evaluation metric.
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Abstract

Meaning is context-dependent, but many prop-
erties of language (should) remain the same
even if we transform the context. For exam-
ple, sentiment or speaker properties should be
the same in a translation and original of a text.
We introduce language invariant properties:
i.e., properties that should not change when we
transform text, and how they can be used to
quantitatively evaluate the robustness of trans-
formation algorithms. Language invariant prop-
erties can be used to define novel benchmarks
to evaluate text transformation methods. In our
work we use translation and paraphrasing as
examples, but our findings apply more broadly
to any transformation. Our results indicate that
many NLP transformations change properties.
We additionally release a tool as a proof of
concept to evaluate the invariance of transfor-
mation applications.

1 Introduction
The progress in Natural Language Processing has
bloomed in recent years, with novel neural models
being able to beat the score of different benchmarks.
However, current evaluation benchmarks often do
not look at how properties of language vary when
text is transformed or influenced by a change in
context. For example, the meaning of a sentence is
influenced by a host of factors, among them who
says it and when: “That was a sick performance”
changes meaning depending on whether a 16-year-
old says it at a concert or a 76-year-old after the
opera.1 However, there are several properties of
language that do (or should) not change when we
transform a text (i.e., change the surface form of it
to another text, see also Section 2). If the text was
written by a 25-year-old female, it should not be
perceived as written by an old man after we apply
a paraphrasing algorithm. The same goes for other
properties, like sentiment: A positive message like

1Example due to Veronica Lynn.

“good morning!”, posted on social media, should
be perceived as a positive message, even when it is
translated into another language.2 We refer to these
properties that are unaffected by transformations
as Language Invariant Properties (LIPs). LIPs
preserve the semantics and pragmatic components
of language. I.e., these properties are not affected
by transformations applied to the text. For example,
we do not expect a summary to change the topic of
a sentence.

Paraphrasing, summarization, style transfer,
and machine translation are all NLP transforma-
tion tasks that should respect LIPs. If they do not,
it is a strong indication that the system is pick-
ing up on spurious signals and needs to be recali-
brated. For example, machine translation should
not change speaker demographics or sentiment, and
paraphrasing should not change entailment or topic.

But what happens if a transformation does vio-
late invariants? Violating invariants is similar to
breaking the cooperative principle (Grice, 1975):
if we do it deliberately, we might want to achieve
an effect. For example, Reddy and Knight (2016)
showed how words can be replaced to obfuscate au-
thor gender, thereby protecting their identity. Style
transfer can therefore be construed as a deliberate
violation of LIPs. In most cases, though, violating
a LIP will result in an unintended outcome or in-
terpretation of the transformed text: for example,
violating LIPs on sentiment will generate misun-
derstanding in the interpretation of messages. Any
such violation might be a signal that models are not
ready for production (Bianchi and Hovy, 2021).

In this paper, we suggest a novel type of eval-
uation benchmark based on LIPs. We release a
tool as a proof of concept of how this methodol-
ogy can be introduced into evaluation pipelines:
we define the concept of LIPs, but also integrate

2https://gu.com/technology/2017/oct/
24/facebook-palestine-israel-translate
s-good-morning-attack-them-arrest
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“That was a sick performance” age group: 14-21
age classifier

“È stata una prestazione super!” age group: 14-21
age classifier

“È stata una prestazione disdicevole!” age group: 60-80
age classifier

translation system 1 translation system 2

Figure 1: Author age is a Language Invariant Property (LIP). Translation system 1 fails to account for this and
provides a translation that can give the wrong interpretation to the sentence. Translation system 2 is instead providing
a more correct interpretation.

insights from Hovy et al. (2020), defining an initial
benchmark to study LIPs in two of the most well-
known transformation tasks: machine translation
and paraphrasing. We apply those principles more
broadly to transformations in NLP as a whole.

Contributions. We introduce LIPs: properties of
language that should not change during a transfor-
mation. Our contribution also focuses on the pro-
posal of an evaluation methodology for LIPs and
the release of a Python application that can be used
to test how well systems can preserve LIPs.3 We
believe that this contribution can help the commu-
nity to work on benchmarking and understanding
how properties change when text is transformed.

2 Language Invariant Properties
To use the concept of LIPs, we first need to make
clear what we mean by it. We formally define LIPs
and transformations below.

Assume the existence of a set S of all the possi-
ble utterable sentences. Let us define A and B as
subsets of S. These can be in the same or different
languages. Now, let’s define a mapping function

t : A→ B

i.e., t(·) is a transformation that changes the sur-
face form of the text A into B.

A language property p is a function that maps
elements of S to a set P of property values. p is
invariant if and only if

∀a ∈ A p(a) = p(t(a)) = p(b)

3https://github.com/MilaNLProc/langua
ge-invariant-properties

where b ∈ B, and t(a) = b. I.e., if applying p(·)
to both an utterance and its transformation still
maps to the same property. We do not provide
an exhaustive list of these properties, but suggest
to include at least meaning, topic, sentiment,
speaker demographics, and logical entailment.

LIPs are thus based on the concept of text
transformations. Machine translation (MT) is a
salient example of a transformation and a prime
example of a task for which LIPs are important.
MT can be viewed as a transformation between
two languages where the main fundamental LIP
that should not be broken is meaning.

However, LIPs are not restricted to MT but have
broader applicability, e.g., in style transfer. In that
case, though, some context has to be defined. When
applying a formal to polite transfer, this function is
by definition not invariant anymore. Nonetheless,
many other properties should not be influenced by
this transformation. Finally, for paraphrasing, we
have only one language, but we have the additional
constraint that t(a) ̸= a. For summarization, the
constraint instead is that len(t(a)) < len(a).

LIPs are also what make some tasks in language
more difficult than others: for example, data aug-
mentation (Feng et al., 2021) cannot be as easily
implemented in text data as in image processing,
since even subtle changes to a sentence can affect
meaning and style. Changing the slant or skew of
a photo will still show the same object, but for ex-
ample word replacement easily breaks LIPs, since
the final meaning of the final sentence and the per-
ceived characteristics can differ. Even replacing a
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word with one that is similar can affect LIPs. For
example, consider machine translation with a par-
allel corpus: “the dogs are running” can be paired
with the translation “I cani stanno correndo” in Ital-
ian. If we were to do augmentation, replacing dogs
with its hyperonym animals does not corrupt the
overall meaning, as the new English sentence still
entails all that is entailed by the old one. However,
the Italian example is no longer a correct transla-
tion of the new sentence, since cani is not the word
for animals.

LIPs are also part of the communication between
speakers. The information encoded in a sentence
uttered by one speaker contains LIPs that are im-
portant for efficient communication, as misunder-
standing a positive comment as a negative one can
create issues between communication partners.

Note that we are not interested in evaluating the
quality of the transformation (e.g., the translation or
paraphrase). There are many different metrics and
evaluation benchmarks for that (BLEU, ROUGE,
BERTscore etc.: Papineni et al., 2002; Lin, 2004;
Zhang et al., 2020b). Our analysis concerns another
aspect of communication for which we wish to
propose an initial benchmark.

3 Related Work
There have been different works in NLP that have
investigated issues arising from language technol-
ogy (Hovy and Spruit, 2016; Blodgett et al., 2020;
Bianchi and Hovy, 2021; Bolukbasi et al., 2016;
Gonen and Goldberg, 2019; Lauscher et al., 2020;
Bianchi et al., 2021a; Dev et al., 2020; Sheng et al.,
2019; Nozza et al., 2021, 2022). In our paper, we
focus on issues that can arise from the usage of
text transformation algorithms (for example, we
will see examples of gender bias in transformation,
inspired by (Hovy et al., 2020), in Section 5) and
we describe a method that can allow us to analyze
them.

The idea that drives LIPs have spawned across
different work in the NLP literature; For example,
Poncelas et al. (2020) discuss the effect that ma-
chine translation can have on sentiment classifiers.
At the same time, ideas of conserving meaning dur-
ing style transfer are also presented in the work by
Hu et al. (2020). We propose LIPs as a term to give
a unified view on the problem of preserving these
properties during transformation.

LIPs share some notions with the checklist by
Ribeiro et al. (2020) and the adversarial reliability
checks by Tan et al. (2021). However, LIPs evalu-

ate how well fundamental properties of discourse
are preserved in a transformation, the checklist is
made to guide users in a fine-grained analysis of
the model performance to better understand bugs
in the applications with the use of templates. As
we will show later, LIPs can be quickly tested to
any new annotated dataset. Some of the checklist’s
tests, like Replace neutral words with other neutral
words, can be seen as LIPs. The general idea of
adversarial attacks, meanwhile, also requires LIPs
to hold in order to work. Nonetheless, we think the
frameworks are complementary.

4 Benchmarking Transformation
Invariance

For ease of reading, we will use translation as an
example of a transformation in the following. How-
ever, the concept can be applied to any of the trans-
formations we mentioned above.

We start with a set of original texts A to translate
into a set of texts B.4 We thus need a translation
model t from the source language of A to a target
language of B. To test the transformation wrt a LIP,
A should be annotated with that language property
of interest, this is our ground truth and we are going
to refer to this as p̂(A). We also need a classifier
for the LIP of interest, which serves as language
property function p. For example, a LIP classifier
could be a gender classifier that, given an input text,
returns the inferred gender of the speaker. Here, we
need one cross-lingual classifier, or two classifiers,
one in the source and one in the target language.5

Once we apply the translation, we can use the
LIP classifier on the original data A and the new set
of translated data B obtaining respectively, p(A)
and p(B).

We can then compare the difference between
the distribution of the LIP in the original data and
either prediction. I.e., we compare the differences
in distribution of p̂(A)− p(A) to p̂(A)− p(B) to
understand the effect of the transformations. We
show a visual explanation on how to benchmark
LIPs in Figure 2.

Note that we are not interested in the actual per-
formance of the classifiers, but in the difference
in performance on the two datasets. We observe
two possible phenomena (as in Hovy et al. (2020)):

4We slightly abuse of notation here and interpret A has the
set of original texts instead of the set of the possible utterances.

5For all other transformations, which stay in the same
language, we only need one classifier. (Paraphrasing or sum-
marization can be viewed as a transformation from English to
English).
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Text LIP (e.g., age)

This is sick 20-29

What a bummer 50-59

This is nice 30-39

… …

LIP Classifier in English (Age classifier)

previously trained LIP classifiers.
Trained on data coming from a similar distribution 
(i.e., we can also split the dataset to get this data)

A p̂ (A)

Translated Text

Questo è disdicevole

Che peccato

Questo è bello

…

LIP Classifier in Italian (Age classifier)

Predicted LIP

50-59

60-69

60-69

…

Predicted LIP

20-59

50-59

20-29

…

Translation Model
Translation in Italian makes authors sound older

P(A)

P(B)
B

Figure 2: A visual explanation on how to benchmark LIPs.

1) If there is a classifier bias, both the predictions
based on the original language and the predictions
based on the translations should be skewed in the
same direction with respect to the distribution in
A. E.g., for gender classification, both classifiers
predict a higher rate of male authors in the origi-
nal and the translated text. 2) Instead, if there is
a transformation bias, then the distribution of the
translated predictions should be skewed in a dif-
ferent direction than the one based on the original
language. E.g., the gender distribution in the origi-
nal language should be less skewed than the gender
ratio in the translation.

