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Abstract We present a grammar inference system that leverages linguistic knowledge recorded in the form of annotations in

interlinear glossed text (IGT) and in a meta-grammar engineering system (the LinGO Grammar Matrix customization system) to

automatically produce machine-readable HPSG grammars. Building on prior work to handle the inference of lexical classes, stems,

aixes and position classes, and preliminary work on inferring case systems and word order, we introduce an integrated grammar

inference system called basil that covers a wide range of fundamental linguistic phenomena. System development was guided by

27 genealogically and geographically diverse languages, and we test the system’s cross-linguistic generalizability on an additional

5 held-out languages, using datasets provided by field linguists. Our system out-performs three baseline systems in increasing

coverage while limiting ambiguity and producing richer semantic representations, while also producing richer representations than

previous work in grammar inference.

1 Introduction

Machine-readable grammars for human languages that

are grounded in theoretical syntactic formalisms can be

useful tools in the context of endangered language doc-

umentation and revitalization. First, they support tree-

banking (Oepen et al., 2002), which in turn supports

data exploration (Letcher and Baldwin, 2013; Bouma

et al., 2015); and second, they facilitate the development

of tools such as grammar checkers (daCosta et al., 2016)

and automated tutors (Hellan et al., 2013). In spite of

these advantages, the use of such grammars is hindered

by the time-consuming process of developing them to-

gether with the need of a specific skillset required for

grammar engineering, which is distinct from the skills

involved in documentation itself. We are therefore mo-

tivated to investigate whether we can create machine-

readable grammars automatically.
1

Endangered lan-

guages represent scenarios where the type of resources

required for typical natural language processing tech-

niques are scarce to non-existent. Furthermore, the out-

put we are targeting goes well beyond simple labels or

even structured representations, but rather must be a

coherent and well-formed formal object— a grammar.

Fortunately, we have two rich sources of linguistic

1
This is similar in spirit to the work of Sarveswaran et al. (2019)

who present an eort to create FSMs to provide computational bene-

fits in the context of morphological analysis without requiring addi-

tional technical skillsets.

knowledge from which to work: The first is corpora of

interlinear glossed text (IGT), annotated by field lin-

guists during the process of documentation and anal-

ysis. Due to the eorts of field linguists and archivists,

a number of archives (many of which we list in Ap-

pendix A) make IGT data publicly available. An ex-

ample from Chintang [ISO 639-3: ctn] is shown in (1).

Such annotations are linguistically rich, showing what

grammatical information is marked morphologically

and providing further information implicitly via a trans-

lation into a language of broader communication (in all

examples we work with, this language of broader com-

munication is English). Using the methodology of an-

notation projection, as applied to IGT (Xia and Lewis,

2007; Georgi, 2016), we can leverage parsers available

for the translation language and project structural in-

formation such as part-of-speech (POS) tags and syn-

tactic dependencies onto words in the target language.

(1) Aru

aru

another

unisokon1ŋ.
u-ŋis-u-kV-n1ŋ
3nss/a-know-3p-ind.npst-neg

‘They did not know another [language].’ [ctn]

(Bickel et al., 2013a)

The second source of linguistic knowledge that

we have in hand is the LinGO Grammar Matrix cus-

tomization system (Bender et al., 2002, 2010; Zama-

raeva et al., forthcoming), which maps from relatively
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simple grammar specifications to full-fledgedmachine-

readable grammars, couched in the framework ofHead-

driven Phrase Structure Grammar (HPSG; Pollard and

Sag 1994; Müller et al. 2021), and compatible with

DELPH-IN
2
processing tools. TheGrammarMatrix cus-

tomization system consists of a core grammar, hypoth-

esized to be shared across languages, and a series of

typologically-informed libraries of analyses of cross-

linguistically variable phenomena.

Leveraging these sources, the question we investi-

gate here is whether and how we can create machine-

readable HPSG grammars for typologically diverse lo-

cal
3
and/or endangered languages on the basis of cor-

pora of IGT and the Grammar Matrix. In particular, we

build on the open-source code base provided by the AG-

GREGATION project (Bender et al., 2014, inter alia) to

produce the following contributions: (1) We integrate

all existing inference modules into a single system to

which (2) we add modules for additional grammatical

phenomena and (3) where previous end-to-end testing

treated only a single language, we use 27 diverse lan-

guages in development, doing end-to-end system test-

ing on 9 of the 27, and then evaluate on 5 additional

held-out languages not considered during system de-

velopment.

We begin by situating our work on grammar in-

ference against the broader background of automatic

grammar generation in Section 2 and then provide

background on the AGGREGATION project in Sec-

tion 3. Section 4 describes our methodology for gram-

mar inference, including lexical, morphological and

syntactic aspects of an inferred grammar. In Section 5,

we describe the languages we used in system develop-

ment and how we use the DELPH-IN suite of soware

tools to evaluate the grammars we create by parsing

and treebanking held-out data from each language. We

use that same methodology for held-out languages to

evaluate the generalizability of the system, finding that

though the coverage of the grammars is still limited,

the proposed methodology generally produces higher

quality grammars than three baseline approaches. The

languages we test on and the results of this evaluation

are presented in Sections 6 and 7. Finally, Section 8

provides error analysis and discussion. We conclude in

Section 9 with discussion of applications of grammars

produced in this fashion.

2www.delph-in.net
3
These are oen called ‘low-resource languages’, but Bird (2022)

argues that this label projects a number of Eurocentric beliefs onto

these languages. Bird proposes describing languages as standardized,
local and contact rather than high and low resource.

2 Automatic Grammar

Generation

Interest in creating machine-readable grammars is

likely as old as the field of computational linguistics

itself, with published work in grammar engineering—
the process of creating machine-readable grammars by

hand—going back at least as far as Zwicky et al. (1965)

and continuing into the present day. Our work in gram-

mar inference builds on grammar engineering work (in

the form of the Grammar Matrix; Bender et al., 2002,

2010; Zamaraeva et al., forthcoming), but also fits into

a tradition of work on automatic grammar generation,
which is the development of systems that automatically

create grammars on the basis of data. Within auto-

matic grammar generation, we distinguish four broad

categories of approaches, dierentiated by the types

of inputs they take: grammar induction from strings—
automatic grammar generation based on text alone

(§2.1); grammar extraction—automatic grammar gener-

ation based on treebanks (§2.2); grammar induction from
meaning representations—automatic grammar genera-

tion based on strings paired with some form of se-

mantic representation (§2.3); and grammar inference—
automatic grammar generation based on text anno-

tated with partial grammatical information but not full

parse trees or logical forms (§2.4).

Just as these four approaches to grammar genera-

tion dier in their input, they also dier in the types

of grammars they can produce. Grammar induction,

if working from strings alone, will produce noisy rep-

resentations that align only partially with structures

created by linguists. Grammar extraction will produce

grammars that provide the same kind of representa-

tions as given in the source treebank and similarly,

grammar induction based on strings paired with se-

mantic representations will produce grammars that can

output those semantic representations. In each of these

cases, the generated grammarwill also typically include

a parse selection model, based on observed paerns in

the corpus. Grammar inference systems, by contrast,

draw on both partial annotation in their input data and

some external source of grammatical knowledge. For

this reason, the inferred grammars can generate richer

representations than those found in the input.

2.1 Grammar Induction from Strings

Oen characterized as an incomplete data problem (see

inter alia Klein and Manning, 2001), where the com-

plete datawould be a corpus of trees, grammar induction
from surface strings seeks to produce grammars solely

on the basis of text. Early grammar induction work

focused on producing context-free grammars (CFGs),

which involved two components: (1) identifying con-
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stituents and (2) identifying their categories (see Klein

and Manning, 2001, 2002). Klein and Manning (2004)

improved upon this work by inducing an unlabeled syn-

tactic dependency grammar and combining it with the

induced CFG for beer performance parsing over En-

glish [eng], German [deu] and Mandarin [cmn]. This

basic approach has informed work which further tuned

the algorithm by preferring short vs. long dependencies

and testing on additional languages, as in Smith and

Eisner 2006. One shortcoming of these approaches is

that they only take into account contiguous dependen-

cies. Bod (2009) introduces an approach that allows dis-

contiguous subtrees and thereby handles non-adjacent

dependencies. Most recently, neural nets, such as BERT

(Devlin et al., 2019), have proven eective in producing

unlabeled dependency parses, as demonstrated by He-

wi and Manning (2019), although only parses and not

a human-interpretable grammar have been generated.

While unlabeled syntactic dependencies can be inferred

from text and are useful for some tasks, they do not pro-

vide any information regarding the type of syntactic re-

lationship between two constituents. Therefore, other

methodologies of automatic grammar generation have

focused on using inputs that are encodedwithmore lin-

guistic information.

Still another strand of recent work seeks to improve

grammar induction by using strings (still without lin-

guistic labels) that are captions of still images (Shi et al.,

2019; Zhao and Titov, 2020) or descriptions of videos

(Zhang et al., 2021). These sources of grounding have

been shown to improve recall of dierent constituent

types, but the resulting parsers still produce quite im-

poverished and noisy representations.

2.2 Grammar Extraction

In contrast with the impoverished input used by gram-

mar induction from surface strings, grammar extrac-

tion uses the syntactic information available in tree-

banks— collections of syntactic trees— to define gram-

mars. Typically these grammars are produced by walk-

ing the trees in a treebank, collecting rules that could

produce those structures and pruning to remove redun-

dant rules (Krotov et al., 1998).

Because an extracted grammar is informed by the

formalism and theory implicit in the tree structures

in the input, it will produce trees with roughly the

same amount of syntactic information as the formal-

ism used to create the treebank. This can range from

context-free grammars (CFG), as in Krotov et al. 1994, to

grammar formalisms such as HPSG, as in Simov 2002.

However, while the level of detail in the treebanked

parses limits that of the resulting grammar, work has

been done to extract a grammar in a dierent formal-

ism than that represented in the input. Xia (1999),

for example, proposed an algorithm to do additional

bracketing on the Penn Treebank II-style trees (Mar-

cus et al., 1994) in order to extract a Lexical Tree Ad-

joining Grammar (LTAG), which was more expressive

than the CFG in the input. Similarly, Hockenmaier and

Steedman (2007) present an approach to converting the

Penn Treebank to Combinatory Categorial Grammar

(CCG) representations, adding significant information,

from which CCG grammars can then be extracted (e.g.

Hockenmaier and Steedman, 2002; Clark and Curran,

2004). Neural networks have also been used to gen-

erate parse trees based on syntax trees in the training

data. KERMIT (Zanzoo et al., 2020) generates syntac-

tic parses of the same form as those in the training data

and lends a great deal of interpretability to the under-

lying BERT (Devlin et al., 2019) model, although it does

not produce a grammar or human-interpretable rules.

In principle, grammar extraction is possible for any

language for which there is a treebank and recent work

has leveraged the Universal Dependencies Treebank

(Nivre et al., 2016), a collection of dependency tree-

banks for over 100 languages, to generate grammars

for a wide range of languages (see inter alia Agić et al.,

2016; Noji et al., 2016; Han et al., 2019). Our goals in this

work, however, are to generate grammars for local lan-

guages,
4
many of which are not represented in the UD

collection, and to produce syntactic and semantic rep-

resentations which are richer than dependency parses.

2.3 Grammar Induction from Meaning

Representations

In contrast with grammar extraction which relies on a

treebank of syntactic parses, grammar induction from

meaning representations relies on sembanks, typically
pairing sentences with either semantic dependencies

or logical forms. The types of semantic representa-

tions used in this work have ranged from formal query

language (Kate et al., 2005; Kate and Mooney, 2006)

to semantic dependencies from the Redwoods tree-

banks, which are based on Minimal Recursion Seman-

tics (MRS; Copestake et al., 2005) as in Buys and Blun-

som 2017 and Chen et al. 2018. The input is not always

limited to meaning representations alone, and for ex-

ample, previouswork has also used additional input lex-

ical templates to beer handle morphological complex-

ity (Kwiatkowski et al., 2011).