Note that we assume that the LIP classifiers used
for the source and one in the target language have
similar biases; if this were not true and the classi-
fiers had different biases phenomena 1) could be
caused both by the bias in translations or bias in
the models. This mostly depends on the quality of
the classifiers, that has to be assessed before the
evaluation of the LIPs.

4.1 Datasets

Here, we evaluate machine translation and para-
phrasing as transformation tasks. Our first re-
lease of this benchmark tool contains the datasets
from Hovy et al. (2020), annotated with gen-
der6 and age categories, and the SemEval dataset
from Mohammad et al. (2018) annotated with emo-
tion recognition. Moreover, we include the English
dataset from HatEval (Basile et al., 2019) contain-

6The dataset comes with binary gender, but this is not an
indication of our views or the capabilities of the tool.

ing tweets for hate speech detection. These datasets
come with training and test splits and we use the
training data to train the LIP classifiers.

Nonetheless, our benchmark can be easily ex-
tended with new datasets encoding other LIPs.

4.2 TrustPilot

We use a subset of the dataset by Hovy et al. (2015).
It contains TrustPilot reviews in English, Italian,
German, French, and Dutch with demographic in-
formation about the user’s age and gender. Training
data for the different languages consists of 5k sam-
ples (balanced for gender) and can be used to build
the LIP classifiers. The dataset can be used to evalu-
ate the LIPs AUTHOR-GENDER and AUTHOR-AGE.

4.3 HatEval

We use the English tweet data from HatEval (Basile
et al., 2019). We take the training and test set (3k
examples). Each tweet comes with a value that indi-
cates if the tweet contains hate speech. The dataset
can be used to evaluate the LIP HATEFULNESS.

4.4 Affects in Tweets (AiT)

We use the Affect in Tweets dataset (AiT) (Mo-
hammad et al., 2018), which contains tweets an-
notated with emotions. We reduce the number of
possible classes by only keeping emotions in the
set {fear, joy, anger, sadness} to allow for future
comparisons with other datasets. We then map
joy to positive and the other emotions to negative
for deriving the sentiment following Bianchi et al.
(2021b, 2022). The data we collected comes in En-
glish (train: 4,257, test: 2,149) and Spanish (train:
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Method L1 L2 KLA,p(A) KLB,p(B) Dist p̂(A) Dist p(A) Dist p(B)

SE IT EN 0.004 0.034 M: 0.52, F: 0.48 M: 0.56, F: 0.44 M: 0.64, F: 0.36
TF IT EN 0.000 0.034 M: 0.52, F: 0.48 M: 0.53, F: 0.47 M: 0.64, F: 0.36

SE DE EN 0.000 0.030 M: 0.50, F: 0.50 M: 0.49, F: 0.51 M: 0.61, F: 0.39
TF DE EN 0.001 0.022 M: 0.50, F: 0.50 M: 0.52, F: 0.48 M: 0.60, F: 0.40

Table 1: Results on TrustPilot dataset translating IT/DE–EN. TF = logistic regression classifier with TF-IDF (TF),
SE = (cross-lingual) embedding model. Translation breaks the LIP AUTHOR-GENDER

2,366, test: 1,908). The dataset can be used to
evaluate the LIP SENTIMENT.

4.5 Methods

Classifiers As default classifier we use L2-
regularized Logistic Regression models over 2-
6 TF-IDF character-grams (Hovy et al., 2020).
Due to the great recent results of pre-trained lan-
guage models (Nozza et al., 2020), we also use
SBERT (Reimers and Gurevych, 2019) to generate
sentence embeddings and use these representations
as input to a logistic regression (L2 regularization
and balance weights). The two classification meth-
ods are referred to as TF (TF-IDF) and SE (Sen-
tence Embeddings). Our framework supports the
use of any classifiers. The advantage of this setup is
that it is generally fast to set up, but interested user
can also use more complex transformer models.
The replicability details appear in the Appendix.

Scoring Standard metrics for classification eval-
uation can be used to assess how much LIPs are
preserved during a transformation. Following Hovy
et al. (2020) we use the KL divergence to compute
the distance - in terms of the distribution diver-
gence - between the two predicted distributions.
The benchmark also outputs the X2 test to assess
if there is a significant difference in the predicted
distributions. It is also possible to look at the plots
of the distribution to understand the effects of the
transformations (see following examples in Fig-
ures 3, 4 and 5).

5 Evaluation
We evaluate four tasks, i.e., combinations of trans-
formations and LIPs; the combination is deter-
mined by the availability of the particular property
in the respective dataset.

5.1 TrustPilot Translation - LIP:
AUTHOR-GENDER

We use the TrustPilot dataset to study the author-
gender LIP during translation. We use the Google

translated documents provided by the authors. We
are essentially recomputing the results that appear
in the work by Hovy et al. (2020). As shown in
Table 1, our experiments with both TF and SE
confirm the one in the paper: it is easy to see that
the translations from both Italian and German into
English are more likely to be predicted as male
(this can be seen by the change in the distribution),
breaking the LIP AUTHOR-GENDER.

5.2 AiT Translation - LIP: SENTIMENT

negative positive
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Figure 3: Translation ES–EN on AiT sentiment analysis.
Translation respects the LIP SENTIMENT

We use the AiT dataset to test the sentiment LIP
during translation. We translate the tweets from
Spanish to English using DeepL. We use SE as
our embedding method. As shown in Figure 3,
SENTIMENT is a LIP that seems to be easily kept
during translations. This is expected, as sentiment
is a fundamental part of the meaning of a sentence
and has to be translated accordingly.

5.3 TrustPilot Paraphrasing - LIP:
AUTHOR-GENDER

When we apply paraphrasing on the TrustPilot data,
the SE classifier on the transformed data predicts
more samples as male (see Figure 4 that plots the
distribution). KLA,p(B) = 0.018, difference sig-
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Figure 4: Paraphrasing on TrustPilot English data. Para-
phrasing breaks the LIP AUTHOR-GENDER
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Figure 5: Paraphrasing on HatEval English data. Para-
phrasing breaks the LIP HATEFULNESS

nificant for X2 with p < 0.01, resulting in a break
of the LIP HATEFULNESS.

5.4 HatEval Paraphrasing - LIP:
HATEFULNESS

We use the HatEval data to study the hatefulness
LIP after paraphrasing. We use SE as our embed-
ding method. Figure 5 shows that the SE classi-
fier predicted a high amount of hateful tweets in
p(A) (a problem due to the differences between
the training and the test in HatEval (Basile et al.,
2019; Nozza, 2021)), this number is drastically
reduced in p(B), suggesting that paraphrasing re-
duces hatefulness, breaking the LIP. As an exam-
ple of paraphrased text, Savage Indians living up
to their reputation was transformed to Indians are
living up to their reputation. While the message
still internalizes bias, removing the term Savage
has reduced its strength. It is important to remark
that we are not currently evaluating the quality of

the transformation—that is another task. The re-
sults we obtain are in part due to the paraphrasing
tool we used,7 but they still indicate a limit in the
model capabilities.

6 Benchmark Tool

We release an extensible benchmark tool8 that can
be used to quickly assess a model’s capability to
handle LIPs. The benchmark has been designed to
provide a high-level API that can be integrated into
any transformation pipeline. Users can access the
dataset text, transform, and score it (see Figure 6).
Thus, this pipeline should be very easy to use. The
tool allows the users to run the experiments mul-
tiple time to also understand the variations that
depends on the model themselves.

Figure 6: The benchmark has been designed to provide
a high-level API that can be integrated in any trans-
formation pipeline. Users can access the dataset text,
transform, and score it.

We hope this benchmark tool can be of help,
even as an initial prototype, in designing evaluation
pipelines meant at studying how LIPs are preserved
in text.

7 Conclusion

This paper introduces the concept of Language
Invariant Properties, properties in language that
should not change during transformations. We also
describe a possible evaluation pipeline for LIPs
showcasing that some of the language transforma-
tion technologies we use suffer from limitations
and that they cannot often preserve important LIPs.

We believe that the study of LIPs can improve
the performance of different NLP tasks and to pro-
vide better support in this direction we release a
benchmark that can help researchers and practi-
tioners understand how well their models handle
LIPs.

7https://huggingface.co/tuner007/pega
sus_paraphrase

8This will be a link to a GitHub Repo
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8 Limitations
The tool we implemented comes with some limi-
tations. We cannot completely remove the learned
bias in the classifiers and we always assume that
when there are two classifiers, these two perform
reliably well on both languages so that we can com-
pare the output.

To reduce one of the possible sources of bias, the
classifiers are currently trained with data coming
from a similar distribution to the one used at test
time, ideally from the same collection.

Ethical Considerations
We are aware that our work assumes that it is easy
to classify text in different languages even when
considering cultural differences and we do not aim
to ignore this. We know that cultural differences
can make it more difficult to preserve LIPs (Hovy
and Yang, 2021): it might not be possible to effec-
tively translate a positive message into a language
that does not share the same appreciation/valence
for the same things. However, we also believe this
is a more general limitation of machine translation.
The speaker’s intentions are to keep the message
consistent - in terms of LIPs - even when translated.
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A Logistic Regression Setup
We use a 5 fold cross-validation on the training
data to select the best parameters of the logisitic
regression. Class weights are balanced and we use
L2 Regularization. We search the best C value in
[5.0, 2.0, 1.0, 0.5, 0.1]. The solver used is saga.

When using TF-IDF we use the following pa-
rameters: ngram range=(2, 6), sublinear tf=True,
min df=0.001, max df=0.8.

Nevertheless, the tool we will share will contain
all the parameters (the tool is versioned, so it is easy
to track the changes and check which parameters
have been used to run the experiments).

B Models Used

B.1 TrustPilot Paraphrase

We use the same classifier for the original and
the transformed text. We generate the representa-
tions with SBERT. The model used is paraphrase-
distilroberta-base-v2.9

As paraphrase model, we use a fine-tuned Pe-
gasus (Zhang et al., 2020a) model, pegasus para-
phrase,10 that at the time of writing is one of the
most downloaded on the HuggingFace Hub.

9https://sbert.net
10https://huggingface.co/tuner007/pega

sus_paraphrase

B.2 AiT Translation

We translated the tweets using the DeepL APIs.11

As classifiers we use the cross-lingual model for
both languages, each language has its language-
specific classifier. The cross-lingual sentence em-
bedding method used is paraphrase-multilingual-
mpnet-base-v2, from the SBERT package.

B.3 TrustPilot Translation

As translation we use the already translated sen-
tences from the TrustPilot dataset provided by
Hovy et al. (2020). We use both the TF-IDF
based and the cross-lingual classifier, as shown
in Table 1, each language has its own language-
specific classifier. The cross-lingual sentence em-
bedding method used is paraphrase-multilingual-
mpnet-base-v2, from the SBERT package.

B.4 HatEval Paraphrasing

We use the same classifier for the original and
the transformed text. We generate the representa-
tions with SBERT. The model used is paraphrase-
distilroberta-base-v2. Users are replaced with
@user, hashtags are removed.

As paraphrase model, we use a fine-tuned Pe-
gasus (Zhang et al., 2020a) model, pegasus para-
phrase, that at the time of writing is one of the most
downloaded on the HuggingFace Hub.

11https://deepl.com/
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Abstract
Large-scale pre-trained language models have
shown remarkable results in diverse NLP ap-
plications. However, these performance gains
have been accompanied by a significant in-
crease in computation time and model size,
stressing the need to develop new or comple-
mentary strategies to increase the efficiency
of these models. This paper proposes DACT-
BERT, a differentiable adaptive computation
time strategy for BERT-like models. DACT-
BERT adds an adaptive computational mecha-
nism to BERT’s regular processing pipeline,
which controls the number of Transformer
blocks that need to be executed at inference
time. By doing this, the model learns to com-
bine the most appropriate intermediate repre-
sentations for the task at hand. Our experi-
ments demonstrate that our approach, when
compared to the baselines, excels on a reduced
computational regime and is competitive in
other less restrictive ones. Code available at
https://github.com/ceyzaguirre4/dact_bert.

1 Introduction

The use of pre-trained language models based on
large-scale Transformers (Vaswani et al., 2017) has
gained popularity after the release of BERT (Devlin
et al., 2019). The usual pipeline consists of fine-
tuning BERT by adapting and retraining its classi-
fication head to meet the requirements of a specific
NLP task. Unfortunately, the benefits of using a
powerful model are also accompanied by a highly
demanding computational load. In effect, current
pre-trained language models such as BERT have
millions of parameters, making them computation-
ally intensive both during training and inference.

While high accuracy is usually the ultimate goal,
computational efficiency is also desirable. The
use of a demanding model not only causes longer
processing times and limits applicability to low-
end devices, but it also has major implications

*Work done at Pontificia Universidad Católica de Chile.

in terms of the environmental impact of AI tech-
nologies (Schwartz et al., 2020). As an example,
Strubell et al. (2019) provides an estimation of the
carbon footprint of several large NLP models, in-
cluding BERT, concluding that they are becoming
unfriendly to the environment.

Recent works have shown that behind BERT’s
immense capacity, there is considerable redun-
dancy and over-parametrization (Kovaleva et al.,
2019; Rogers et al., 2020). Consequently, others
works have explored strategies to develop efficient
and compact versions of BERT. One such strategy
known as dynamic Transformers consists of provid-
ing BERT with an adaptive mechanism to control
how many Transformers blocks are used (Xin et al.,
2020; Liu et al., 2020; Zhou et al., 2020).

In this paper, we present DACT-BERT, an al-
ternative to current dynamic Transformers that
uses an Adaptive Computation Time (ACT) mech-
anism (Graves, 2016) to control the complexity
of the processing pipeline of BERT. This mecha-
nism controls the number of Transformer blocks
executed at inference time by using additional clas-
sifiers. This allows resulting models to take advan-
tage of the information already encoded in inter-
mediate layers without the need to run all layers.
Specifically, our model integrates DACT, a fully
differentiable variant of the adaptive computation
module (Eyzaguirre and Soto, 2020) that allows
us to train a halting neuron after each Transformer
block. This neuron indicates the confidence the
model has on returning the correct answer after
executing said block. We use the DACT algorithm
to determine when the answer stabilizes in a given
output using the halting neuron and halt once it is
sure running more blocks cannot change the output.

2 Related Work

Several architectures have been designed to avoid
overcomputing in Transformer-based models. Ac-
cording to Zhou et al. (2020), there are two groups.
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Figure 1: DACT-BERT adds an additional classification layer after each Transformer block, along with a sigmoidal
confidence function. DACT-BERT combines the Transformer hidden state and the outputs and confidences of all
earlier layers into an accumulated answer an. Later, during inference, the model is halted once an ≈ aN .

2.1 Static Efficient Transformers
One such strategy is to use lightweight architec-
tures that are trained from scratch. As an example,
ALBERT (Lan et al., 2020) and Universal Trans-
former (Dehghani et al., 2019) propose cross-layer
parameter sharing as a way to improve model ef-
ficiency. The latter also includes an ACT-based
(Graves, 2016) halting mechanism that is not fully
differentiable as DACT-BERT is.

A second strategy is to distill the knowledge
of pretrained models into a more compact “stu-
dent". Models such as PKD-BERT (Sun et al.,
2019), TinyBERT (Jiao et al., 2020), and Distil-
BERT (Sanh et al., 2020) compress the knowledge
of large models, the “teachers", into more compact
or efficient ones to obtain similar performance at a
reduced computation or memory cost. While these
approaches effectively reduce the total calculation
needed to execute the model, they are limited in the
same way as BERT, they do not take into account
that some examples could be less complicated than
others and use the same amount of computation.

2.2 Dynamic Transformers
Recently, a series of algorithms have been proposed
to reduce computation in Transformer language
models based on early exiting (Kaya et al., 2019;
Han et al., 2021). Models such as DeeBERT (Xin
et al., 2020), FastBert (Liu et al., 2020), PABEE
(Zhou et al., 2020), and Depths Transformers (El-
bayad et al., 2020) introduce intermediate classi-
fiers after each Transformer block. At inference,
a “halting criterion” is used to dynamically deter-
mine the number of blocks needed to perform a

specific prediction. Instead of using a confidence
approach (Guo et al., 2017) to determine when to
stop, recent approaches rely on computing a partic-
ular heuristic (such as Shannon’s entropy or Mutual
Information) (Liu et al., 2020; Xin et al., 2020; Liu
et al., 2021), an agreement between intermediate
classifiers (Zhou et al., 2020), a trained confidence
predictor (Xin et al., 2021), or directly the amount
of steps based on an heuristic based training (El-
bayad et al., 2020).

Unlike previous works that use heuristic prox-
ies of models confidence to decide when to halt,
DACT-BERT is based on a learning scheme that
induces the model to halt when it predicts that its
current answer will not change with further process-
ing. As an illustrative example consider a difficult
input. Here, our model could “understand” that fur-
ther processing steps are superfluous and decide to
stop early, even if its current answer has a low con-
fidence. On the other hand, existing early stopping
models would keep wasting computation because
their confidence is low.

3 DACT-BERT: Differentiable Adaptive
Computation Time for BERT

Dynamic early stopping methods use a proxy of
model confidence to decide when it is safe to cut
computation. In this work our signaling module,
DACT, approximates this gating mechanism with a
soft variant that allows our model to independently
learn the confidence function. This mechanism
can then be used to detect when stable results are
obtained, allowing for the reduction of the total
number of steps necessary for a given prediction.
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The original formulation of DACT (Eyzaguirre and
Soto, 2020) applies this module to recurrent models.
In our case, we adapt the formulation to the case of
Transformer based architectures, mainly BERT.

3.1 Method Description

As shown in Figure 1 and detailed in Algorithm
1, DACT-BERT introduces additional linear layers
after each computational unit, similar to the off-
ramps in DeeBERT (Xin et al., 2020) or the student
classifiers in the work of Liu et al. (2020). However,
differently from previous approaches, each n-th
DACT module also computes an scalar confidence
score, or halting value hn, in addition to the output
vector yn. Following Devlin et al. (2019), both, yn
and hn, are estimated by using the classification
token ([CLS]) that is included in BERT as part of
the output representation of each layer.

During training, all the output vectors and halt-
ing values are accumulated to obtain an i.e., en-
coding the model’s best guess after unrolling n
Transformer layers. It is combined using the fi-
nal predicted probabilities pn, allowing it to be
rewritten as the weighted average of all interme-
diate outputs yn multiplied by a function of the
confidences of earlier blocks. Line 8 shows how
the output vectors are combined using a function
of the halting values, to obtain the final predicted
probabilities.

The model output is built inductively by using
a monotonically decreasing function of the model
confidence, pn, to interpolate between the current
step’s answer and the result of the same operation
from the previous step. We then train the model
to reduce the classification loss of the final output
with a regularizer that induces a bias towards re-
duced computation. Unlike the regularizer used
by Eyzaguirre and Soto (2020), we use:

L̂(x, y) = L(x, y) + τ

n∑

i=1

hi (1)

where τ is a hyper-parameter used to moderate the
trade-off between complexity and error. We find
empirically that our changes help convergence and
further binarize the halting probabilities.

Notably, the formulation is end-to-end differen-
tiable. This allows to fine-tune the weights of the
underlying backbone, i.e. the Transformer and em-
bedding layers, using a joint optimization with the
process that trains the intermediate classifiers.

Algorithm 1 DACT

Input: M model with N blocks
Input: is_training ∈ {True,False}

1: pn ← 1
2: an ← 0⃗
3: for step n = 1, 2, . . . N do
4: # Get output and confidence
5: yn ← GetOutputModule(M,n)
6: hn ← GetHaltModule(M,n)
7: # Combine with previous outputs
8: an ← (yn ∗ pn−1) + (an ∗ (1− pn−1))
9: # Update halting probability

10: pn ← pn−1 ∗ hn
11: # Stop computation during inference
12: if not is_training then
13: if AnsCantChange() then
14: break loop
15: end if
16: end if
17: end for
Output: Approximate final answer an

3.2 Dynamic Computation at Inference
The inductive formulation of an lends itself to cal-
culating upper and lower bounds on the probabili-
ties of the output classes. At inference, execution
halts once the predicted probabilities for the top-
class c∗ in an after running all N − n remaining
steps is still higher than the highest value for the
runner-up class cru, and by extension of any other
class, then halting doesn’t change the output:

Pr(c∗, n)(1− pn)
N−n ≥ Pr(cru, n)+ pn(N −n)

(2)
That is, the model stops executing additional

blocks once it finds that doing so will not change
the class with maximum probability in the output
because the difference between the top class and
the rest is insurmountable. Therefore, the halting
condition remains the same as the original DACT
formulation (Eyzaguirre and Soto, 2020).

3.3 Training
The training of the module follows a two step pro-
cess. First, the underlying Transformer model must
be tuned to the objective task. This ensures a good
starting point onto which the DACT module can
then be adapted to and speeding up convergence.
This is followed by a second fine-tuning phase
where the complete model is jointly trained for
the task. This differs slightly from existing dy-
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namic Transformer methods, which first pre-train
the backbone and then freeze it to modify only the
classifier weights.

4 Results

4.1 Experimental Setup
We tested our method using both BERT and
RoBERTa backbones, evaluating both models on
six different tasks from the GLUE benchmark
(Wang et al., 2018). We use DeeBERT (Xin et al.,
2020) and PABEE (Zhou et al., 2020) as our dy-
namic baselines, using the same backbones for a
fair comparison, and the respective non-adaptive
backbones along with DistilBERT (Sanh et al.,
2020) as static baselines.

4.2 Implementation Details
Our model was developed using PyTorch (Paszke
et al., 2017) on top of the implementations released
by Xin et al. (2020) and Zhou et al. (2020), as well
as the HuggingFace Transformers library (Wolf
et al., 2020). Because the focus of this paper was
to introduce an alternative architecture of dynamic
Transformers and not achieve state of the art results
we use the default parameters and architectures
from the Transformers library.