Due to the richness of semantic information in the

input, grammars induced from text paired with seman-

tic representations rather than text alone are capable

of capturing much more detailed and meaningful se-

mantic relations than the unlabeled syntactic depen-

dency relations produced by grammars induced only

from surface forms. Such semantic representations are

still, however, constrained by what’s available in the

4
See footnote 3.
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training data.

2.4 Grammar Inference

Grammar inference systems take as input a collection

of text with partial grammatical annotations and use

some external source of grammatical knowledge that is

not specific to the language at hand to produce gram-

mars that give richer representations than those pro-

duced by grammar induction without requiring a tree-

bank. While these systems generally are not proba-

bilistic and do not necessarily include a parse-selection

model, as is common with induced or extracted gram-

mars, they allow us to automatically generate formal

linguistic grammars without a treebank.

To produce grammars in the Minimalist Grammar

formalism (MG; Stabler, 1996) of the Minimalist Pro-

gram (Chomsky, 1995), Indurkhya (2020) used a set of

sentences annotated for part-of-speech (POS), agree-

ment, predicate-argument structure and clause type

(interrogative or declarative). This system inferred

a lexicon for English on the basis of those annota-

tions, pruned it with a set of Minimalist axioms, and

combined it with a non-language-specific notion of

merge (with internal and external subtypes) to create

a machine-readable Minimalist Grammar.

Whereas Indurkhya used a custom annotation

scheme for the input data, Hellan (2010) and Ben-

der et al. (2014) leveraged the rich annotation already

present in interlinear glossed text (IGT), illustrated in

(1). IGT is a particularly rich source of data because

it includes morpheme segmentation, glosses for each

morpheme which encode morpho-syntactic informa-

tion and a translation into a language with many NLP

resources (frequently English). A particularly aractive

fact about IGT data is that it is the format broadly used

in linguistics to record data during collection and anal-

ysis, so IGT corpora exist for many languages that do

not otherwise have very much wrien text.

Hellan (2010) and Hellan and Beermann (2011) in-

ferred grammars using a combination of specially an-

notated IGT and the grammar engineering toolkit Type-
Gram. TypeGram is based on the DELPH-IN Joint Ref-

erence Formalism (Copestake, 2002a) which supports

the development of typed feature structure grammars,

typically within the HPSG framework. Hellan (2010)

positioned TypeGram as a hybrid of HPSG and Lexical

Functional Grammar (LFG; Kaplan and Bresnan, 1982).

In addition to the annotations of typical IGT, their input

data also included labels indicating syntactic proper-

ties such as valence paerns and constructions such as

passive. The TypeGram resource included grammatical

rules which are named by the same inventory of label

types and thus could directly instantiate a grammar o

of an appropriately annotated corpus. The authors il-

lustrate their system with examples from Ga [gaa] and

Figure 1: AGGREGATION Pipeline

Kiswahili [swh].

Bender et al. (2014) also produced HPSG grammars

in the DELPH-IN formalism on the basis of IGT data.

However, they worked directly from the type of anno-

tations typically produced by documentary linguistics

projects, that is, IGT with thorough segmentation and

glossing at the morpheme level, but no clause-level an-

notations. They inferred a lexicon, morphological rules

and syntactic properties, and encoded this information

in grammar specifications. Using the Grammar Matrix,

which allows the user to define a grammar specification

that selects from a typologically broad catalog of anal-

yses for dierent syntactic phenomena and pairs these

analyses with a core grammar used across languages,

they generated grammars for Chintang [ctn] from their

inferred specifications.

Our goal is to create precise syntactic grammars

for languages without existing extensive NLP resources,

using the rich annotated data that already exists for

many of these languages. We build on the approach

set forth by Bender et al. (2014), which we describe in

detail in the following section. In addition, we extend

the typological breadth of work on automatic grammar

generation by focusing on languages which are far from

the NLP mainstream.

3 The AGGREGATION Project

The AGGREGATION project (Bender et al., 2013, 2014;

Howell et al., 2017; Zamaraeva et al., 2017, 2019a), de-

scribes its primary goal as providing the benefits of

implemented, formal grammars to documentary lin-

guists, without their having to invest time in develop-
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ing those grammars by hand. Such grammars are use-

ful for testing linguistic hypotheses against data (Bier-

wisch, 1963; Müller, 1999; Bender, 2008b; Fokkens, 2014;

Müller, 2015) as well as building treebanks which are

useful for discovering examples of phenomena in a lan-

guage (Bender et al., 2012; Letcher and Baldwin, 2013;

Bouma et al., 2015). The task of developing a grammar

by hand is very time consuming and not likely to be

taken up by field linguists already busy with the work

of language documentation and description. However,

the detailed analysis involved in annotating IGT data

(another time consuming task that documentary lin-

guists are doing anyway) provides a very rich start-

ing point for producing these grammars automatically.

Therefore, an end-to-end pipeline that begins with an

IGT corpus and results in a machine-readable grammar

has the potential to serve the language documentation

community without requiring additional work on their

end, either in the form of data curation or grammar en-

gineering.
5
The AGGREGATION project has produced

many key components towards this goal, as well as a

rudimentary end-to-end pipeline (tested on Chintang

in Bender et al. 2014 and Zamaraeva et al. 2019a). In

this work, we build on those components to create a

more robust and full-featured pipeline. In this section,

we present the overall AGGREGATION pipeline as it is

developed in our work, with reference to previous work.

In (2; repeated from 1) we present an example of

interlinear glossed text (IGT) from the Chintang Lan-

guage Research Project (CLRP; Bickel et al., 2013b).

Based on the information encoded in this IGT and oth-

ers in the corpus, our goal is a grammar that parses this

sentence to produce an HPSG syntactic representation,

like the one in Figure 2, and anMRS semantic represen-

tation, as in Figure 3.

(2) Aru

aru

another

unisokon1ŋ.
u-ŋis-u-kV-n1ŋ
3nss/a-know-3p-ind.npst-neg

‘They did not know another [language].’ [ctn]

(Bickel et al., 2013a)

Inferring an implemented HPSG grammar directly

from an IGT corpus would probably be prohibitively dif-

ficult, given the intricate nature of the target grammar.

However, we have established a pipeline that leverages

a number of existing resources to extract information

from an IGT corpus and produce a customized gram-

mar for that language. This pipeline, illustrated in Fig-

ure 1, expects as its starting point an IGT corpus, typ-

ically from Toolbox (SIL International, 2015) or FLEx

5
Ultimately, we hope to serve the communities whose languages

are being documented, whether by outsider or insider linguists, by

enabling further language technology. However, the immediate au-

dience for implemented grammars remains linguists as opposed to

language teachers and learners.

S

VP

V

V

V

V

V

u-ŋis-u-kV-n1ŋ
trans-verb-lex-item

3ns-subj-agr-lex-rule

3-obj-agr-lex-rule

ind-npst-lex-rule

neg-lex-rule
NP

N

aru

common-noun-lex-item

bare-np-rule

comp-head-rule
head-opt-subj-rule

Figure 2: The parse tree for the sentence in (2), which

was generated by an inferred grammar of Chintang and

corresponds to the semantic representation in Figure 3

_know_v _another_n exist_q neg

TOP

ARG1/NEQ

RSTR/H

ARG1/NEQ

Key features on semantic variables:

_know_v (ARG0 {SF prop, TENSE npst, ASPECT ind},
ARG1 {PER 3rd, NUM ns}, ARG2 {PER 3rd})

Figure 3: A semantic representation for the sentence in

(2), generated by an inferred grammar of Chintang

Figure 4: IGT Enriched with INTENT

Northern European Journal of Language Technology



(also from SIL, see (Rogers, 2010)), that was collected

by a field linguist, which we convert to an extensible

and flexible XML-based format for IGT data called Xigt

(Goodman et al., 2015). We then enrich the IGT using

INTENT (Georgi, 2016), which projects syntactic depen-

dencies and part-of-speech (POS) tags onto words in

the language from a parse of the English translation, as

shown in Figure 4.

The enriched corpus provides four key components

that are necessary for grammar inference: morpheme

segmentation, glossing, POS tags and syntactic depen-

dencies, which can be seen in the final box in Figure 4.

Themorpheme segmentation and glossing are provided

by the linguist in the source IGT and are necessary to

extract a lexicon, infer the morphotactic system and as-

sociate morpho-syntactic and morpho-semantic infor-

mation with the corresponding morphemes. POS tags

are oen provided in the source IGT, but if they are

not, they can be acquired from INTENT. INTENT cre-

ates alignments between the English translation and

the sentence by leveraging the one-to-one alignment

between words of the sentence and words in the gloss

line and noisy alignment between the gloss words (fre-

quently English lemmas) and the English translation

line. It then parses the English sentence and projects

the POS and syntactic dependency tags from the En-

glish parse onto the aligned words in the source lan-

guage. While this approach only provides an approx-

imation, as POS and dependencies do not necessar-

ily map across languages, it serves as a useful starting

point for inference. Finally, the projected dependen-

cies allow us to discriminate between arguments, mod-

ifiers and conjuncts and to identify dierent types of

constituents in the sentence in order to infer syntactic

properties.

Our grammar inference system uses these four

components to produce a grammar specification file.

As an example of our target output, Figure 5 illus-

trates some of the values we infer that are relevant to

sentential negation in Chintang. Chintang expresses

sentential negation with a verbal suix -n1ŋ. We in-

dicate that negation is expressed with a single mor-

pheme by seing the negation exponence (neg-exp)

to 1 in the grammar specification. In the morphology

section of the grammar specification, we define one or

more lexical rules for amorphemewith orthography n1ŋ
and morpho-semantic feature negation: plus. This

grammar specification can be input to the Grammar

Matrix customization system (Bender et al., 2002, 2010),

which uses stored syntactic analyses to produce cus-

tomized grammars for languages based on the spec-

ification. The customized grammar generated by the

Grammar Matrix for this specification will contain the

appropriate lexical rule(s) to model negation (Crowgey,

2012), which are illustrated in Figure 6.

Figure 5: A portion of the grammar specification con-

taining (some of) the relevant specifications for senten-

tial negation in Chintang

Figure 6: The relevant lexical rule for negation in the

Chintang grammar, produced from the specification in

Figure 5
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The lexical rule in Figure 6 licenses the topmost

V node in Figure 2 and introduces the neg predica-

tion in Figure 3. This rule is expressed in the DELPH-

IN Joint Reference Formalism (called tdl; Copestake,

2002a), which can be used to implement HPSG-style

typed feature structures. A grammar encoded in this

way can be loaded into DELPH-IN processing tools

like the LKB (Copestake, 2002b) and ACE (Crysmann

and Packard, 2012) for parsing and [incr tsdb()] (Oepen,

2001) and FFTB (Packard, 2015) for treebanking.

Previous work in the AGGREGATION Project has

produced grammar specifications that contain a lexicon

of nouns and verbs, morphological rules and descrip-

tions of the language’s word order and case system as

well as case frames for individual words. The lexicon

and morphotactic rules are inferred using MOM (Wax,

2014; Zamaraeva, 2016), which we describe in Sections

4.2 and 4.3. These rules abstract away from morpho-

phonology, so the inferred grammars are tested by pars-

ing the morpheme-segmented line of the IGT. Inference

algorithms for basic word order and case system were

developed by Bender et al. (2013) and this inference

together with lexical inference was used to generate

grammars by Bender et al. (2014) and Zamaraeva et al.

(2019a).

In this work, we present basil, an inference sys-

tem that extends the number of phenomena that can

be inferred by building on the existing morphotactic

and syntactic inference systems. This system, also de-

scribed in Howell 2020, infers additional lexical items

including determiners, case-marking adpositions, coor-

dinators and auxiliaries as well as properties including

argument optionality, sentential negation and coordi-

nation. We also integrate syntactic and morphological

inference to handle person, number and gender infor-

mation on nouns, agreement between verbs and their

arguments, and tense, aspect and mood contributed

morphologically or by auxiliaries. Finally, whereas pre-

vious work has either evaluated the correctness of the

grammar specifications on a variety of languages (Ben-

der et al., 2013; Howell et al., 2017) or grammar perfor-

mance on a single language (Bender et al., 2014; Zama-

raeva et al., 2019a), we evaluate our system on grammar

performance using 14 genealogically and geographi-

cally diverse languages.