Both DeeBERT and DACT-BERT experiments
were repeated three times to obtain the confidence
intervals (95% confidence) shown in Figure 2, each
time using a different random initialization for
the weights in the auxiliary classifiers 1. Results
for FastBERT (Liu et al., 2020) are not reported
since both DeeBERT and FastBERT use the same
entropy-threshold halting criterion.

Each experiment was run using a single 11GB
NVIDIA graphics accelerator, which allows for
training on the complete batch using 32-bit preci-
sion and without needing gradient accumulation.

4.3 Computational Efficiency
To compare the trade-off that exists between com-
putation efficiency and the performances obtained
with it, we computed efficiency-performance dia-
grams for the validation set. Efficiency was mea-
sured as the proportion of Transformer layers used
compared to the total number of layers in their
static counterparts. The specific metrics for per-
formance are those suggested in the GLUE paper
(Wang et al., 2018) for each task.

1The random seeds were saved and will be published along
with the code to facilitate replicating the results.

In our experiments we fine-tune the backbone
model for the GLUE tasks using the default val-
ues of the hyper-parameters. For the second stage
we vary the value of τ in Equation (1) to com-
pute our computation-performance diagram curves,
selecting from a set of fixed values for all the ex-
periments: τ ∈ {5 · 10−5, 5 · 10−4, 5 · 10−3, 5 ·
10−2, 5 ·10−1}. By modifying this hyperparameter
in DACT we can manage the amount of computa-
tion the model will perform and record the perfor-
mance it managed to achieve at this level.

Similarly, using DeeBERT to create the
computation-performance diagrams the entropy
threshold was varied continuously in increments of
0.05. For PaBEE we fluctuate the patience value
between 1 and 12, effectively trying out the full
range. The results for the unmodified static back-
bones are also included as a reference, as are the
results obtained by the half-depth DistilBERT pre-
trained model.

The area under the curve (AUC) in the Perfor-
mance vs. Efficiency plot shown in Figure 2 shows
our approach improves the trade-off between preci-
sion and computation. As was to be expected, all
models perform similarly when saving little compu-
tation as they replicate the results achieved by the
non-adaptive BERT backbone that performs a simi-
lar number of steps. On the other hand, when using
limited amounts of computation our model outper-
forms the alternatives in almost every task, espe-
cially in tasks for with more training data available.
We attribute this advantage in trading off compu-
tation and performance to fine-tuning of the back-
bone weights for reduced computation. Intuitively,
as we move away from the 12 step regime for which
the underlying static model was trained, more mod-
ification of the weights is required. Recall that
of all the Dynamic Transformer algorithms only
DACT-BERT can modify the Transformer weights
because of its full-differentiability.

Importantly, because our model learns to reg-
ulate itself, it shows remarkable stability in the
amount of calculation saved. As the same values
of ponder penalties give rise to similar efficiency
outputs. By contrast, DeeBERT proves to be highly
sensitive to the chosen value for the entropy hyper-
parameter. The robustness of our model appears
to come from learning the efficiency mechanism
rather than relying on a somewhat arbitrary heuris-
tic for its control.

In addition, we find our model uses less lay-
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Figure 2: Performance vs efficiency trade-offs for BERT-base and RoBERTa-base models using DACT-BERT
(blue), DeeBERT (orange) and PaBEE (green). DACT-BERT and DeeBERT experiments were repeated three times
for each hyper-parameter. Individual runs are shown with colored dots, and the average along with its confidence
interval is shown using a band. In all figures the x-axis shows computation measured as the fraction of the layers
used by the respective static backbone (shown as a black diamond). DistilBERT’s relative perfomance is shown at
the 50% computation mark using a black star.

Figure 3: Frequency each Transformer block is used.

ers compared to DeeBERT (see example at Fig.
3), allowing us to prune the final layers. We ex-
plain this difference by noting that the entropy will
remain high throughout the whole model for the
case of difficult questions as it will be uncertain
about the answer. On the other hand, any layer in
DACT-BERT is capable of quitting computation if

it believes future layers cannot answer with more
certainty than its own, regardless of how certain
the model actually is.

5 Conclusions

This work explored the value of using the DACT al-
gorithm with pre-trained Transformer architectures.
This results in a fully differentiable model that ex-
plicitly learns how many Transformers blocks it
needs to perform a specific task. Our results show
that our approach, DACT-BERT, outperforms the
current dynamic Transformer architectures in sev-
eral tasks when significantly reducing computation.
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Abstract

Warning: This paper contains examples of lan-
guage that some people may find offensive.

Transformer-based Natural Language Process-
ing models have become the standard for hate
speech detection. However, the unconscious
use of these techniques for such a critical
task comes with negative consequences. Vari-
ous works have demonstrated that hate speech
classifiers are biased. These findings have
prompted efforts to explain classifiers, mainly
using attribution methods. In this paper, we
provide the first benchmark study of inter-
pretability approaches for hate speech detec-
tion. We cover four post-hoc token attribu-
tion approaches to explain the predictions of
Transformer-based misogyny classifiers in En-
glish and Italian. Further, we compare gen-
erated attributions to attention analysis. We
find that only two algorithms provide faithful
explanations aligned with human expectations.
Gradient-based methods and attention, how-
ever, show inconsistent outputs, making their
value for explanations questionable for hate
speech detection tasks.

1 Introduction

The advent of social media has proliferated hate-
ful content online – with severe consequences for
attacked users even in real life. Women are often
attacked online. A study by Data & Society1 of
women between 15 to 29 years showed that 41%
self-censored to avoid online harassment. Of those,
21% stopped using social media, 13% stopped go-
ing online, and 4% stopped using their mobile
phone altogether. These numbers demonstrate the
need for automatic misogyny detection systems for
moderation purposes.

1https://www.datasociety.net/pubs/oh/
Online_Harassment_2016.pdf

You are a smart woman

∆P (10−2) -0.1 1.1 -0.0 0.8 -47.6

G 0.11 0.10 0.09 0.25 0.27
IG -0.17 0.18 -0.09 -0.35 -0.20
SHAP 0.00 -0.14 -0.04 -0.03 0.78
SOC 0.07 -0.13 0.03 0.03 0.52

Table 1: Explanations generated by benchmarked meth-
ods. A fine-tuned BERT wrongly classifies the text as
misogynous. Darker colors indicate higher importance.

Various Natural Language Processing (NLP)
models have been proposed to detect and mitigate
misogynous content (Basile et al., 2019; Indurthi
et al., 2019; Lees et al., 2020; Fersini et al., 2020a;
Safi Samghabadi et al., 2020; Attanasio and Pastor,
2020; Guest et al., 2021; Attanasio et al., 2022).
However, several papers already demonstrated that
hate speech detection models suffer from unin-
tended bias, resulting in harmful predictions for
protected categories (e.g., women). Table 1 (top
row) reports a very simple sentence that a state-
of-the-art NLP model misclassifies as misogynous
content.

This issue shows the need to understand the ra-
tionale behind a given prediction. A mature litera-
ture on model interpretability with applications to
NLP-specific approaches exists (Ross et al., 2021;
Sanyal and Ren, 2021; Rajani et al., 2019, inter-
alia).2 As explanations become part of legal regu-
lations (Goodman and Flaxman, 2017), a growing
body of work has focused on the evaluation of
explanation approaches (Nguyen, 2018; Hase and
Bansal, 2020; Nguyen and Martínez, 2020; Jacovi
and Goldberg, 2020, inter-alia). However, little
guidance on which interpretability method suits

2We refer the reader to Danilevsky et al. (2020) and Mad-
sen et al. (2021) for a recent, thorough perspective on explana-
tion methods for NLP models.
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best to the sensible context of misogyny identifi-
cation has been given. For instance, some expla-
nations in Table 1 hint to which token is wrongly
driving the classification and even highlight a po-
tential bias of the model. But not all of them.

We bridge this gap. We benchmark interpretabil-
ity approaches to explain state-of-the-art Trans-
former classifiers on the task of automatic misog-
yny identification. We cover two benchmark Twit-
ter datasets for misogyny detection in English and
Italian (Fersini et al., 2018, 2020b). We focus on
single-instance, post-hoc input attribution methods
to measure the importance of each token for pre-
dicting the instance label. Our benchmark suite
comprises gradient-based methods (Gradients (Si-
monyan et al., 2014) and Integrated Gradients (Sun-
dararajan et al., 2017)), Shapley values-based meth-
ods (SHAP (Lundberg and Lee, 2017)), and in-
put occlusion (Sampling-And-Occlusion (Jin et al.,
2020)). We evaluate explanations in terms of plausi-
bility and faithfulness (Jacovi and Goldberg, 2020).
Table 1 reports an example of token-wise contribu-
tion computed with these methods. Furthermore,
we study attention-based visualizations and com-
pare them to token attribution methods searching
for any correlation. To our knowledge, this is
the first benchmarking study of feature attribution
methods used to explain Transformer-based misog-
yny classifiers.

Our results show that SHAP and Sampling-And-
Occlusion provide plausible and faithful explana-
tions and are consequently recommended for ex-
plaining misogyny classifiers’ outputs. We also
find that, despite their popularity, gradient- and
attention-based methods do not provide faithful ex-
planations. Outputs of gradient-based explanation
methods are inconsistent, while attention does not
provide any useful insights for the classification
task.

Contributions We benchmark four post-hoc ex-
planation methods on two misogyny identification
datasets across two languages, English and Ital-
ian. We evaluate explanations in terms of plausi-
bility and faithfulness. We demonstrate that not
every token attribution method provides reliable
insights and that attention cannot serve as explana-
tion. Code is available at https://github.c
om/MilaNLProc/benchmarking-xai-m
isogyny.

2 Benchmarking suite

In the following, we describe the scope (§2.1) of
our benchmarking study, the included methods
(§2.2), and the evaluation criteria (§2.2).

2.1 Scope
We consider local explanation methods (Lipton,
2018; Guidotti et al., 2019). Given a classification
model, a data point, and a target class, these meth-
ods explain the probability assigned to the class by
the model. Global explanations provide model- or
class-wise explanations and are hence out of the
scope of this work.

Among local explanation methods, we focus on
post-hoc interpretability, i.e., we explain classifi-
cation models that have already been trained. We
leave out inherently interpretable models (Rudin,
2019) as they do not find widespread use in NLP-
driven practical applications.

We restrict our study to input attribution meth-
ods. In Transformer-based language models, inputs
typically correspond to the tokens’ input embed-
dings (Madsen et al., 2021). We, therefore, refer to
token attribution methods to generate a contribu-
tion score for each input token (or word, resulting
by some aggregation of sub-word token contribu-
tions).

2.2 Methods
We benchmark three families of input token at-
tribution methods. First, we derive token contri-
bution using gradient attribution. These methods
compute the gradient of the output with respect to
each of the inputs. We compute simple gradient
(G) (Simonyan et al., 2014) and integrated gradi-
ents (IG) (Sundararajan et al., 2017). Then, we
attribute inputs using approximated Shapley val-
ues (SHAP) (Lundberg and Lee, 2017). Finally,
following the literature on input perturbation via
occlusion, we impute input contributions using
Sampling-And-Occlusion (SOC) (Jin et al., 2020).
See appendix A.2 for all implementation details.