4 Methodology: Inferring Gram-

mar Specifications

This section focuses on our approach to inferring the

grammar specifications illustrated in the previous sec-

tion. We take as our starting point the system of Zama-

raeva et al. (2019a) which integrates the morphological

inference module (called MOM;Wax, 2014; Zamaraeva,

2016; Zamaraeva et al., 2017) and a module for infer-

ence of a few syntactic properties (Bender et al., 2014;

Howell et al., 2017). To this integrated system we add

extended inference for morphologically marked syntac-

tic and semantic features, additional lexical classes and

further syntactic properties to create basil, Building

Analyses from Syntactic Inference in Local languages.

basil takes an enriched (using INTENT; Georgi, 2016)

corpus of the Xigt (Goodman et al., 2015) data type as

input and produces a grammar specification file which

can be input into the Grammar Matrix to generate a

custom grammar for the language. This grammar spec-

ification (§4.1), oen referred to as a ‘choices file’ in

the Grammar Matrix literature, contains specifications

for a lexicon (§4.2), a collection of morphological rules

(§4.3), definitions of syntactico-semantic features (§4.4)

and definitions of syntactic properties (§4.5) for the lan-

guage at hand. During development, we used a set

of 9 core languages to design and tune basil’s algo-

rithms and consulted an additional 18 languages that

were illustrative of particular phenomena we wished

to test (see §5.1). In this section, we describe each

of basil’s inference modules, including the typological

range covered, what specifications the Grammar Ma-

trix customization system requires, and how we infer

appropriate specifications for a language based on IGT.
6

4.1 The Grammar Specification

In this section, we give a brief quantitative overview

of the space in which the inference system is operat-

ing. The grammar specification contains definitions for

lexical items, morphological rules, syntactico-semantic

features and syntactic rules. These take the form of fea-

tures with either fixed or open-ended values, depending

on the linguistic characteristics being defined. While a

number of phenomena can be defined in the Grammar

Matrix, basil focuses on a particular subset of lexical

items and syntactic phenomena, which are modeled by

50 fixed features with 136 possible values in addition to

a number of open-ended features, which allow the user

to enter any value they like, rather than requiring them

to choose from amenu. For some features, multiple val-

ues lead to similar coverage in the resulting grammars,

so we simplify the system by focusing on a subset of the

possible values. Other values are diicult to infer with

suicient accuracy from the available data or are so ty-

pologically rare that they are more likely to be inferred

in error than correctly. For these reasons, basil targets

only 99 of the 136 values, as summarized in Table 1.

While individual lexical entries and morphological

rules have features that must be selected from a menu

with a fixed set of values, the number of lexical items

6
Amore detailed description of these modules and the algorithms

they use can be found in Howell 2020.
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number number

possible targeted

Phenomenon values by inference

noun lexical entry 4 2

verb lexical entry 4 2

auxiliary lexical entry 6 4

adposition lexical entry 3 3

morphological rule 5 5

person 9 8

tense 2 1

word order 10 9

determiner order 4 4

auxiliary order 9 9

case system 9 3

argument optionality 18 15

sentential negation 41 23

coordination 12 11

total 136 99

Table 1: The number of possible values for the 50 fea-

tures with a fixed value set in the grammar specifica-

tion and those targeted by the inference system, broken

down by syntactic category

and morphological rules defined by basil depends on

the number of forms aested in the training corpus.

Thus the size of the lexicon and morphology sections

of the grammar specification varies depending on both

the morphological complexity of the language and the

diversity and number of samples in the training cor-

pus. Similarly, many of the syntactico-semantic fea-

tures supported by the Grammar Matrix allow the def-

inition of unbounded numbers of possible values. For

case, person, number, gender, tense, aspect and mood,

we
7
compiled a list of 116 common values from the

Leipzig Glossing Rules (Bickel et al., 2008), the ODIN

corpus (Xia et al., 2016), Unimorph (Sylak-Glassman

et al., 2015), the GOLD Ontology (GOLD, 2010) and our

own observation, which the inference system can add

to grammar specifications.

4.2 The Lexicon

The most accurate and fully detailed typological speci-

fication cannot produce a working grammar without a

lexicon. At the same time, decent coverage over unseen

texts for languages with any morphological complex-

ity requires a lexicon built in terms of lexical entries for

roots plus some model of morphological processes. The

Grammar Matrix customization system elicits, as part

of its input grammar specifications, descriptions of lex-

ical classes and lexical rules. In this section, we describe

lexical class specifications and how we infer them.

In brief, a lexical class is defined in terms of its part-

of-speech, any further features specific to the class, and

7
This list comes from joint work with Olga Zamaraeva.

section=lexicon

noun1_name=noun1

noun1_feat1_name=person

noun1_feat1_value=3rd

noun1_det=opt

noun1_stem1_orth=kekrú

noun1_stem1_pred=_blackberry_n_rel

noun1_stem2_orth=khoy

noun1_stem2_pred=_bee_n_rel

Figure 7: The definition of a common noun lexical class

for Meithei

a set of lexical entries, which give the orthographic rep-

resentations and semantic predicate symbols
8
for en-

tries in that class. As an example, Figure 7 illustrates

a lexical class for a type of common nouns in Meithei

[mni].

The Grammar Matrix customization system inter-

face provides for nouns, intransitive verbs, transitive

verbs, clausal complement verbs, auxiliaries, copulas,

determiners, case-marking adpositions, and adjectives

in its lexicon section. In addition, sections for particular

syntactic phenomena allow for the definition of lexical

entries for such items as conjunctions, subordinating

conjunctions, complementizers, and negation adverbs.

This classification of basic types of words brings with

it a set of assumptions about what word classes ex-

ist in the world’s languages, for example, that nouns

and verbs are distinct cross-linguistically. We make no

claims regarding the actual parts of speech of the lex-

ical items MOM and basil infer, but aempt to model

these words eectively in the resulting grammar. (For

recent work showing that even languages with appar-

ent category flexibility can be fruitfully analyzed in this

way, see Crowgey’s 2019 study of Lushootseed [lut].)

basil infers only a subset of the lexical categories

supported by the Grammar Matrix, which are shown

in Figure 8. In this section, we describe the process of

extracting these definitions from the IGT corpus, with a

focus on nouns and verbs and their subcategorization.

4.2.1 Noun and Verb Extraction

At the highest level of abstraction, lexical inference in-

volves the definition of classes of words and the al-

location of words to classes. In our system, the first

pass classification of words involves parts of speech.

The next level concerns inflection classes: which words

8
We use the DELPH-IN convention for predicate symbols which

includes a lemma followed by the part-of-speech (Flickinger et al.,

2014a). For ease of evaluation in our current context, we use English

glosses as the lemmas. For most applications, it is beer to use lem-

mas from the language being modeled instead, as one cannot expect

perfect word-level translational equivalence across languages.
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lexical category

noun

common
noun

pronoun

determiner verb

main verb

transitive intransitive

auxiliary

negation
auxiliary

other
auxiliary

case-marking
adposition

other

conjunction negation
adverb

Figure 8: A taxonomy of the lexical categories that basil infers, organized according to the inference process

(within a part of speech) can be input to which lexi-

cal rules. To define these classes for nouns and verbs,

we leverage the MOMmorphological inference system.

MOM identifies nouns and verbs based on their POS

tags and uses a graph-based approach to identify and

define inflection classes. (The morphotactic inference

is further described in Section 4.3.)

4.2.2 Noun and Verb Subcategorization

In addition to defining lexical classes based on their

morphotactic paerns, we must also group lexical en-

tries based on their syntactic properties. In princi-

ple, this grouping can either be included in the in-

put to MOM or performed on the output. Zamaraeva

et al. (2019a) take the former approach to subcategorize

verbs based on their valence properties by first infer-

ring verbal case frame and including this information

in MOM’s input. MOM does not merge verbs with dif-

ferent valences, so the lexicon it produces includes sep-

arate classes for e.g. intransitive and transitive verbs,

and those classes are further subcategorized based on

their morphotactics.

To account for pronouns separately from common

nouns and auxiliaries separately from verbs, we take

the lexical classes in MOM’s output and divide them

based on their glosses: basil identifies nouns whose

predication (in MOM’s output) includes either an En-

glish pronoun or person, number, gender (PNG) or case

features with no lemma and moves them into new lex-

ical classes. basil constrains all common noun lexi-

cal classes to be third person, leaving number to the

morphological analysis and inherent gender to future

work (as shown in Figure 7 above). Pronoun lexical

classes have more varied PNG and case values than

common nouns, which basil accounts for by identifying

any PNG and case glosses in MOM’s output predica-

tion and specifying them as features on the pronoun’s

lexical entry.

Extracting auxiliaries from the verbal lexical classes

and accounting for them in the grammar specification

requires information regarding the auxiliary’s syntactic

distribution. For this reason, basil identifies auxiliaries

from the source IGT rather than from MOM’s lexicon,

as we will describe in Section 4.5.1.

4.2.3 Additional Lexical Items

The Grammar Matrix does not support morphological

inflection for determiners or adpositions, so it is not ad-

vantageous to infer these using MOM. Instead, basil

extracts the full form orthographic representation and

PNG and case features from the IGT. Where possible,

we identify determiners from the POS tags, and if those

are not available, basil looks for specific grams or lem-

mas in the gloss. Our grammars also support negation

and coordination particles, which are described in their

respective subsections of Section 4.5.

4.3 Morphotactics

The morphological component of a machine-readable

grammar ultimately needs to account for which mor-

phemes can co-occur and in which order, what the syn-

tactic and semantic contributions of each morpheme

are, and the morphophonological processes that re-

late the actual word forms to the collection of mor-

phemes that make them up. The Grammar Matrix

abstracts away from the morphophonology, assuming

that the generated grammars will be interfaced with

an external morphophonological analyzer (Bender and

Good, 2005).
9
Accordingly, our inference system is only

concerned with morpheme order, co-occurrence, and

syntactico-semantic contributions.

The grammar specification files handle morpheme

co-occurrence in terms of position classes (PCs), each

of which specify what they can aach to (their ‘input’),

9
In brief, the idea is thatmorphophonological phenomena are best

handled with dierent formal approaches than morpho-syntactic

ones, so a parser using our grammars would be pipelined with bidi-

rectional morphophonological analyzers. These laer map between

surface realizations and morphophonolgically regularized sequences

of morphemes, such as what is oen found in the morpheme seg-

mented line of IGT.
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section=morphology

noun-pc1_name=noun-pc1

noun-pc1_order=suffix

noun-pc1_inputs=noun1

noun-pc1_lrt1_name=noun-pc1_lrt1

noun-pc1_lrt1_feat1_name=case

noun-pc1_lrt1_feat1_value=nom

noun-pc1_lrt1_lri1_inflecting=yes

noun-pc1_lrt1_lri1_orth=-p@

Figure 9: The definition of a position class for Lezgi

whether they are prefixes or suixes, and which lexical

rules they house. The lexical rules are defined in terms

of lexical rule type (LRTs) which bear type constraints

(feature/value pairs) and which in turn are instantiated

by lexical rule instances (LRIs), which have specific af-

fix spellings or are flagged as zero aixes (non-spelling-

changing rules) (Goodman, 2013). An example of the

specification for a position class in Lezgi [lez] is shown

in Figure 9. Each PCmust have at least one input (a lex-

ical class or another PC) and a position (prefix or suf-

fix)
10
and can be marked obligatory. Each PC must also

have one or more LRTs, which can specify features on

the word or on the arguments of the word. Each LRT

must have one or more LRIs, which includes an ortho-

graphic form or a flag indicating that the rule involves

no overt morpheme.

We use the MOM morphotactic inference system

(Wax, 2014; Zamaraeva, 2016; Zamaraeva et al., 2017,

2019a) to infer the morphological rules. MOM infers

a graph of the morphemes by collecting the aixes for

each word with a noun or verb POS tag, creating a PC

with an LRT which includes any features found in the

gloss and an LRI with the appropriate orthographic rep-

resentation and merging PCs that have overlapping in-

puts.
11

While the morphotactic graph is essential for pro-

cessing individual words, the morpho-syntactic or

morpho-semantic features on thosemorphemes are key

to producing the correct parse for larger phrases and

sentences. MOM uses a feature dictionary comprising

a large number of known glosses, grouped by their type,

to map common grams to features. For example, the

grams ‘ipfv’, ‘impfv’ and ‘imperf’ are all mapped to im-

perfective aspect. When MOM constructs the lexical

rule types, it adds the features corresponding to any

PNG, TAM or case grams to the lexical rule.

Non-inflecting lexical rules pose a particular chal-

lenge because they are not typically glossed as separate

10
The Grammar Matrix does not handle circumfixes separately.

These must be specified as individual prefixes and suixes. Infixes

are not explicitly handled; instead the Matrix assumes that a mor-

phophonological analyzer regularizes these to prefixes or suixes. See

footnote 9.

11
For more detail, see op cit.

morphemes in IGT but rather indicated with a gram at-

tached to the previous element with a “.”, if they are

indicated at all. MOM only creates non-inflecting rules

for glosses it is able to map to PNG, case or TAM fea-

tures, and only when such a gloss is found aached

to the gloss for a stem. For example, if a noun is

glossed as ‘dog.nom’, MOMcreates a non-inflecting lex-

ical rule to add nominative case. All PCs which con-

tain a non-inflecting LRI are made obligatory, so that

forms without overt aixes do not end up only option-

ally bearing the features associated with that part of

the paradigm.
12

The result of morphological inference with MOM is

a set of lexical rules grouped into position classes mod-

eling their combinatorial potential. Within those posi-

tion classes are lexical rule types that contribute fea-

tures and in turn contain lexical rule instances, which

either correspond to a particular orthography or are

non-inflecting. Both the morphological rules in this

section and the lexical entries in Section 4.2 contain

morpho-syntactic features which interact with the syn-

tactic inference in Section 4.5. The next section is con-

cerned with how we define those features in the gram-

mar specification, so that they will interact properly in

the resulting grammars.

4.4 Syntactico-semantic Features

A great deal of semantic information is expressed mor-

phologically in the form of person, number and gender

(PNG) marking on nouns or agreement on verbs and

tense, aspect and mood (TAM) inflection on verbs and

auxiliaries. In order to model these features, the gram-

mar specificationmust contain two types of definitions:

First, the features and values themselves must be de-

fined as belonging to the appropriate PNG or TAM cat-

egory; and second, they must be associated with the

appropriate lexical entries or morphological rules. The

work of associating these features with the appropri-

ate forms was described in Sections 4.2 and 4.3. When

building the lexicon and morphological rules, MOM as-

sociates each feature value (e.g. perfective) with a type

(e.g. aspect) according to their classifications in the

GOLD Ontology (GOLD, 2010) and Unimorph (Sylak-

Glassman et al., 2015). In this section we describe how

basil uses these features and types to define more de-

tailed type definitions for each PNG and TAM category,

so the syntactic constraints contributed by these fea-

tures can be used in the grammar and their semantic

contributions will be reflected in the semantic repre-

sentations.

12
The addition of non-inflecting lexical rules to MOM, as well as

the functionality of collecting the initial set of grams and adding fea-

tures to lexical rules described in the preceding paragraph, is from

unpublished work by Olga Zamaraeva.
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4.4.1 Person

Generally speaking, person is a feature that marks the

entities in an uerance with respect to discourse partic-

ipants (Siewierska, 2004), where first is the speaker, sec-
ond is the addressee and third is someone or something

outside of the discourse context. Combinations of these

persons, such as first+second ‘I and you’ and first+third
‘I and they’ are sometimes given special grammatical

treatment and are oen referred to as inclusive and ex-
clusive (Cysouw, 2013). The Grammar Matrix’s library

for person (Drellishak, 2009) provides a set of six options

for person distinctions: first, second, third; first, second,

third and fourth; first and non-first; second and non-

second; third and non-third; and none. It also allows

three options with regard to subtypes in the first per-

son: none, inclusive vs. exclusive (along with the num-

ber categories in which this distinction applies) and

other.

Aer collecting all of the person features from the

lexical items and morphological rules, basil posits that

the language contains first, second, third and fourth

person if it found 4th person; first, second and third per-

son if it found 3rd and either 1st or 2nd; and then first

and non-first if it found 1st; second and non-second if

it found 2nd; third and non-third if it found third; and

otherwise none. basil then checks for inclusive and ex-

clusive features and if it finds any, it defines an inclu-

sive/exclusive distinction.

4.4.2 Number

Number indicates howmany entities are being referred

to. If a language marks number at all, this distinction

can be as simple as singular vs. plural or may be more

modular distinguishing dual (two), paucal (a few) and

other numbers of entities (Corbe, 2000). The numbers

distinguished by a language vary cross-linguistically

and it is possible for these features to form a hierar-

chy (e.g. non-singular might subsume dual and plural).

Thus, the Grammar Matrix allows number features to

be freely added to the specification file, forming a hier-

archy if desired (Drellishak, 2009). basil defines a num-

ber value for each of the numbers found in the mor-

phology and lexicon. Currently, it defines each of these

as sister types, rather than inferring a hierarchy of su-

pertypes and subtypes, which we leave to future work.

4.4.3 Gender

Gender is another fairly open-ended category in the

world’s languages. While some languages like Russian

[rus] distinguish just masculine, feminine and neuter,

Bantu languages such as Kiswahili [swh] distinguish a

complex system of genders (Corbe, 1991). Linguists

also vary in their annotation of gender features either

using grams like m or masc or using numerals for more

complex systems. To accommodate this flexibility in

the gender distinctions in language and linguists’ an-

notation preferences, the Grammar Matrix allows the

addition of any number of genders by any name, and

allows the specification of a hierarchy (e.g. to support

agreement markers that are ambiguous between two or

more gender values). As with number, basil defines a

gender value for each of the genders found in the mor-

phology and lexicon, but does not infer a hierarchy.

4.4.4 Tense, Aspect and Mood

Every language has some grammatical expression of

time, which falls into the categories of tense, aspect

and/or mood, and these features can be marked ei-

ther morphologically on the verb, with an auxiliary or

morphologically on an auxiliary, and a single uerance

may include a combination of these expressions (Hop-

per, 1982).
13

For example, in the IGT from Matsigenka

[mcb] in (3), the verb oataira is marked with regressive

aspect (reg) and realis mood (realis), while the verb

oponiakara is marked with perfective (perf) aspect and

realis mood (realis). Michael (2008) characterizes the

regressive aspect as a subtype of perfective aspect that

indicates motion back to a salient point of origin.

(3) ovashi

ovashi

so

oataira

o-a-t-a-i=ra

3fS-go-epc-reg-realis=sub

oponiakara.

o-poni-ak-a=ra

3fS-come.from-perf-realis.refl=sub

‘Then she went back to where she came from.’

[mcb] (Michael et al., 2013)

The TAM categories contain a number of possible

values cross-linguistically and, as illustrated by the re-

gressive and perfective aspects described by Michael,

can form hierarchies. As with the number and gender

libraries, the TAM library of the GrammarMatrix (Poul-

son, 2011) also allows the definition of any number of

values for each of tense, aspect and mood and also al-

lows the definition of hierarchies. basil defines each

TAM feature as either tense, aspect or mood in the re-

spective section of the grammar specification, leaving

the inference of hierarchies to future work.

4.4.5 Summary

We described six categories of syntactico-semantic fea-

tures: person, number, gender, tense, aspect and mood.

These features are added to the specifications of lexical

13
In NLP, the TimeML specification language (Pustejovsky et al.,

2003) has been used in an eort to standardize such expressions of

time, and has been made more cross-linguistically viable by eorts

such as Zymla 2017.
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entries ormorphological rules according to themethod-

ologies described in Sections 4.2 and 4.3 and defined as

belonging to their respective categories. The result of

these definitions is a grammar that produces semantic

representations that contain this information and en-

forces agreement between heads and their arguments.

4.5 Syntactic Properties

In this section, we provide a high-level description of

the algorithms used for inferring each of the syntactic

phenomena accounted for in our grammars. Using the

projected dependency tags provided by INTENT and

typologically-informed heuristics, we make generaliza-

tions about distributional properties of the language

and posit the appropriate definitions for that grammar

specification for a range of syntactic phenomena. These

include broad-brush, language-level properties (e.g. ‘the

case alignment is ergative-absolutive’), properties asso-

ciated with specific constructions (e.g. ‘this form can

coordinate VPs in a monosyndetic paern’) and spe-

cific lexical items (e.g. ‘negation is marked via an aux-

iliary with this orthography that combines with a VP

and raises the subject’).

4.5.1 Word Order and Auxiliaries

Languages vary in both their degree of word-order flex-

ibility and, if only specific orders are allowed, which

ones are (e.g. Dryer, 2013c). When linguists talk about

the ‘word order’ of a language, they are frequently re-

ferring to the relative order of a verb and its argu-

ments (subject, complement), but there are also cross-

linguistic dierences in the order of determiners (if

present) with respect to their head nouns, adpositions

with respect to NPs, and others. The ‘word order’ sec-

tion of a Grammar Matrix grammar specification takes

information about each of these (Bender et al., 2010).

We adopt the approach of Bender et al. (2013),

which maps constituent word orders observed in the

data to one of ten canonical word orders (SOV, SVO,

OSV, OVS, VSO, VOS, v-initial, v-final, v2 and free).

This approach identifies verbs based on their POS tags

and their subjects and objects using projected depen-

dency labels. Each observed order of verbs and subjects,

verbs and objects and subjects and objects is counted to

compute a three dimensional vector representing the

respective order of verbs, subjects and objects in the

language, which can be compared to the vector rep-

resentations for each canonical word order. Follow-

ing Bender et al., basil posits the canonical word order

whose vector has the shortest euclidean distance from

the observed language vector as the canonical word or-

der for the language.

Also following Bender et al. (2013), we take a simpler

approach to predict determiner-noun order. Collecting

each noun and determiner pair from the projected de-

pendencies, we count the number of observed deter-

miners before vs. aer the noun and posit whichever

order is most common.

Whereas previous work did not account for auxil-

iaries, basil both identifies auxiliaries as lexical items

and infers their syntactic properties. This includes iden-

tifying their position with respect to the main verb and

inferring what type of constituent they aach to (a verb

(V), verb phrase (VP) or sentence (S)), whether they at-

tach before or aer that constituent, and whether mul-

tiple auxiliaries are possible. We identify auxiliaries in

the corpus as words that are either glossed with an En-

glish auxiliary or modal or glossed with only morpho-

syntactic or morpho-semantic features and no lemma.

While collecting auxiliaries from the corpus we identify

the main verb and its subject and object from the pro-

jected dependencies. We use these to discover whether

the auxiliary occurs before or aer the main verb and

check for a subject intervening between an auxiliary

and verb, which would indicate that the auxiliary takes

an S complement instead of a VP, or an auxiliary inter-

vening between a verb and its object, which would indi-

cate that the auxiliary aaches to a V, rather than a VP.

If no evidence for V or S aachment is found, basil de-

faults to VP aachment, as the argument-composition

analysis that the Grammar Matrix uses to model auxil-

iaries with V complements is computationally very ex-

pensive (see Bender 2010) and we hypothesize that S

aaching auxiliaries are typologically rare.

Because the MOM morphotactic inference system

infers auxiliaries as verbs when constructing the lex-

icon, basil must reclassify these lexical items to give

them the proper definitions to function as auxiliaries in

the grammar. basil does this by finding any verbs in the

MOM-generated lexicon that have the same lemma as

those it identified as auxiliaries. For each, basil defines

an auxiliary lexical class that is input to the same mor-

phological position classes and contains the same fea-

tures as the verb lexical class inferred byMOM. Because

auxiliaries are oen homophonous with main verbs,

basil does not remove the main verb lexical entry.