Attention There is an open debate of whether
attention is explanation or not (Jain and Wallace,
2019; Wiegreffe and Pinter, 2019; Bastings and
Filippova, 2020). Our benchmarking study pro-
vides a perfect test-bed to understand if attention
aligns with attribution methods. We compare stan-
dard self-attention with effective attention (Brunner
et al., 2020; Sun and Marasović, 2021). Further,
we measure attribution between input tokens and
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Dataset # Train # Test Hate % F1

AMI-EN 4,000 1,000 45% 68.78
AMI-IT 5,000 1,000 47% 79.79

Table 2: Summary of datasets in terms of the number
of training, validation and test tweets, percentage of
hateful records within the training split, and F1-score of
BERT models on test sets.

hidden representations using Hidden Token Attri-
bution (HTA) (Brunner et al., 2020).

2.3 Evaluation criteria

We use plausibility and faithfulness as evaluation
criteria (Jacovi and Goldberg, 2020). A “plausi-
ble” explanation should align with human beliefs.
In our context, the provided explanation artifacts
should convince humans that highlighted words are
responsible for either misogynous speech or not.3

A “faithful” explanation is a proxy for the true “rea-
soning” of the model. Gradient attributions are
commonly considered faithful explanations as gra-
dients provide a direct, mathematical measure of
how variations in the input influences output. For
the remaining attribution approaches, we measure
faithfulness under the linearity assumption (Jacovi
and Goldberg, 2020), i.e., the impact of certain
parts of the input is independent of the rest. In our
case, independent units correspond to input tokens.
Following related work (Jacovi et al., 2018; Feng
et al., 2018; Serrano and Smith, 2019, inter-alia),
we evaluate faithfulness by erasing input tokens and
measuring the variation on the model prediction.
Ideally, faithful interpretations highlight tokens that
change the prediction the most.

2.4 Data

Automatic misogyny identification is the binary
classification task to predict whether a text is
misogynous or not.4 We focus on two recently-
released datasets for misogynous content identifi-
cation in English and Italian, released as part of the
Automatic Misogyny Identification (AMI) shared
tasks (Fersini et al., 2018, 2020b). Both datasets
have been collected via keyword-based search on
Twitter. Table 2 reports the dataset statistics.

3In this study, the human expectation corresponds to the
authors’.

4Characterizing misogyny is a much harder task, possibly
modeling complex factors such as shaming, objectification, or
more. Here, we simplify the task to focus on benchmarking
interpretability.

3 Experimental setup

Among the Transformer-based models, we focus
on BERT (Devlin et al., 2019) due to its widespread
usage. We fine-tuned pre-trained BERT-based mod-
els on the AMI-EN and AMI-IT datasets. We report
full details on the training in appendix A.1. Table 2
reports the macro-F1 performance of BERT models
on the test splits.

We explain BERT outputs on both tweets from
test sets5 and manually-generated data. On real
data, we address two questions: 1) Is it right for the
right reason?, i.e., we assess if the model relies on
a plausible set of tokens; 2) What is the source of
error?, i.e., we aim to identify tokens that wrongly
drive the classification outcome. By explaining
manually-defined texts, we can probe for model
biases.

Tables 3-6 report token contributions computed
with benchmarked approaches (§2.2). We report
contributions for individual tokens.6 We define ta-
ble contents as follows. Separately by explanation
method, we first generate raw contributions and
then L1-normalize the vector. Finally, we use a
linear color scale between solid blue (assigned for
contribution -1), white (contribution 0), and solid
red (contribution 1). For all reported examples,
we explain the misogynous class. Hence, posi-
tive contributions indicate tokens pushing towards
the misogynous class, while negative contributions
push towards the non-misogynous one. Lastly, the
second top row reports the variation on the probabil-
ity assigned by the model when the corresponding
token is erased (∆P ).

4 Discussion

Error analysis Table 3 shows the explanations
for a tweet incorrectly predicted as misogynous.
IG, SHAP, and SOC assign a negative contribu-
tion to the word boy. This matches our expecta-
tions since the target of the hateful comment is the
male gender. These explanations are thus plausi-
ble. Still, the tweet is classified as misogynous.
The tokens pu and ##ssy mainly drive the predic-
tion to the misogynous class, as revealed by all
explainers (SHAP and SOC in a clearer way). Ex-

5We rephrase and explain rephrased versions of tweets to
protect privacy.

6While several work average sub-word contributions for
out-of-vocabulary words, there is no general agreement on
whether this brings meaningful results. Indeed, an average
would assume a model that leverages tokens as a single unit,
while there is no clear evidence of that.
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You pu ##ssy boy

∆P (10−2) -0.3 -0.2 -35.6 0.8

G 0.11 0.19 0.32 0.18
IG 0.26 0.00 0.14 -0.60
SHAP -0.03 0.52 0.28 -0.17
SOC -0.01 0.03 0.51 -0.14

Table 3: Example from AMI-EN test set, anonymyzed
text on first row. Ground truth: non misogynous.
Prediction: misogynous (P = 0.78).

planations suggest the model is failing to assign
the proper importance to the targeted gender of the
hateful comment. These plausible explanations are
also faithful. Removing the term boy increases the
probability of the misogynous class while omitting
tokens pu and ##ssy decrease it.

We further analyze the term p*ssy and its role
as a source of errors. Almost all tweets of the test
set containing the term p*ssy are labeled by the
model as misogynous. The false-positive rate on
this set of tweets is 0.93 compared to the 0.49 of the
overall test set. Similar considerations apply to En-
glish words typically associated with misogynous
content as b*tch and wh*re.

Is it right for the right reason? Table 4 shows
the explanation of a correctly predicted misogy-
nous tweet. Gradient, SHAP, and SOC explana-
tions assign a high positive contribution to slurs
(b*tch, s*ck, and d*ck). These explanations align
with human expectations. However, not all slurs
impact the classification outcome. Explanations
on b*tch are faithful but they are not for s*ck and
d*ck. Differently, IG does not highlight any token
with a positive contribution. This goes against ex-
pectations as the predicted class is misogynous and
therefore we cannot draw conclusions.

Unintended bias We study explanations to
search for errors caused by unintended bias,
a known phenomenon affecting models for
misogynous identification. A model suffering
from unintended bias performs better (or worse)
when texts mention specific identity terms (e.g.,
woman) (Dixon et al., 2018).

Table 1 reports the non-misogynous text "You
are a smart woman" incorrectly labeled as misog-
ynous. SHAP, SOC, and, to a lesser extent, Gra-
dient explanations indicate the term woman as re-
sponsible for the prediction. This result matches
with recent findings on the unintended bias of hate-
ful detection models (Nozza et al., 2019; Dixon

et al., 2018; Borkan et al., 2019) and therefore
explanations are plausible. Removing the term
woman causes a drop of 0.48 to the probability of
the misogynous class. This validates the insight
provided by the explanations. Similar to the previ-
ous examples, the explanation of IG is difficult to
interpret.

Table 5 shows another example of unintended
bias. The text “Ann is in the kitchen” is incorrectly
labeled as misogynous. Gradients, SHAP, and SOC
assign the highest positive contribution to the (com-
monly) female name Ann. Interestingly, the second
most important word for Gradients and SHAP is
kitchen, reflecting stereotypes learned by the clas-
sification model (Fersini et al., 2018). These expla-
nations are faithful: the model prediction drops by
a significant 0.40 and 0.24 when erasing the tokens
Ann and kitchen, respectively. We substitute the
name Ann with David, a common male name. We
observe that the prediction and the explanations
drastically change. The text is correctly assigned to
the non-misogynous class and IG, SHAP, and SOC
assign a high negative contribution to the word
David. The all-positive contributions of Gradients
do not provide useful insights.

Bias due to language-specific expressions Table
6 (left) shows an example of incorrectly predicted
misogynous text in Italian: "p*rca p*ttana che gran
pezzo di f*ga" ("holy sh*t what a nice piece of
*ss"). The expression "p*rca p*ttana" (literally pig
sl*t) is a taboo interjection commonly used in the
Italian language and does not imply misogynous
speech.

The interpretation of the gradient explanation is
hard since all contributions are positive and asso-
ciated with the misogynous class. All explanation
methods assign a positive contribution to the word
f*ga (*ss). SHAP, SOC, and, to a lesser extent
IG, indicate that the main reason behind the non-
misogynous prediction is the term p*rca. The bias
of the model towards this expression was firstly
exposed in (Nozza, 2021) and it thus validates IG,
SHAP, and SOC explanations as plausible. When
one of the two terms of the expression is removed,
the probability increases significantly. This sug-
gests that explanations by IG, SHAP, and SOC are
faithful. Further, we inspect the behavior of expla-
nation methods when we erase one of the terms.
We omit the word p*rca and we report its expla-
nations on Table 6 (right). The text is correctly
assigned to the misogynous class and the word
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s*ck a d*ck and choke you b*tch

∆P (10−2) -0.02 0.2 0.8 0.3 -0.1 0.03 -13.4

G 0.10 0.08 0.14 0.07 0.08 0.10 0.25
IG -0.14 -0.16 -0.08 -0.05 -0.20 -0.22 -0.16
SHAP 0.24 -0.03 0.07 -0.05 0.05 -0.06 0.50
SOC 0.20 -0.02 0.26 -0.02 0.07 0.00 0.29

Table 4: Example from AMI-EN test set, anonymyzed text on first row. Ground truth: misogynous. Prediction:
misogynous (P = 0.90).

Ann is in the kitchen David is in the kitchen

∆P (10−2) -40.4 15.4 12.7 -12.6 -24.3 -1.0 8.0 -1.3 -5.8 -6.7

G 0.25 0.16 0.08 0.10 0.21 0.19 0.18 0.09 0.09 0.28
IG -0.15 0.18 0.12 -0.33 -0.22 -0.36 0.14 0.09 -0.25 -0.17
SHAP 0.27 -0.31 -0.15 -0.01 0.27 -0.29 -0.38 -0.19 -0.05 0.09
SOC 0.28 -0.19 -0.06 0.10 0.07 -0.25 -0.11 -0.03 0.04 0.05

Table 5: Manually-generated example. Text starts with a female (left) and male (right) name. Ground truth (both):
non-misogynous. Prediction: misogynous (P = 0.53) (left), non-misogynous (P = 0.14) (right).

p*rca p*ttana che gran pezzo di f*ga p*ttana che gran pezzo di f*ga

∆P (10−2) 94.7 79.7 -0.8 -0.6 0.3 -0.7 -0.6 1.0 -2.3 -1.3 0.4 0.3 -22.9

G 0.17 0.15 0.06 0.07 0.11 0.07 0.13 0.20 0.08 0.10 0.14 0.08 0.21
IG -0.25 -0.10 -0.09 -0.16 -0.04 0.21 0.13 -0.12 -0.03 -0.25 0.11 0.17 0.32
SHAP -0.69 -0.01 0.01 0.05 0.05 0.05 0.14 0.15 0.10 0.13 0.10 0.10 0.43
SOC -0.56 -0.07 0.00 0.04 0.05 -0.05 0.22 0.00 0.05 0.07 0.04 -0.12 0.57

Table 6: Manually-generated example. Complete text (left) and text without initial “p*rca” (right). Non-literal trans-
lation: “holy sh*t what a nice piece of *ss”. Ground truth (both): misogynous. Prediction: non-misogynous
(P = 0.03) (left), misogynous (P = 0.97) (right).

f*ga (*ss) has the highest positive contribution for
all the approaches.

4.1 Is attention explanation?

We follow up on the open debate on attention
used as an explanation, providing examples on the
misogyny identification task. Figure 1 shows self-
attention maps in our fine-tuned BERT at different
layers and heads for the already discussed sentence
“You are a smart woman”. Based on our previous
analysis (§4), we know that the model has an unin-
tended bias towards the token “woman”.

We cannot infer the same information from at-
tention maps. Raw attention weights differ sig-
nificantly for different layers and heads. In this
example, there is a vertical pattern (Kovaleva et al.,
2019) on the token “a” in layer 3 (Figure 1a). How-
ever, the pattern disappears from heads in the same
layer (Figure 1b) and from the same head on deeper
layers, where, instead, a block pattern characterizes
“smart” and “woman” (Figure 1c). This variabil-
ity hinders interpretability as no unique behavior
emerges. Effective Attention (Brunner et al., 2020)

is based on attention and shares the same issue.7

These results further motivate the idea that attention
gives only a local perspective on token contribu-
tion and contextualization (Bastings and Filippova,
2020). However, this does not provide any use-
ful insight for the classification task. To further
validate this limited scope, we use Hidden Token
Attribution (Brunner et al., 2020) and measure the
contribution of each input token (i.e., its first-layer
token embedding) to hidden representations. On
lower layers, there is a marked diagonal contribu-
tion, meaning that tokens mainly contribute to their
own representation. Interestingly, on the upper lay-
ers, a strong contribution to “smart” and “woman”
appears for all the tokens in the sentence. Different
patterns between HTA and attention suggest that,
even in the locality of a layer and a single head, at-
tention weights do not measure token contribution.

We observed similar issues on other examples
and for Italian models (see appendix B). We there-

7In most of our experiments, Effective Attention brings no
perceptually different maps than simple Attention. The two
methods are hence equivalent for local attention inspection.
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(a) Layer 3, Head 1 (b) Layer 3, Head 3

(c) Layer 10, Head 1 (d) Layer 10, Head 3

Figure 1: Attention (left), Effective Attention (center), and Hidden Token Attribution (right) maps at different layers
in fine-tuned BERT. Lighter colors indicate higher weights. Sentence: “You are a smart woman”.

fore cannot consider attention as a plausible nor
a faithful explanation method and discourage the
use of attention to explain BERT-based misogyny
classifiers.

5 Related Work

Few works applied interpretability approaches to
hate speech detection. Wang (2018) proposes an
adaptation of explainability techniques for com-
puter vision to visualize and understand the CNN-
GRU classifier for hate speech (Zhang et al., 2018).
Mosca et al. (2021) study both local and global
explanations. They use Shapley values (Lund-
berg and Lee, 2017) to quantify feature impor-
tance on a local level and feature space exploration
for a global explanation. Risch et al. (2020) ana-
lyze multiple attribution-based explanation meth-
ods for offensive language detection. The analy-
sis includes an interpretable model (Naïve Bayes),
model-agnostic methods based on surrogate models
(LIME (Ribeiro et al., 2016), layer-wise relevance
propagation (LRP) (Bach et al., 2015), and a self-
explanatory model (LSTM with an attention mech-
anism). SHAP explainer is applied (Wich et al.,
2020) to investigate the impact of political bias on
hate speech classification. Sample-And-Occlusion
(SOC) explanation algorithm has been used in its
hierarchical version in different papers for showing
the results of hate speech detection (Nozza, 2021;
Kennedy et al., 2020).

In this paper, we specifically focus on hate
speech against women. In this context, Godoy and
Tommasel (2021) apply SHAP to derive global ex-

planations with the aim of exploring unintended
bias of Random Forest-based misogyny classifier.

While growing efforts are made for evaluat-
ing interpretability approaches for NLP models
(Atanasova et al., 2020; DeYoung et al., 2020;
Prasad et al., 2021; Nguyen, 2018; Hase and
Bansal, 2020; Nguyen and Martínez, 2020; Jacovi
and Goldberg, 2020), the evaluation is not domain-
specific. Therefore, the benchmarking miss to con-
sider specific sensitive problems and biases that
are proper of the hate speech domain on which the
explanation validation must focus. This paper fills
this gap by focusing on post-hoc feature attribution
explanation methods on individual predictions for
the task of hate speech against women.

6 Conclusion

In this paper, we benchmarked different explain-
ability approaches on Transformer-based models
for the task of hate speech detection against women
in English and Italian. We focus on post-hoc
feature attribution methods applied to fine-tuned
BERT models. Our evaluation demonstrated that
SHAP and SOC provide plausible and faithful
explanations and are consequently recommended
for explaining misogyny classifiers’ outputs. In
contrast, gradient- and attention-based approaches
failed in providing reliable explanations.

As future work, we plan to add to the bench-
marking suite a systematic evaluation involving
human annotators. We also plan to include recently
introduced token attribution methods (Sikdar et al.,
2021) as well as new families of approaches, like
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natural language explanations (Rajani et al., 2019;
Narang et al., 2020) and input editing (Ross et al.,
2021). Finally, we will assess explanations of the
most problematic data subgroups (Goel et al., 2021;
Pastor et al., 2021; Wang et al., 2021).
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Ethical Considerations

We explain BERT-based classifiers using a con-
trolled subset of a large, fast-growing collection
of explanation methods available in the literature.
While replicating our experiments with different
approaches, or on different data samples, from dif-
ferent datasets or explaining different models, we
cannot exclude that some people may find the ex-
planations offensive or stereotypical. Further, re-
cent work has demonstrated gradient-based expla-
nations are manipulable (Wang et al., 2020), ques-
tioning the reliability of this widespread category
of methods.

We, therefore, advocate for responsible use of
this benchmarking suite (or any product derived
from it) and suggest pairing it with human-aided
evaluation. Moreover, we encourage users to con-
sider this work as a starting point for model debug-
ging (Nozza et al., 2022) and the included explana-
tion methods as baselines for future developments.
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A Experimental setup

A.1 Training hyper-parameters
All our experiments use the Hugging
Face transformers library (Wolf et al.,
2020). We base our models and to-
kenizers on the bert-base-cased
checkpoint for English tasks and on the
dbmdz/bert-base-italian-cased
checkpoint for Italian. We pre-process and
tokenize our data using the standard pre-trained
BERT tokenizer, with a maximum sequence length
of 128 and right padding. We train all models
for 3 epochs with a batch size of 64, a linearly
decaying learning rate of 5 · 10−5 and 10% of the
total training step as a warmup, and full precision.
We use 10% of training data for validation. We
evaluate the model every 50 steps on the respective
validation set. At the end of the training, we use
the checkpoint with the best validation loss. We
re-weight the standard cross-entropy loss using
the inverse of class frequency to account for class
imbalance.

A.2 Explanation methods
We used the Captum library (Kokhlikyan et al.,
2020) with default parameters to compute gradients
(G) and integrated gradients (IG). Following (Han
et al., 2020), for IG we multiply gradients by input
word embeddings. For Shapley values estimation
(SHAP), we use the shap library8 with Partition-
SHAP as approximation method. For Sampling-
And-Occlusion (SOC), we used the implementation
associated with Kennedy et al. (2020).9 Please re-
fer to our repository (https://github.com
/MilaNLProc/benchmarking-xai-mis
ogyny) for further technical details.

A.3 Attention maps
We used attention weights provided by the trans-
formers library for visualization. We implemented
Effective Attention and Hidden Token Attribution
following Brunner et al. (2020). We release the
implementation on our repository.

B Attention plots

Figure 2 shows attention visualizations for the
sentence “p*rca p*ttana che gran pezzo di f*ga”

8https://github.com/slundberg/shap
9https://github.com/BrendanKennedy/co

ntextualizing-hate-speech-models-with-ex
planations

(Non-literal translation: “holy sh*t what a nice
piece of *ss”). As discussed in §4 (Bias due to
language-specific expressions), the text is mis-
classified as non-misogynous and most of ex-
planation methods correctly highlight the Italian
interjection “p*rca p*ttana”.

Similar to results reported in §2.2, we cannot find
useful insights in attention plots. Attention in layer
3 has a diagonal pattern in head 1, and a diagonal
pattern in head 3 on the word che (“what”). How-
ever, these patterns disappear in layer 10 where
attention is focused on p*rca. At layer 10, HTA
is more spread than attention, suggesting that the
latter measures only a local token contribution.
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(a) Layer 3, Head 1 (b) Layer 3, Head 3

(c) Layer 10, Head 1 (d) Layer 10, Head 3

Figure 2: Attention (left), Effective Attention (center), and Hidden Token Attribution (right) maps at different layers
in fine-tuned BERT. Lighter colors indicate higher weights. Sentence: “p*rca p*ttana che gran pezzo di f*ga”,
non-literal translation: “holy sh*t what a nice piece of *ss”.
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Abstract

With many real-world applications of Natu-
ral Language Processing (NLP) comprising of
long texts, there has been a rise in NLP bench-
marks that measure the accuracy of models
that can handle longer input sequences. How-
ever, these benchmarks do not consider the
trade-offs between accuracy, speed, and power
consumption as input sizes or model sizes are
varied. In this work, we perform a systematic
study of this accuracy vs. efficiency trade-off
on two widely used long-sequence models –
Longformer-Encoder-Decoder (LED) and Big
Bird – during fine-tuning and inference on
four datasets from the SCROLLS benchmark.
To study how this trade-off differs across hy-
perparameter settings, we compare the mod-
els across four sequence lengths (1024, 2048,
3072, 4096) and two model sizes (base and
large) under a fixed resource budget. We find
that LED consistently achieves better accuracy
at lower energy costs than Big Bird. For sum-
marization, we find that increasing model size
is more energy efficient than increasing se-
quence length for higher accuracy. However,
this comes at the cost of a large drop in infer-
ence speed. For question answering, we find
that smaller models are both more efficient and
more accurate due to the larger training batch
sizes possible under a fixed resource budget.

1 Introduction

Over the past few years, advances in sequence
modeling have led to impressive results on sev-
eral NLP benchmarks (Wang et al., 2019, 2020). A
closer look at these results reveals that higher accu-
racies are typically achieved by increasingly larger
and computationally intensive models, which have
large carbon footprints that can have an adverse
effect on the environment (Strubell et al., 2019).

This has led to the Green AI initiative, which
urges researchers to consider energy and computa-
tional efficiency when evaluating models in order to
promote those which achieve high accuracies with

smaller carbon footprints (Schwartz et al., 2020).
However, although it has been a few years since
Green AI was introduced, efficiency metrics have
still not been integrated into many recently pro-
posed benchmarks such as the Long Range Arena
(LRA) (Tay et al., 2020a) and SCROLLS (Shaham
et al., 2022). These benchmarks serve as a strong
basis for comparison between Transformer models
in terms of accuracy. However, improved accuracy
is often obtained by either increasing the input se-
quence length or the model size, and the energy
cost of these improvements is not clear. Moreover,
previous characterizations of model efficiency in
terms of speed (e.g., in LRA) only focus on inter-
model comparisons, keeping model sizes and input
sequence lengths fixed. Here, we argue that the
accuracy-vs-efficiency trade-off also has implica-
tions for intra-model comparisons when selecting
hyperparameters – e.g., increasing the sequence
length might positively impact accuracy but may
also negatively impact efficiency metrics. As a re-
sult, when faced with a fixed resource budget, it
is not clear whether practitioners should opt for
increasing the model size or increasing the input
length for the most efficient use of resources.