In addition to the lemma, feature and morpho-

logical combinatorial information described above, the

Grammar Matrix requires specifications for the seman-

tic contribution of the auxiliary. When basil constructs

the auxiliary lexical items from verb lexical items in-

ferred by MOM, it specifies the auxiliary as semanti-

cally contentful and adds the predication value from

the verb if the original verb’s predication contains an

English lemma (e.g. _should_v_rel), rather than con-

taining only grams for syntactico-semantic features.

basil also adds a negation predication if the auxiliary

contributes negation (see Section 4.5.4 for negation in-

ference).
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Finally, the lexical entry includes a value for the

case of its subject, which can be specified as a specific

case, no case restrictions, or the case assigned by the

verbal complement. With our development languages,

we tested an algorithm in which basil checks for dif-

ferences in the case on subjects in sentences with and

without auxiliaries, and adds this constraint to the lex-

icon. We found that this inference is frequently con-

founded by other factors that can aect the subject’s

case, so we did not include this inference in basil and

leave a more accurate algorithm to future work. Cur-

rently basil posits no case restrictions if A) the language

does not have a case system or B) the auxiliary always

occurs with a dierent case than the one inferred for

the verb’s case frame (this leads to some ambiguity, but

avoids the loss in coverage that results from positing a

case that was assigned due to other syntactic factors).

Otherwise it posits that the auxiliary takes its case re-

strictions from the main verb.

Aer identifying the auxiliaries in the corpus, we al-

low for a post-hoc change to the main word order to ac-

count for second position clitic clusters. The Grammar

Matrix supports an analysis set forth by Bender (2008c)

of second position clitics/clitic clusters as auxiliaries in

a V2 language, when those clitics express TAM and/or

agreement features. Clitic clusters that contain PNG

agreement and TAM information are identified during

auxiliary inference and if they occur overwhelmingly as

the second word of each sentence, basil posits V2 word

order for the language to leverage this analysis.

4.5.2 Case System and Case Frame

A language which marks case has variations in the

forms of the noun phrases correlated with their func-

tion in the sentence (Comrie, 1989; Dixon, 1994). A typ-

ical case system will involve both the case required of

core arguments of typical verbs, as well as additional

cases used when NPs function as modifiers (e.g. loca-

tive case) and sometimes selected for idiosyncratically

by specific verbs. Case systems are dierentiated ac-

cording to the alignment they provide for the core ar-

guments of intransitive and transitive verbs. The Gram-

mar Matrix customization system’s case library (Drel-

lishak, 2009) provides nine overarching case systems

(core argument case alignments) and facilitates defin-

ing any number of additional cases. The selection of the

core case system enables default case frames for each

verb type, but grammar specifications can also bypass

these and define verb types which leave case under-

specified or select for alternate case paerns.

To infer the overarching case system, we use an

algorithm developed by Bender et al. (2013) and re-

implemented to use an enriched Xigt corpus by How-

ell et al. (2017), which uses a simple heuristic based on

the total counts of known case grams in the data. This

approach only infers four case systems: nominative-

accusative, ergative-absolutive, split-ergative and none.

Because split-ergative requires information about the

nature of the split, we map it to ergative-absolutive. In

addition to inferring the overarching case system, we

also collect any other case grams in the corpus and de-

fine these in the grammar specification, so that we can

also handle verbs that require alternate case frames.

Here we infer only intransitive and transitive verbs,

leaving ditransitive (which are not currently supported

by the Grammar Matrix) and clausal complement-

taking verbs to future work.

To find the case frame of each intransitive and tran-

sitive verb in the corpus, basil uses the dependency

parse of the English sentence to identify verbs that have

zero or one direct object, skipping any that are passive

or have an indirect object or clausal complement (fol-

lowing Zamaraeva et al. (2019a), such verbs will be ex-

cluded from the final grammar). We find the case of the

subject and object in the gloss line and if no case gram

is found in the gloss, we posit default case based on the

overarching case system. In cases where the marked

case doesn’t match the default, we posit the aested

case for that verb’s arguments. Our approach is sim-

ilar to that of Zamaraeva et al. (2019a), but diers in

that we use projected dependency parses rather than

phrase structure trees and that we account for verbal

case frames that dier from the overarching system.

These constraints interact with the case features on

noun-phrases when verbs unify with their arguments.

Case features may be licensed by the morphological

rules on nouns which were inferred by the morpholog-

ical component described in Section 4.3, can be lexi-

cally specified (e.g. for pronouns, see Section 4.2.2) or

can be indicated by the determiner or a case-marking

adposition. If, for example, the feature specification

[CASE acc] is associated with a lexical rule aaching

an accusative case marker to a noun, or if [CASE acc]

is in the lexical entry for a determiner or adposition,

NPs or PPs built with these lexical entries or rules will

be incompatible with argument positions that require

[CASE nom].

Having described the inference algorithms and sys-

tems for phenomena such asmorphotactics, word order

and case, and the ways in which we refined, adapted

and added to them, we now turn to the entirely new

inference modules that we contribute in this paper, be-

ginning with argument optionality.

4.5.3 Argument Optionality and Marking of Ar-

guments on Verbs

Languages vary in the extent to which and under what

conditions they allow dropped arguments: some lan-

guages allow core arguments of any verb to be dropped

freely, while others are more restrictive if argument
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dropping is possible at all. These restrictions range from

the specific verbs for which argument dropping is al-

lowed, subject vs. non-subject arguments, specific syn-

tactic contexts (e.g. only in certain tenses), or whether

the verb is required to agree with overt vs. dropped ar-

guments (Ackema et al., 2006; Dryer, 2013a). The Mat-

sigenka example in (4) shows a verb with no overt ar-

guments that is inflected for agreement with both the

subject and object.
14

(4) oogaigavakari

o-og-a-ig-av-ak-a=ri

3fs-eat-epv-pl-trns-perf-realis.refl=3mo

‘She ate them.’ [mcb] (adapted fromMichael et al.,

2013)

The Grammar Matrix accounts for subject and ob-

ject dropping as either lexically licensed (allowed for

certain verbs) or possible for any verb (Saleem, 2010;

Saleem and Bender, 2010). It also allows argument

dropping to be constrained by agreement markers on

the verb which can be optional, required or not allowed

when the subject/object is overt, and similarly when

the subject/object is dropped. Finally, specific syntac-

tic contexts in which subject dropping is possible can be

defined. Our inference focuses on determining whether

argument dropping is permied for subjects and ob-

jects in a language and leaves constraints on the con-

text to future work. We infer whether agreement is re-

quired for dropped vs. overt arguments, which requires

dierentiating subject agreement markers and object

agreement markers; however, we leave the integration

of this inference with the morphological rules that li-

cense agreement to future work.

In order to identify whether subject and/or object

dropping is possible in the language, basil begins by

collecting all of the transitive and intransitive verbs
15
in

the corpus together with their overt arguments, based

on the projected dependencies as it did for case-frame

inference (§4.5.2). Whereas the case-frame inference

methodology determines if a verb is transitive based

solely on the presence of an overt object in the English

translation, here we account for the fact that some En-

glish verbs allow object dropping. If the correspond-

ing verb in the English translation has a direct object,

we assume that the verb is transitive. If no object is

found, basil cross-references the verb’s gloss with a list

of English object-dropping verbs from the lexical en-

tries in the English Resource Grammar (ERG v. 1214;

Flickinger, 2000, 2011) of the type v_np*. If the verb is

found in this list, basil posits that the verb is transitive

14
We analyze the pronominal clitics in Matsigenka as aixes,

rather than independent words, following Inman (2015).

15
Because basil does not infer ditransitive or clausal complement-

taking verbs, it excludes them from consideration when inferring ar-

gument dropping.

and otherwise intransitive. Although the argument op-

tionality of verbs does not necessarily map across lan-

guages, leveraging this list of English object-dropping

verbs allows us to err on the side of positing transitiv-

ity, and we find that doing so improves the coverage of

the resulting grammars.

Agreement with the subject or object can bemarked

either on themain verb or on an auxiliary. To determine

whether a verbal complex has subject and/or object

marking, basil identifies any auxiliaries associatedwith

each verb and collects all agreement markers (across

the verb and any auxiliaries), using a hand-compiled list

of common agreement glosses. We compiled this list

from the agreement glosses used by MapGloss (Lock-

wood, 2016) as well as observed glosses in the devel-

opment data. Although agreement is not the only way

arguments are marked on verbs (for example, in Hausa

the verb’s inflected form depends on whether or not an

overt object is present, but this form does not include

any PNG information (Newman, 2000)), it is the most

common form and the easiest to identify. In addition

to collecting all agreement markers, we use a heuris-

tic to identify whether the agreement markers corre-

spond to more than one argument: if the set of agree-

ment glosses has multiple glosses of a particular cat-

egory (e.g. person, number or gender), basil says that

the verb is marked for more than one argument. This

approach is particularly valuable when a single mor-

pheme is used to mark two arguments. For example in

(5) from Basque [eus], dio is glossed as 3abs-3dat.3erg,

containing three third person glosses, so basil counts

three agreement glosses on that verb.

(5) Eduk

Edu-k

Edu-erg

neska

neska

girl.abs

Toniri

Toni-ri

Toni-dat

aipatu

aipatu

mention

dio

d-io

3abs-3dat.3erg

‘Edu has mentioned the girl to Toni.’ [eus]

(adapted from Xia et al., 2016)

We use the presence of agreement features on any

verb in the set to detect argument marking on the main

verb. Intransitive verbs with any agreement gloss are

classified as having subject marking. The orthogra-

phies associated with these glosses are saved in a set of

known subject markers. Aer all of the subject markers

on intransitive verbs have been collected, basil looks at

the transitive verbs. Transitive verbs with more than

one agreement gloss (like that in (5)) are classified as

having subject and object marking. Transitive verbs

with only one agreement gloss which corresponds to

the orthography of a known subject marker are classi-

fied as having subject marking and the remainder are

classified as having object agreement. The set of known
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subject glosses is included in the input to MOM. When

deciding if a PNG gram should be identified with the

subject or object, MOM consults this list and associates

it with the subject if the verb is intransitive or the mor-

pheme is in the set of subject morphemes and with the

object otherwise.

basil’s inference for argument optionality has two

components: (1) inferring whether subjects and objects

can be dropped, and (2) inferring whether argument

marking on the verb is possible or even required when

arguments are dropped or overt. The laer involves

identifying argumentmarkers in the form of agreement

morphemes and discriminating between subject and

object agreementmarkers. Our approach focuses on in-

creasing the coverage of the inferred grammars, while

future work to enforce or prohibit argument marking

on verbs with overt versus dropped arguments would

decrease ambiguity.

4.5.4 Sentential Negation

All human languages have a means of expressing sen-

tential negation, but they vary in how many markers

are used and whether those markers are independent

words, bound morphemes (Östen Dahl, 1979; Dryer,

2005, 2013b; Miestamo, 2008) or a missing morpheme

in the paradigm, such as the absence of a tense marker

indicating negation in some south Dravidian languages

(Master, 1946). Crowgey (2012) models sentential nega-

tion in the Grammar Matrix, allowing it to be marked

with 0, 1 or 2 morphemes (calling these strategies zero,
simple and bipartite), which can be bound morphemes,

syntactic heads (auxiliaries) or uninflected particles

(adverbs). The analyses provided by the Grammar Ma-

trix ensure that there is only one negation predication

in the semantics, regardless of the number and type of

markers in the strategy. basil infers each of the possible

combinations as described below.

We first identify sentences with sentential nega-

tion based on the English translation and then target

the gloss line of the IGT to find negation morphemes,

based on common glosses, such as ‘neg’ and ‘not’. basil

considers glosses on aixes to be inflectional negation.

We expect that zero-marked negation will be anno-

tated with a negation gloss on a stem or on another

morpheme and will therefore be modeled with a non-

inflecting lexical rule as described in 4.3, so basil ac-

counts for it using the morphological negation specifi-

cation. If inflectional negation is detected, this is indi-

cated in the sentential negation portion of the grammar

specification which in turn enables a negation pseudo-

feature which can be added to lexical rules. The distri-

butional properties for negation aixes (including zero-

negation) are inferred and specified by the morpho-

logical inference system in Section 4.3, which puts the

negation pseudo-feature on the appropriate lexical rule.

The Grammar Matrix customization system interprets

this pseudo-feature and ensures that the resulting lexi-

cal rules carry negation semantics, as shown in Figure 6.

A root glossed as negation could be either an auxil-

iary or an adverb. The English dependency parse does

not help us decide which, as it simply encodes facts

about negation in English. Instead, we compare these

negation words with the auxiliaries collected in Section

4.5.1. If auxiliary entries were inferred for orthogra-

phies glossed for negation, we treat them as such. Oth-

erwise we define them as adverbs. The distributional

properties of negation auxiliaries were inferred as part

of auxiliary inference (§4.5.1), so there is no additional

work to be done. In the case of negation adverbs, we

use the same process as we did for auxiliaries to decide

what type of constituent they aach to (VP or S) and

whether they occur before of aer that constituent.

Aer identifying instances of sentential negation

in the corpus, basil compares the number of sen-

tences that include one negation marker with those

that include more than one negation marker. Although

basil only looks at sentences with sentential negation,

it does not distinguish between sentential and con-

stituent negation markers, and can mistake a negated

sentence with additional constituent negation as bipar-

tite negation. However, we seek to avoid confounding

from constituent negation co-occurring with sentential

negation by taking the most common strategy (simple

or bipartite) found in the corpus.

If simple negation is the most common, the Gram-

mar Matrix lets us add all of the strategies we found

(aix, auxiliary, and adverb) to the grammar specifica-

tion. For bipartite negation, we can only specify one

combination ofmarkers, so if bipartite negationwas the

most common strategy found in the corpus, we add the

twomost common co-occuring types of negation mark-

ers (e.g. adverb and aix) to the grammar specification.

While theMatrix only allows us to add one orthography

for a negation adverb (so we use the most common), we

are able to specify as many negation aixes and auxil-

iaries as we find in the corpus.

4.5.5 Coordination

Coordination is possible for a wide range of constituent

types, called coordinands, and can be marked with ei-

ther free or boundmorphemes, called coordinators. Co-

ordinators can aach to all (omnisyndetic), all but one

(polysyndetic), one (monosyndetic) or none (asynde-

tic) of the coordinands (Drellishak, 2004; Haspelmath,

2007). The Grammar Matrix models all of these possi-

bilities and allows us to define any number of strategies

for nouns, noun phrases, verbs, verb phrases and sen-

tences (Drellishak and Bender, 2005).

As with sentential negation, basil identifies IGT

that exhibit coordination based on the English transla-
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tion and then finds the coordinators first by looking for

the word aligned by INTENTwith the English coordina-

tor and then, because alignment isn’t always success-

ful, by looking for the glosses ‘coord’, ‘conj’, ‘cconj’

and ‘and’. Then basil uses the projected dependencies

to collect the dependent of each coordinator and these

dependents are assumed to be the coordinands. As a

fallback, if basil cannot find coordinands via projected

dependencies, it looks for them by collecting the words

that occur in between coordinators, although this ap-

proach is less successful for monosyndetic coordina-

tion. basil then compares the number of coordina-

tors and coordinands to decide if the sentence exem-

plifies asyndetic, monosyndetic or omnisyndetic coor-

dination. Dierentiating between mono- and polysyn-

detic coordination is rather diicult as most examples

in the corpora only have two coordinands, and the con-

struction ‘A and B’ could be either mono- or polysynde-

tic. However, monosyndetic coordination can be used

to model polysyndetic (e.g. [[A and B] and C]), so basil

defaults to monosyndetic in cases that might be mono-

or polysyndetic.

For each coordination strategy, we also identify the

lexical category of the coordinand (noun or verb) and

use heuristics to decide at what level the coordination

takes place (word or phrase in the case of nouns and

word, phrase or sentence for verbs). Because the Gram-

mar Matrix allows any number of coordination strate-

gies, we add each distinct coordination strategy that we

detect in the corpus to the grammar specification.

4.6 Summary

In this section we described four types of inference

that produce the necessary components of our inferred

grammar specifications: lexical, morphotactic, morpho-

syntactic/morpho-semantic and syntactic. For infer-

ence of noun and verb lexical classes and lexical entries,

we rely primarily on the MOM morphotactic inference

system, but make new contributions to lexical inference

in the form of auxiliary, adposition and determiner in-

ference as well as lexical types defined as part of syntac-

tic inference such as negation adverbs or coordinators.

We also leverage MOM to infer morphological rules for

nouns and verbs, and build on the system by improv-

ing the detection of subject and object agreement, as

described in Section 4.5.3, and adding the definitions

of PNG and TAM features to the grammar specifica-

tion, so that these syntactico-semantic features can be

included in the semantic representations. We built on

previous algorithms for inferring syntactic properties

such as word order and case and added new algorithms

for argument optionality, negation and coordination.

The scope of this inference spans a large number of

feature-value pairs in the grammar specification, as we

illustrate in Table 1, and testing the inference for all of

these on real data would require a vast set of datasets

from typologically diverse languages. At the same time,

it is possible that specifications allowed by the Gram-

marMatrix or targeted by basil are not suicient to cor-

rectly model some languages. In the following section,

we describe our data-driven approach to development

in which we considered corpora from a wide range of

diverse languages and from a variety of data formats to

develop and test the algorithms detailed in this section.

5 Development Languages

We developed the inference algorithms described in

Section 4 using a data-driven approach in which

we consulted the typological literature for each phe-

nomenon and actively tested each algorithm on a di-

verse set of languages throughout implementation. In

this section, we describe the languages and datasets we

used during development (§5.1), phenomena that ap-

pear in our datasets, both targeted by basil and other-

wise (§5.2) and basil’s performance on the development

datasets (§5.3).

5.1 Dev Languages and Datasets

In order to thoroughly test basil on the phenomena de-

scribed in Section 4, it is necessary to use languages

that are typologically varied, representing as many lan-

guage families and geographic areas as possible. For

development, we made use of 9 datasets for languages

from 7 language families and 4 continents. In addi-

tion to these core development datasets, we tested indi-

vidual phenomena using datasets from another 18 lan-

guages to span a total of 19 language families and 6 con-

tinents. These languages, their language families and

details of the corpora are listed in Table 2. Their geo-

graphic distribution is shown in Figure 10, with devel-

opment languages in red (1-9) and additional consulted

languages in blue (10-27).
16

Held-out languages which

we discuss in Section 6.3 are in green (28-32).

We selected the core development languages based

on the size and quality of the dataset as well as for

some of the syntactic phenomena exhibited by those

languages. The majority of these corpora come from a

FLEx or Toolbox corpus that was curated by a documen-

tary linguist (or a group of linguists). To support the

development and implementation of inference for spe-

cific syntactic and morpho-syntactic phenomena, we

also consulted additional datasets for languages which

represent those phenomena. These datasets not only

contribute to the diversity of the languages we worked

16
In most cases, these coordinates come from WALS (Dryer and

Haspelmath, 2013). If information from WALS was not available, we

consulted other sources, starting with descriptions of where the lan-

guages are spoken from the reference grammars we worked with.
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Figure 10: Map of the coordinates where languages used in the development are spoken

ISO Number POS tags

Language 639-3 Family Source Type of IGT in source

Development

1 Abui abz Trans-New Guinea Toolbox 1568 yes

2 Chintang ctn Sino-Tibetan Toolbox 9785 yes

3 Matsigenka mcb Arawakan FLEx 349 yes

4 Nuuchahnulth nuk Wakashan FLEx 641 no

5 Wambaya wmb Mirndi Book 818 no

6 Haiki yaq Uto-Aztecan FLEx 2235 yes

7 Lezgi lez Nakh-Daghestanian FLEx 1168 yes

8 Meithei mni Sino-Tibetan FLEx 955 yes

9 Tsova-Tush bbl Nakh-Daghestanian FLEx 1601 yes

Consulted

10 Bardi bcj Nyulnyulan Book 178 no

11 Ik ikx Eastern Sudanic Book 201 no

12 Old Javanese jav Austronesian Toolbox 308 no

13 Yup’ik esu Eskimo-Aleut Book 217 no

14 Basque eus Basque ODIN 1033 no

15 Dutch nld Indo-European ODIN 3543 no

16 Finnish fin Uralic ODIN 3123 no

17 Greek ell Indo-European ODIN 2065 no

18 Hausa hau Afro-Asiatic ODIN 2504 no

19 Hungarian hun Uralic ODIN 2077 no

20 Indonesian ind Austronesian ODIN 1699 no

21 Italian ita Indo-European ODIN 3513 no

22 Japanese jpn Japonic ODIN 6655 no

Book 116 no

23 Korean kor Korean ODIN 5383 no

24 Mandarin cmn Sino-Tibetan ODIN 5045 no

25 Polish pol Indo-European ODIN 2691 no

26 Russian rus Indo-European ODIN 4161 no

27 Turkish tur Altaic ODIN 2617 no

Table 2: Languages used in development
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with, but also to the variety of source formats and

dataset styles. A number of the datasets we consulted

for individual phenomena (languages 14-27) come from

the ODIN corpus (Xia et al., 2016), which is a collec-

tion of IGT scraped from academic papers. We also ex-

tracted four corpora from descriptive grammars, using

the pipeline for extracting IGT from text and converting

it to the Xigt data model developed by Xia et al. (2016).

A full list of citations for the corpora and any descrip-

tive resources we consulted are in Appendix C.

Later in this section, we describe basil’s coverage

over the development datasets. To contextualize that

discussion, we begin with an overview of the languages

and their respective datasets.

Abui [abz] is an Alor-Pantar language in the Trans-

New Guinea language family. It has about 16,000

speakers and is primarily spoken on the Alor island of

Indonesia (Kratochvíl, 2007). This dataset (Kratochvíl,

2019) comes from a Toolbox corpus which contains

about 18,000 sentences from both elicitation and tran-

scribed speech. As part of an ongoing documentation

eort, the dataset is only partially glossed. We fil-

tered the data based on the presence of full segmen-

tation and glossing, and removed duplicates and exam-

ples marked as ungrammatical, to create a dataset of

1,500 sentences.

Chintang [ctn] is a Kiranti language of the Sino-

Tibetan family spoken in Nepal with 4,000-5,000 speak-

ers (Schikowski, 2013). The Toolbox dataset is quite

large, coming from a long-term documentation eort

(Bickel et al., 2013b). We use a fully segmented and

glossed subset of the data containing almost 10,000 sen-

tences. The type of language represented in the corpus

is diverse, containing transcribed conversations, ritual

language, narratives and a few other genres.

Haiki [yaq] is a Taracahitic language of the Uto-

Aztecan family and is spoken by about 21,000 people

in Mexico and the United States (Eberhard et al., 2019).

There are multiple spellings of the name of this lan-

guage, including Yaqui, which is the oicial name of the

tribe in the United States and Mexico; however, Haiki

is the correct spelling in the Pascua Yaqui orthography

(Sanchez et al., 2015). The corpus (Harley, 2019) is quite

large with almost 11,000 IGT, but as with most ongo-

ing projects, is only partially annotated with interlin-

ear glosses and part-of-speech tags. Aer filtering IGT

with no glosses and removing ungrammatical examples

and duplicates, we worked with a set of just over 2,000

IGT.

Lezgi [lez] belongs to the Lezgian subgroup of the

Nakh-Daghestanian language family (Donet, 2014a).

It is spoken by about 400,000 people (Eberhard et al.,

2019), primarily in Daghestan and Azerbaijan (Donet,

2014a). The glossing and POS tagging in this corpus

(Donet, 2014b) are fairly complete, resulting in a set of

over 1,100 IGT aer minor filtering and removing un-

grammatical examples and duplicates.