In this work, we perform a systematic study of
the trade-off between efficiency and accuracy for
two widely used long-context NLP models – Big
Bird (Zaheer et al., 2020) and Longformer-Encoder-
Decoder (LED) (Beltagy et al., 2020) – on four
datasets from the SCROLLS benchmark.1 We char-
acterize efficiency using several metrics, including
the total energy consumption during training, train-
ing speed, inference speed, and power efficiency.
We compare the models across several different
input lengths and two different model sizes (base
and large). Overall, for summarization, we find
that, perhaps surprisingly, increasing model size
is a more energy efficient way of increasing accu-

1Code available at https://github.com/
phyllisayk/nlp-efficiency-tradeoff.
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racy as compared to increasing sequence length.
However, if inference speed is the main efficiency
metric of interest, then smaller models should be
preferred. For question answering, on the other
hand, we find that using smaller models is more
efficient in terms of all metrics and more accurate
due to the larger training batch sizes allowed under
a fixed resource budget.

2 Background

2.1 NLP Benchmarks

Benchmarks such as SuperGLUE (Wang et al.,
2019) and SQuAD (Rajpurkar et al., 2018) have
served as the gold standard in the development of
NLP models. However, these benchmarks only
capture model performance on short text sequences
while many NLP tasks of interest, such as ques-
tion answering and summarization, involve long
contexts. Recently, several efficient Transformer
models have been introduced which require sub-
quadratic memory and time complexity with re-
spect to the input length (Tay et al., 2020b). Conse-
quently, new standardized benchmarks have been
introduced specifically focusing on the long se-
quence modeling capabilities of these models, in-
cluding the Long Range Arena (LRA) (Tay et al.,
2020a) and SCROLLS (Shaham et al., 2022).

Although LRA evaluates long-sequence models,
it only contains two language datasets which arti-
ficially elongate the input sequences through byte
tokenization. The SCROLLS benchmark, on the
other hand, focuses on language tasks which nat-
urally require synthesizing information from long
sequences, including summarization, question an-
swering, and classification. SCROLLS does not
compare models in terms of efficiency at all, and
while LRA compares model speeds, it only does so
across different model architectures, ignoring the
impact of hyperparameter choices. For our analy-
sis, we utilize three summarization tasks and one
question answering task from SCROLLS.

2.2 Energy Considerations

As deep learning models grow more complex to
meet increasing demands, the computation required
to run these models generates an increasingly larger
energy cost (Strubell et al., 2019). This has led
to the Green AI initiative (Schwartz et al., 2020)
which demands higher energy efficiency while
maintaining state-of-the-art accuracies. A bench-
mark of the performance and energy efficiency of

Dataset Task Avg Input Length
GovReport Summ 7,897
SumScreenFD Summ 5,639
QMSum Summ 10,396
Qasper QA 3,671

Table 1: An overview of the datasets from SCROLLS
that were used in this paper. This is an abbreviated ver-
sion of the table shown in the original SCROLLS paper
(Shaham et al., 2022). Summ indicates summarization
and QA indicates Question Answering. See Appendix
A for more information.

AI accelerators has been performed during training,
but it only examined 2-layer LSTMs and vanilla
Transformers (Wang et al., 2020). HULK (Zhou
et al., 2021) is an NLP benchmark that evaluates
the energy efficiency of several Transformer mod-
els (e.g., BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019)) during pre-training, fine-tuning,
and inference, but it does not consider long-range
models. Additionally, neither of the benchmarks
consider the effects of different sequence lengths
on both energy efficiency and accuracy. However,
we confirm the observation from HULK that larger
model sizes do not always imply lower efficiency.

3 Methodology

Our main contribution is an analysis of how differ-
ent sequence lengths affect the trade-off between
accuracy, power, and speed in long-context Trans-
former models during fine-tuning and inference.
Since our focus is on long-context NLP tasks,
we investigated the following four input sequence
lengths: 1024, 2048, 3072, and 4096.

3.1 Datasets
We conduct our analyses on four datasets from the
SCROLLS benchmark: GovReport (Huang et al.,
2021), SummScreenFD (Chen et al., 2021), QM-
Sum (Zhong et al., 2021), and Qasper (Dasigi et al.,
2021). These datasets span two different tasks –
summarization and question answering – which
frequently involve long inputs. We provide a sum-
mary of these datasets in Table 1 with more details
provided in Appendix A. We cast these datasets in
a unified sequence-to-sequence format using the
same procedure as done in SCROLLS.

3.2 Models
Following standard practice, we start with pre-
trained models and restrict our analysis to the fine-
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tuning and inference stages. Since our tasks are
cast in a sequence-to-sequence format, we pick
two widely used encoder-decoder models for long-
context NLP – the Longformer-Encoder-Decoder
(LED) and Big Bird. To mimic a typical use-case,
we obtained these two pre-trained models from the
HuggingFace library2 – hence our analysis can be
easily extended to any HuggingFace model.

Longformer-Encoder-Decoder (LED). We an-
alyzed both the base and large version of the LED
model released with the original paper (Beltagy
et al., 2020). This version of the LED model
utilized the Longformer-chunks implemen-
tation that achieves high compute efficiency at
the cost of higher memory by chunking the key
and query matrices such that only a single matrix
multiplication operation from PyTorch is needed.
The two versions of the model are stored on
HuggingFace as allenai/led-base-16384 and
allenai/led-large-16384.

Big Bird. Following the encoder-decoder
setup in the original Big Bird paper (Zaheer
et al., 2020), we utilized the version of Big
Bird-large that has been pretrained on the
PubMed dataset starting from Pegasus-large.
This model is stored on HuggingFace as
google/bigbird-pegasus-large-pubmed. We
only performed experiments on the large version
of this model as the base version is not released on
HuggingFace.

3.3 Hardware Resources Provisioned

Our initial experiments with the LED-base model
suggest that large batch sizes are imperative for
obtaining high accuracies on the question answer-
ing task but less so for the summarization tasks
(see Table 2). Quadrupling the batch sizes on the
Qasper question answering dataset – through the
use of gradient accumulation step size of four –
resulted in a two to four point increase in the F1
scores across the input sequence lengths. Take the
input sequence length of 1024 as an example (i.e.,
first row of Table 2), we were able to fit a batch
size of 24 on one GPU (labeled 1 GPU) without
suffering an out-of-memory error when performing
fine-tuning, obtaining a modest F1 score of 17.68.
When we quadrupled the batch size to 96 by using
gradient accumulation with step size of four (la-
beled 1 GPU - Accum), the model accuracy went up

2https://huggingface.co/

to an F1 score of 21.39. When the batch sizes were
further increased through the use of more GPUs (la-
beled 8 GPUs - Accum), the increase in F1 scores
becomes more prominent at four to seven points.
The same trends hold for all sequence lengths on
the Qasper dataset. On the other hand, quadrupling
the batch sizes for the GovReport summarization
dataset resulted in negligible increases in Rouge
scores while the further increase via multiple GPUs
actually resulted in (slightly) lower Rouge scores.

These initial experiments informed our decision
to use a fixed resource budget of 1 Nvidia RTX
A6000 GPU for both fine-tuning and inference of
all models on the summarization tasks, since in-
creasing the number of GPUs does not have a pos-
itive effect on the model accuracy. On the other
hand, for the question answering task, we used a
much larger fixed resource budget of 8 Nvidia RTX
A6000 GPUs (on the same server) for both fine-
tuning and inference to allow for larger batch sizes
that can obtain much better model accuracy.

3.4 Fine-tuning
All pre-trained models mentioned in Section 3.2
are fined-tuned without mixed precision or gradient
checkpointing on all datasets until convergence. A
model has converged when the accuracy metric
of interest for that specific task stays the same or
has worsened for 3 validation calls. In our case,
since we perform validation every 500 steps for
summarization tasks and every 10 steps for the
question answering task, a model has converged
when the metric has stayed the same or worsened
for 1500 steps for summarization tasks and 30 steps
for the question answering task.

In terms of hyperparameters, we used the same
hyperparameters that the SCROLLS benchmark uti-
lized for the LED-base model except for the batch
sizes. To control for the effects of memory on our
metrics, for each sequence length and model, we se-
lected the largest batch size that can fit on the 48GB
A6000 GPU. For the question answering task, the
batch sizes were selected so that the minibatches
on each of the 8 GPUs were maximized. To further
increase the effective size of each of minibatches
in the question answering task, we set gradient ac-
cumulation steps to four. More information about
the hyperparameters is outlined in Appendix B.

3.5 Inference
Since we do not have access to the labels in the
test sets of SCROLLS, inference is run on the vali-
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Dataset Seq Len 1 GPU 1 GPU - Accum 8 GPUs - Accum
Batch Size Acc Batch Size Acc Batch Size Acc

Qasper

1024 24 17.68 96 21.39 704 25.30
2048 12 22.74 48 27.87 352 29.97
3072 8 29.57 32 33.75 224 33.94
4096 6 32.88 24 34.20 160 36.36

GovReport

1024 24 49.53 96 49.53 704 48.78
2048 12 51.15 48 51.28 352 50.18
3072 8 51.67 32 52.09 224 50.60
4096 6 51.71 24 52.27 160 50.95

Table 2: Accuracy of the LED-base model with varying batch sizes across different hardware configurations.
Accum indicates that a gradient accumulation step size of four was used to obtain the larger batch sizes. On
the Qasper question answering task, where Acc represents the F1 score of the predicted answers, increasing the
batch sizes significantly improves the accuracy for all sequence lengths. On the GovReport summarization task,
where Acc represents the Rouge score, increasing the batch sizes has a negligible effect.

dation set using the fine-tuned models. All of our
inferences were performed with a batch size of 16.

3.6 Evaluation Criteria

Accuracy. Our evaluation metrics for accuracy
of the models on each dataset follow those men-
tioned in the SCROLLS paper. GovReport, Summ-
ScreenFD, and QMSum are evaluated using Rouge,
as is standard for summarization; Qasper is eval-
uated using a token-level F1 score after normaliz-
ing both the predicted and ground-truth answer
strings.3 For Rouge, following SCROLLS, we
calculated the geometric mean of three different
types of rouge to provide a single value: Rouge-1
(unigram overlap), Rouge-2 (bigram overlap), and
Rouge-L (longest sequence overlap).

Efficiency. For efficiency metrics, we explored
the training power efficiency (number of samples
trained per second per Watt), total training energy
required (average power × training time), training
speed (number of samples trained per second), and
inference speed (number of samples inferenced
per second). The training and inference speeds
are provided by the HuggingFace library while the
total energy consumed and the power efficiency
of the GPU(s) were collected with the help of the
Weights and Biases (wandb) tool.4

We chose power efficiency as one of our met-
rics because it is one of the most important in-
dustry standard metrics used for machine learn-
ing platforms (TPU uses performance per Watt,

3Normalization is done in the same manner as Squad (Ra-
jpurkar et al., 2018)).