Matsigenka [mcb] is a Maipurean language of the

Arawakan family spoken in Peru by about 10,000 people

(O’Hagan, 2018). The FLEx corpus (Michael et al., 2013)

is made up of narratives that are fully segmented and

glossed. Of the approximately 5,000 IGT in the corpus,

some have English translations, while the vast majority

of the translations are in Spanish. basil relies on com-

putational resources for English, both through its de-

pendency on the INTENT (Georgi, 2016) system (which

parses the English translation of an IGT and projects

the dependency parses onto the language) and through

the list of English verbs referenced in Section 4.5.3, and

thus basil requires IGT with English translations. From

the full Matsigenka corpus, we
17

identified about 350

IGT with English translations.

Meithei [mni] is a Kuki-Chin-Naga language of the

Sino-Tibetan language family. It is spoken predom-

inantly in Manipur State, but has about 56 million

speakers living across a wide region, including in China,

India, Nepal and Myanmar (Chelliah, 2011). The FLEx

corpus (Chelliah, 2019) contains about 1,800 IGT, but as

part of an ongoing documentation eort, is only par-

tially annotated. Aer filtering for fully-glossed IGT

and removing duplicates and ungrammatical examples,

the corpus has about 1,000 items. Compared to other

corpora in our development set, this corpus contains a

high proportion of complex sentences, which include

subordinate clauses that are not covered by inference.

Nevertheless, it is a strong example for howmuch typo-

logical information can be learned from a corpus, even

when many of the sentences contain phenomena that

are beyond the scope of the inference system.

Nuuchahnulth [nuk] is Southern Wakashan lan-

guage of Vancouver Island in Canada and has only

about 130 fluent speakers (Eberhard et al., 2019). The

FLEx dataset (Inman, 2019b) was curated in connec-

tion with a dissertation on multi-predicate construc-

tions and contains both transcribed narratives and elic-

itations, many of which target this construction. The

dataset includes about 650 examples which are fully

glossed and segmented. Inman’s corpus does not in-

clude POS tags, which are required by MOM to build

the lexicon of nouns and verbs. For many IGT, these are

available from the projected part of speech tags from

INTENT. However, because INTENT does not always

successfully find an alignment (this can be particularly

challenging for polysynthetic languages), we use an ad-

ditional heuristic to identify verbs. Because single-word

sentences are very common in this poly-synthetic lan-

guage, we supplemented the projected POS tags by pre-

17
Most of these were identified by previous research assistants on

the AGGREGATION project and more were extracted by Angelina

McMillan-Major.
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processing the corpus to assign a verbal POS tag to the

only word in any one-word IGT if the dependency parse

for the translation was headed by a verb.

Wambaya [wmb] is a West Barkly language in the

Mirndi family, which has about 60 speakers (Eberhard

et al., 2019). The Wambaya dataset is distinct from our

other development datasets as it was extracted from the

examples in a descriptive grammar (Nordlinger, 1998).

As such, it does not contain linguist-provided POS tags

and the possibility of alignment errors in the interlin-

earization is higher, due to the process of extracting

IGT from text. Nevertheless, this language illustrates

a number of phenomena that guided our development

and the use of a descriptive grammar allows us to ex-

plore the possibility of inferring grammars to accom-

pany descriptive resources along the lines of Bouma

et al. 2015.

Tsova-Tush [bbl], also referred to by the endonym

Bats or Batsbi, is aNortheast Caucasian language of the

Nakh subgroup of the Nakh-Daghestanian language

family (Hauk and Harris, forthcoming). It is spoken in

Georgia by about 2,500-3,200 people (ibid.). The corpus
(Hauk, 2016–2019) contains elicitation and transcribed

text and the glossing and part of speech tags are almost

complete, including over 1,600 IGT aer removing un-

grammatical examples and duplicates.

5.2 Dev Language Phenomena

In this section we quantify the degree to which the

inference system was tested by the development lan-

guages described above. In Section 4.1, we described

the space of the inference task in terms of the num-

ber of features and values that basil is designed to add

to the grammar specification to account for the phe-

nomena it handles. We identified 50 features with a

fixed set of values (listed in Table 1) totaling 136 possible

values in the Grammar Matrix grammar specifications

that are relevant to the phenomena targeted by basil.

Our system is designed to infer 99 of those 136 values.

When inferring grammar specifications for the 9 devel-

opment languages, 37 of the 50 features and 71 of the

99 values were inferred by basil from the development

data, as detailed in Table 3. We also reported in Sec-

tion 4.1 that basil can identify 116 morpho-syntactic

andmorpho-semantic features from their glosses in the

IGT. 66 of those 116 features are found in the develop-

ment datasets (see Table 4).

While the development languages test a significant

portion of the phenomena targeted by basil, they do

not exhaustively test every facet. For this reason, we

consulted an additional 18 languages (represented in

blue in Figure 10) to test as many of the feature-value

pairs as possible, in order to create a system that would

generalize beyond the development languages.

The phenomena targeted by basil (§4) are only a

subset of the phenomena necessary to fully model a

language or to parse all of the sentences in the corpora.

For this reason, understanding the types of sentences

we do not expect to parse lays the groundwork for un-

derstanding what the inferred grammars should parse,

but don’t. A number of lexical types that basil does not

infer will prevent the grammar from having lexical cov-

erage over sentences that contain those types of words.

These include but are not limited to adjectives, ad-

verbs and ‘particles’ marking complementation, subor-

dination, information structure, questions and posses-

sion. Because these words may be homophonous with

words that basil does handle, sentences with these lex-

ical types may have lexical coverage and the grammar

might even produce one or more parses for them, but

those parses will not be correct. In addition, there are

phenomena whose analysis doesn’t depend on partic-

ular lexical items, but rather phrase structure rules for

specific configurations (e.g. asyndetic coordination) or

lexical rules for particular types of inflection (e.g. imper-

atives), or both in combination (e.g. adverbial clauses

where subordination is marked morphologically). If the

inferred grammars don’t cover a phenomenon, we don’t

expect the grammars to parse sentences including that

phenomenon (correctly, or at all).

Some parses have the correct predicate-argument

structure but lack some semantic features as a result

of out-of-scope syntactic phenomena that contribute

information to the semantic structure. As an exam-

ple, yes/no questions and imperatives are tradition-

ally modeled in the DELPH-IN formalism with the

SF (sentential force) feature, which can have the val-

ues prop (proposition), ques (question) or comm (com-

mand) (Flickinger et al., 2014b). The inferred grammars

for some languages parse questions and imperatives

with the correct predicate-argument structure, but they

do not use the appropriate prop or comm, so the correct

features are not fully specified. With this context estab-

lished, the next subsection presents the performance of

the development grammars.

5.3 Coverage for Dev Languages

We evaluated system performance on the development

languages using 10-fold cross validation. We assessed

the inferred grammars by parsing sentences in their re-

spective test folds, using five metrics: lexical coverage—
the proportion of sentences for which the grammar has

an analysis for each word; parse coverage— the propor-

tion of sentences for which the grammar can produce

a syntactic analysis; correct predicate-argument struc-
ture— the proportion of sentences the grammar parses,

producing a semantic representation that includes ap-

propriate predications and arguments for each seman-

tic entity; correct predicate-argument structure and se-
mantic features— the proportion of sentences for which
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# targeted by # inferred from

Phenomenon # possible inference dev languages

noun lexical entry 4 2 2

verb lexical entry 4 2 2

auxiliary lexical entry 6 4 4

adposition lexical entry 3 3 3

morphological rule 5 5 5

person 9 8 4

tense 2 1 1

word order 10 9 6

determiner order 4 4 4

auxiliary order 9 9 7

case system 9 3 2

argument optionality 18 15 12

sentential negation 41 23 9

coordination 12 11 10

total 136 99 71

Table 3: The number of possible values for the closed set features to define phenomena in the grammar specification

and, those targeted by the inference system and those aested in the development languages

Feature Category # Found

Number 4

Gender 5

Case 21

Tense 6

Aspect 16

Mood 14

Total 66

Table 4: The number of morpho-syntactic features

found in the development languages. (Person features

are not included because the Grammar Matrix defines

them automatically based on the overarching person

system.)

the grammar produces the correct predicate-argument

structure as well as the appropriate PNG and TAM fea-

tures on those arguments and the correct sentential

force; and ambiguity — the average number of results

per sentence that parses. For details on how we opera-

tionalized these metrics, see Section 6.

Table 5 presents the results using these metrics

for each of the development languages. Whereas

calculating the lexical coverage, parse coverage and

ambiguity are automated processes, calculating the

correct predicate-argument structure and features re-

quires manual inspection of the semantic representa-

tions (for a detailed description of these processes, see

§6.1). For this reason, we provide results for correct

predicate-argument structure and correct predicate-

argument structure and features across all folds for lan-

guages with less than 1,000 IGT, but for those withmore

IGT, we provide these metrics only for the first fold.

The sentences for which the grammar produces

a semantic representation with the correct predicate-

argument structure and features are a subset of those

for which the grammar produces a semantic represen-

tation with the correct predicate-argument structure.

In turn, those are a subset of the sentences with parse

coverage, which are a subset of those with lexical cov-

erage. This is illustrated by the bar graph in Figure 11.

To contextualize this performance, remember that

the datasets come from a wide range of sources. Tran-

scribed speech and elicitations oen include sentence

fragments, which the grammar will not accept as sen-

tences. For this reason, and because of the many

out-of-scope phenomena described above, we do not

expect the inferred grammars to parse a very large

portion of the held-out sentences they are tested on.

Instead, the most useful comparison to consider is

the number of sentences that parsed with the cor-

rect predicate-argument structure or correct predicate-

argument structure and features versus the number of

sentences that parsed, but did not have the correct se-

mantic representation.

Previously, lile work has been done that evaluates

inferred grammars on held-out test items. Hellan (2010)

and Hellan and Beermann (2011) do not present any

evaluation for their inference system and Indurkhya

(2020) evaluates his grammars over the same sentences

as were seen in the training set. However, Bender

et al. (2014) and Zamaraeva et al. (2019a) evaluate in-

ferred grammars over held-out portions of the Chin-

tang dataset. Herewe use the same dataset of Chintang

as one of our development sets, so we use Zamaraeva

et al. 2019a as a point of external comparison.

By creating lexical items for determiners, adposi-

tions, coordinators and negation words, we doubled the
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Correct Correct Pred-

Lexical Parse Pred-Arg Arg Strugure

Coverage Coverage Structure and Features Ambiguity

Language [iso] (%) (%) (%) (%)

Abui [abz] 53.19 41.96 10.19* 5.73* 2195

Chintang [ctn] 22.29 12.24 3.58* 1.94* 5562

Haiki [yaq] 17.49 10.29 1.79* 0.89* 161

Lezgi [lez] 7.88 6.08 0.00* 0.00* 10419

Matsigenka [mcb] 12.61 8.02 1.15 1.15 2333

Meithei [mni] 5.86 5.24 1.05 0.42 3722

Nuuchahnulth [nuk] 23.09 10.14 1.87 1.09 265

Wambaya [wmb] 9.41 2.08 0.98 0.12 4

Tsova-Tush [bbl] 28.79 24.05 4.35* 0.00* 3418

Table 5: Coverage and Ambiguity for Development Languages. Results are averages across 10 folds. * indicates results

for only a single fold

Figure 11: Lexical coverage, parse coverage, correct

pred-arg structure and correct features by language for

development languages

number of test items for which the inferred grammars

can analyze each word, compared to Zamaraeva et al.

(2019a) for Chintang. This is critical as the grammar

has no chance at syntactic analysis if lexical analysis

fails. Our lexical coverage averages 20% across the de-

velopment languages. (Here and throughout, we use

macro-averages weighting each language equally.)

The next thing to consider is what portion of the

sentences for which the grammar can analyze each

word can be analyzed syntactically. Zamaraeva et al.’s

inferred Chintang grammar parsed 30% of the sen-

tences it had lexical coverage for. Our inferred gram-

mars have significantly closed that gap, parsing 84% of

the Chintang sentences that had lexical coverage and

67% of the items with lexical coverage on average across

all of the development languages.