4https://wandb.ai/site

MLPerf (Reddi et al., 2020; Mattson et al., 2020)
measures the number of samples inferenced per
second per Watt) as it is a key component of TCO
(Total Cost of Ownership). Cloud providers rou-
tinely spend 40-50% of the cost towards electricity
as well as powering and cooling the servers, and
this cost is increasing. Hence, maximizing the util-
ity of this spent power by increasing the number of
samples processed per watt is crucial for reducing
the carbon footprint of NLP research.

4 Results

4.1 Summarization Datasets

Figure 1 depicts the power efficiency of each sum-
marization dataset vs. its corresponding training ac-
curacy for input lengths ranging from 1024 to 4096
tokens. We make the following observations: First,
power efficiency has a strong inverse correlation
with the size of the input sequence lengths, with
small variations across datasets. Second, the Big
Bird-large model has similar power efficiency to
LED-large model across the input sequence lengths,
but Big Bird’s Rouge scores are much lower, mak-
ing one of the LED models a better choice to select
when training summarization tasks.

Figure 2 shows the total energy consumed dur-
ing training on each of the three summarization
datasets. Interestingly, we observe that on GovRe-
port and QMSum, LED-large with sequence length
1024 is more efficient and has higher accuracy than
each of the LED-base models with larger sequence
lengths. Increasing the sequence length for LED-
large further increases this accuracy while still of-
ten being more efficient than LED-base models
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Figure 1: Power efficiency measured in number of samples per second per watt vs. model accuracy in Rouge score
for the three summarization datasets – GovReport (Left), SummScreenFD (Middle), QMSum (Right) – while
varying input sequence lengths.
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Figure 2: Total training energy consumption measured in kiloWatt-hour vs. model accuracy in Rouge score for
the three summarization datasets – GovReport (Left), SummScreenFD (Middle), QMSum (Right) – while varying
input sequence lengths.

with greater sequence lengths. This suggests that,
for summarization, using larger models with short
sequence lengths is a more energy friendly way to
get higher accuracies (as compared to small models
with larger sequence lengths). We find Big Bird
to both consume more energy and achieve lower
Rouge scores.

The training speed (Figure 3) and the inference
speed (Figure 4) of the summarization datasets
show similar trends. As the input sequence lengths
increase, the training and inference speeds decrease
due to the sub-quadratic runtime complexity (with
respect to the input sequence lengths) exhibited
in the attention mechanisms employed in these ef-
ficient Transformer models. Unlike training en-
ergy, inference speed increases when the model
size is smaller at the cost of lower accuracy. How-
ever, sometimes (such as the datapoints exhibited
in the GovReport dataset) a similar accuracy can
be obtained by LED-base model with a larger in-
put length (2048) as opposed to LED-large with a

smaller input length (1024).

4.2 Qasper Dataset and Scaling Up
Resources

Figure 5 shows all four efficiency metrics for the
Qasper question answering task. Once again, the
LED models outperform Big Bird in the overall F1
score. Interestingly, we observe that under fixed
resources, LED-base also outperforms LED-large
on this dataset.5 We suspect this is due to the larger
batch sizes we can fit for LED-base as compared
to LED-large, which we found to be particularly
important for this dataset. Hence, we found it to
be more efficient and more accurate to use the
smaller model on this task. Increasing sequence
length brings large gains in accuracy with a small
increased cost in training energy but a large slow-
down in terms of speed.

5We note that our LED-base model with input sequence
length 4096 achieves an F1 score of approximately 10 points
higher than what was reported in the SCROLLS paper.
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Figure 3: Model training speed measured in number of samples per second vs. model accuracy in Rouge score for
the three summarization datasets – GovReport (Left), SummScreenFD (Middle), QMSum (Right) – while varying
input sequence lengths.
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Figure 4: Model inference speed measured in number of samples per second vs. model accuracy in Rouge score for
the three summarization datasets – GovReport (Left), SummScreenFD (Middle), QMSum (Right) – while varying
input sequence lengths.
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4.3 Energy Consumption Deep Dive

To understand the energy consumption of the hard-
ware platform, we present a deeper analysis on the
GovReport dataset. We plot the GPU utilization
(as an average over the entire training run), the
GPU memory usage (as an average over the entire
training run), and the training time (in seconds)
in Figure 6. From the GPU utilization plot, we ob-
serve that the single GPU is pretty well utilized for

the LED models while Big Bird seems to not satu-
rate the GPU especially when the input sequence
length is 4096. This would suggest that Big Bird
would incur a smaller energy cost because not all
GPU resources are online. However, Big Bird took
about 48 hours to train for a sequence length of
4096 while LED-large took 14 hours to train at
the same sequence length. The almost four times
in training time contributed to Big Bird’s high en-
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Figure 6: Average GPU utilization (Left), average GPU memory usage (Center Left), and total training time in
seconds (Center Right and Right) vs. model accuracy for the GovReport summarization dataset while varying
input sequence lengths.

ergy consumption in Figure 2, making it the least
carbon-friendly model to train for GovReport. In
general, the training time on the GPU (depicted
in Figure 6-right) exhibits a similar trend as the to-
tal energy consumed. The average GPU utilization
is therefore not an indicative metric in predicting
the energy consumption of model training in this
case, but the training time is, as energy is calculated
using power consumed over time (or the area under
the curve when plotting power over time).

5 Conclusion

We have presented a systematic study of the ac-
curacy vs. efficiency trade-offs involved in four
long-context NLP tasks across two model architec-
tures. In addition to comparing model architectures
as commonly done in NLP benchmarks, our focus
was on comparing models of two different sizes
and four different sequence lengths. We highlight
several key findings which we hope practitioners
can utilize to select hyperparameters under a re-
source constrained setting. One such key finding
is that using a larger model instead of larger input
sequence lengths is a more energy friendly way to
achieve higher accuracies on summarization tasks
if inference speed is not a concern. On the other
hand, utilizing a longer input sequence length with
a smaller model for question answering task results
in higher accuracies with higher efficiency.
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A SCROLLS Dataset

Table 3 gives an overview of the datasets used in
this paper, and we provide a brief description of
each dataset below.

GovReport. (Huang et al., 2021) A summariza-
tion dataset comprised of reports published by the
U.S. Government Accountability Office (GAO) and
Congressional Research Service (CRS).

SummScreenFD. (Chen et al., 2021) A summa-
rization dataset where the goal is to generate a
summary of an episode of a TV show when given
a transcript of the episode.

QMSum. (Zhong et al., 2021) A query-based
summarization dataset composed of meeting notes
from various sources such as academic group meet-
ings, industrial product meetings, and public policy
meetings. Models have to be able summarize spe-
cific sections of meetings when given a query.

Qasper. (Dasigi et al., 2021) A question answer-
ing dataset over NLP papers from Semantic Scholar
Open Research Corpus (S2ORC). Given the title
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Dataset Task Domain Metric Avg #Words #ExamplesInput Output
GovReport Summ Government ROUGE 7,897 492.7 19,402
SummScreenFD Summ TV ROUGE 5,639 100.0 4,348
QMSum QB-Summ Meetings ROUGE 10,396 69.7 1,810
Qasper QA Science F1 3,671 11.5 5,692

Table 3: An overview of the datasets the SCROLLS dataset with their statistics that was recreated from the
original SCROLLS paper (Shaham et al., 2022). Summ indicates summarization, QB-Summ means query-based
summarization and QA means question answering. The number of examples for each dataset includes all the
examples from train, validation, and test sets.

Hyperparameter Value
Validation Accumulation Steps 10
Learning Rate (all other dataset) 2e-5
Learning Rate Scheduler Linear
Learning Rate Warm-up Ratio 0.1
Adam Optimizer Epsilon 1e-6
Adam Optimizer Beta1 0.9
Adam Optimizer Beta2 0.98
Dataloader Workers 1
Maximum Epoch 50
Early Stopping 3

Table 4: Hyperparameters used during fine-tuning of
the pre-trained models. For any hyperparameters that
are not listed in this table, we used the default values
provided from the HuggingFace Trainer Library 7.

and abstract of a paper, models have to be able to
generate the answer to a question about the paper.

B SCROLLS Model Hyperparameters

All the experiments conducted in this project were
built upon the pre-trained models from the Hug-
gingFace library. Many of the hyperparameters
used here are the same as those used for the LED-
base model in SCROLLS. Unless specified in Table
4, hyperparameters take on default values from the
HuggingFace Trainer library.6

As mentioned in Section 3.4, we selected the
largest batch sizes that can fit on the NVIDIA RTX
A6000 GPU(s) during fine-tuning for each model
and dataset in order to control for the effects of
memory on our metrics. Table 5 shows the batch
sizes used for fine-tuning each model on the differ-
ent datasets at different input sequence lengths.

6https://huggingface.co/docs/
transformers/main_classes/trainer

7See previous note.

Task Model Seq Len Batch

Summ

LED-base

1024 24
2048 12
3072 8
4096 6

LED-large

1024 8
2048 4
3072 3
4096 2

Big Bird-large

1024 7
2048 4
3072 2
4096 2

QA

LED-base

1024 704
2048 352
3072 224
4096 160

LED-large

1024 256
2048 128
3072 64
4096 64

Big Bird-large

1024 224
2048 96
3072 64
4096 32

Table 5: Batch sizes used for fine-tuning the different
models for each of the tasks at each input sequence
length. Summ indicates summarization, and QA means
question answering. The batch sizes listed for the QA
task is the total batch size across the 8 GPUs with gra-
dient accumulation step set to four.

121



Author Index

Ahuja, Kabir, 64
Alt, Christoph, 32
Ang, Phyllis, 113
Araujo, Vladimir, 93
Attanasio, Giuseppe, 100

Bianchi, Federico, 84
Blagec, Kathrin, 52

Chan Lee, Byoung, 22
Chen, Yuxuan, 32
Choudhury, Monojit, 64

Dandapat, Sandipan, 64
del Rio, Felipe, 93
Dhingra, Bhuwan, 113
Dorffner, Georg, 52
Dunn, Adam, 22

Eyzaguirre, Cristobal, 93

Harbecke, David, 32
Hennig, Leonhard, 32
Henrique Luz de Araujo, Pedro, 75
Hovy, Dirk, 84, 100

Jeoung, Sullam, 1

Keleg, Amr, 42
Khushi, Matloob, 22

Kim, Jinman, 22

L. Webber, Bonnie, 42
Lindemann, Matthias, 42
Liu, Danyang, 42
Long, Wanqiu, 42
Lowd, Daniel, 11

Moradi, Milad, 52

Naseem, Usman, 22
Nozza, Debora, 84, 100

Ott, Simon, 52

Park, Jaihyun, 1
Pastor, Eliana, 100

Roth, Benjamin, 75

Samwald, Matthias, 52
Sitaram, Sunayana, 64
Soto, Alvaro, 93

Wu Wills, Lisa, 113

You, Wencong, 11

122