The most important metric is the proportion of test

items the grammar parses correctly. On the develop-

ment languages, the number of sentences basil parses

with the correct predicate-argument structure ranges

from 0% to 10%. The number of sentences with cor-

rect predicate-argument structure for Chintang is more

than double what it was for Zamaraeva et al. (2019a)

and the introduction of semantic features increases the

quality of these parses. basil has more spurious cover-

age than the system of Zamaraeva et al. (2019a), which

correctly parsed 47% of its parsed sentences. basil pro-

duced parses with correct predicate-argument struc-

ture for only 19% of the Chintang sentences it parsed;

however, for 9% of the sentences it parsed, basil also

included the correct features in the semantic represen-

tation.

Finally, measuring ambiguity shows how many in-

correct or redundant parses are produced by the gram-

mar. Ideally, this should be minimal, as in Wambaya,

for which our inferred grammars average four parses

per sentence. However this average increases when

there are multiple analyses for a morphological or syn-

tactic phenomenon, some of which are valid and some

of which are not. We go into this in more detail in Sec-

tion 8.3wherewe compare the ambiguity of the inferred

grammars with baseline inference systems. At this

stage, we simply note that there is an inherent trade-

o between coverage and ambiguity in inferred gram-

mars, just as in hand-craed grammars: Where sen-

tences may seem unambiguous to humans, who have

the benefit of context and world knowledge, computers

are much beer at finding alternative, oen pragmati-

cally odd, analyses. The more phenomena a grammar

includes, the more such analyses are available.
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5.4 Summary

In this section we described the languages and datasets

that we used during development and assessed basil in

terms of how it performs on them. We primarily used 9

development languages from 7 language families, but at

times consulted others for a total of 27 languages from

19 families, in order to make basil as robust to cross-

linguistic variation as possible. We showed that the 9

development languages tested most of the phenomena

targeted by the inference system and performed well in

terms of producing grammars that handle those phe-

nomena correctly. With this performance at the end

of development, we turn to evaluation on held-out lan-

guages to determine how well basil generalizes to pre-

viously unconsidered languages.

6 Evaluation Methodology

In Section 5, we present results for our development

languages, where system development benefited from

close error analysis. We use the same methodology to

evaluate the system on held-out data fromheld-out lan-

guages. As above, we use the full end-to-end pipeline

described in Section 3, with 10-fold cross-validation,

and report the same five metrics from Section 5.3:

lexical coverage, parse coverage, correct predicate-

argument structure, correct predicate-argument struc-

ture and semantic features, and ambiguity. In this sec-

tion, we describe how we measured these (§6.1), and

present our baseline system (§6.2) and test languages

(§6.3). The following sections (§§7–8) present our re-

sults and error analysis on the held-out languages.

6.1 Evaluation Metrics: Parsing and

Treebanking

Aer inferring a grammar from the training data, we

use the ACE parsing soware (Crysmann and Packard,

2012) to parse each sentence in the test dataset (links

to ACE and other soware used for evaluation can be

found in Appendix B). For each sentence, ACE outputs

whether the grammar had a lexical analysis for each

word in the sentence, from which we calculate lexical
coverage. If each word has an analysis and the gram-

mar accepts the sentence as grammatical, ACE returns

a result which includes the syntactic parse trees and

corresponding semantic representations (illustrated in

Figures 12 and 13), and on this basis, we calculate parse
coverage. In many cases the grammar contains ambigu-
ity, returning multiple parses per sentence, and we re-

port this as the average number of results for sentences

that parse.

The process of finding the correct predicate
argument-structure (and semantic features) is more

involved. Aer parsing the test sentences with ACE,

we use the Full Forest Treebanking soware (FFTB;

Packard, 2015) to examine the lexical and syntactic

rules in the parse forest to identify any trees that rep-

resent an appropriate syntactic parse for the sentence.

We then inspect the corresponding semantic structure

by looking at the predicate-argument structure as

well as the semantic features on each argument.

Consider the syntactic and semantic representations in

Figures 12 and 13 which were produced by an inferred

grammar for the Matsigenka sentence in (6).

(6) Ikamagutakerotyo.

i-kamagu-t-ak-i=ro=tyo

3mS-look-epc-perf-realis=3fO=affect

‘He looked at it.’ [mcb] (Michael et al., 2013)

S

VP

V

V

V

V

V

V

V

i-kamagu-t-ak-i=ro=tyo

3m-subj-lex-rule

unspec-lex-rule-118

pfv-lex-rule

realis-lex-rule

3f-obj-lex-rule

unspec-lex-rule-218

head-opt-comp

head-opt-subj

Figure 12: The syntax tree corresponding to the seman-

tic representation in Figure 13

_look_v

TOP

_look_v (

ARG0 {ASPECT pfv,MOOD real,},
ARG1 {PER 3rd, GEND m },

ARG2 {PER 3rd, GEND f })

Figure 13: The best semantic representation produced

by the inferred grammar for the sentence in (6)

18
We use ‘unspec’ as a naming convention for lexical rules that do

not add any morpho-syntactic or morpho-semantic features.
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Sentence (6) has only one word
19
but includes three

semantic arguments: an event and two entities. For this

reason, the tree in Figure 12 contains a series of lexical

rules (the nodes labeled as V) and two syntactic rules

(object dropping, labeled by VP, and subject dropping,

labeled by S).
20
The semantic dependency contains only

one predicate, which is contributed by the verb kamagu
‘look’. That predicate has three arguments. First is the

event argument (ARG0), which is marked with perfec-

tive aspect and realis mood. Next there is the seman-

tic argument (ARG1) corresponding to the unexpressed

subject, which is marked with third person and mascu-

line gender, and third is the semantic argument (ARG2)

corresponding to the unexpressed object, marked with

third person and feminine gender.

We consider the semantic representation in Fig-

ure 13 to have the correct predicate-argument structure

because it contains all of the predications that should

be in the semantic representation and no additional, in-

correct predications, and because the predication has

the correct arguments: an event and two entities. We

consider the semantic features in Figure 13 to be correct

because they reflect all of the semantic features that A)

are in the IGT and B) the inference system targets: basil

only targets PNG and TAM features, so those are the

only ones we expect. The semantic representation does

not reflect the aectivemeaning because basil does not

extract stance features.
21

Although using treebanking to check parses for cor-

rectness is an established practice (see inter alia Oepen

et al., 2002; Flickinger et al., 2017), assessing the ac-

curacy of semantic representations for languages that

one doesn’t speak fluently and isn’t an expert on is

a challenging task. For example, it can be hard to

know if some locative dependents are core arguments

of the verbs or if they aremodifiers. Furthermore, gloss-

ing conventions vary from linguist to linguist and with

limited familiarity with the datasets, one must make

guesses as to implications of some grams and the am-

biguous cases one might encounter are diicult to an-

ticipate without first engaging with the data. There-

fore, we established a practice of consulting both the

gloss line and the translation line as the translation line

might omit or add some semantic information com-

pared to the gloss line, but the gloss line may be am-

biguous with regards to which words are arguments

19
Although Michael et al. use an = to indicate two clitics (=ro and

=tyo), basil analyzes them as aixes. We made this analytical choice

because = in IGT frequently indicates less phonologically integrated

aixes, rather than clitics in the sense of Zwicky and Pullum (1983).

20
The treatment of these arguments as a dropped subject and ob-

ject is consistent with Inman’s (2015) analysis of pronoun incorpora-

tion in Matsigenka.

21
The gloss affect is not explicitly defined by Michael (2008), but

from his discussion around such examples, we believe that this refers

to stance. We assume that epc marks an epenthetic consonant, and

does not contribute any semantic feature.

Abui [abz] Chintang [ctn]

Correct Parse 0.5714 0.7843

Matching Pred-Arg

Structure 0.5714 0.7843

Matching Features 0.5714 0.5882

Exact Match MRS 0.5143 0.5882

Table 6: F1 scores for inter-annotator agreement on

treebanked coverage for Abui and Chintang

of which and this can be learned from the transla-

tion.
22

Aer developing basic guidelines by discussing

some specific examples from the development datasets,

the authors of this paper independently treebanked

one fold from each of the Abui and Chintang datasets.

These folds contained approximately 100 parsed IGT

each.

Following the methodologies set forth by Dridan

and Oepen (2011) for semantic evaluation and Bender

et al. (2015) for inter-annotator agreement (IAA), with

some adaptations to target our task-specific goals, we

calculated IAA for the treebanked results of the two de-

velopment sets, which we present in Table 6. Dridan

and Oepen (2011) propose an Elementary Dependency

Match (EDM) score calculated from multiple parts of

the semantic representation. We used their EDMna

metric for naming and argument identification, and

added a metric for semantic features. Following Ben-

der et al. (2015), and in light of the lack of chance-

corrected metrics for such structures, we assess IAA for

these metrics by calculating the F1 score for these met-

rics between the two annotators. These F1 scores are

shown in Table 6 as Matching Pred-Arg Structure and

Matching Features. To situate these measures we also

present F1 scores for IAA for whether the parses for the

item were considered to include one that was correct

(Correct Parse) and whether the two semantic repre-

sentations matched exactly (Exact Match MRS).

The F1 score for correct parse is the same for match-

ing predicate-argument structure, which shows that

when we agreed that there was a parse with an ac-

ceptable predicate-argument structure, we also agreed

onwhat that predicate-argument structure should be.
23

Disagreements were oen due to one author interpret-

ing something as amodifier instead of an argument (the

inferred grammars do not handle modifiers, so these

parses would be rejected) or whether sentence frag-

ments should be accepted or rejected, given an other-

wise correct semantic representation.

The slightly lower F1 for Exact Match MRS for Abui

is due to a slightly dierent but equally acceptable

22
This is based on Bender’s previous treebanking work in Bender

2008a, Bender et al. 2014 and Zamaraeva et al. 2019a.

23
This does not necessarily mean that we chose the same syntactic

parse, as spurious ambiguity may result in multiple syntactic struc-

tures producing the same semantic representation.
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predication for the verb in one sentence: leave.for_v_rel

vs. leave.for-or-step_v_rel, where the second represents

two possible meanings of the verb. For Chintang the

feature agreement is lower than predicate-argument

structure agreement. For this language the grammars

have a great deal of ambiguity in the lexical rules. In

many cases, it was not possible to find a parse that had

all of the correct features, and we chose parses with dif-

ferent subsets of correct and incorrect features.

Aer discussing our disagreements, we extended

our definitions of correct parses. For all held-out lan-

guages a single author treebanked the results, accord-

ing to the conventions decided through this process.

6.2 Baseline

The primary contribution of this paper is in infer-

ring syntactic properties from IGT data and integrat-

ing these with lexical and morphological properties in-

ferred by MOM (Wax, 2014; Zamaraeva, 2016; Zama-

raeva et al., 2017). Therefore we compare our results

to three baseline systems that are morphologically and

lexically robust with respect to accounting for the train-

ing data, but are syntactically naive. Each of these use

lexical entries and morphological rules from MOM for

nouns and verbs. Although MOM extracts morpho-

syntactic features for nouns and verbs and adds them

to the lexicon and morphological rules, inference is re-

quired to define them appropriately in the grammar

specification. Because a grammar specification with

morpho-syntactic features on verbs and lexical entries

with no definition of those features would not result in

a working grammar we disable the feature extraction in

MOM for all baselines.

Table 7 enumerates the syntactic specifications

for our baseline systems. The first baseline (broad-

cov) posits the specifications for each syntactic phe-

nomenon we account for that we expect to result in the

broadest coverage, given no specific knowledge of the

language. The second baseline (typ) posits the speci-

fications that are typologically most common, accord-

ing to the information available in WALS (Dryer and

Haspelmath, 2013) and other typological resources. If a

typologically-most-frequent choice could not be made,

we select the specification at random if it is required by

the GrammarMatrix, and omit it otherwise. Aside from

specifications made at random (which are chosen with

each run), the syntactic specifications under the broad-

cov and typ baselines are the same for all grammars,

that is, they do not vary in response to the data pre-

sented. Finally the third baseline (rand) selects a value

for each specification at random. The baseline systems

make a dierent random choice for each rc specifica-

tion every time they are run, therefore the values in the

baseline files for each fold of training data are dierent.

broad-cov typ rand

word order free sov rc

has determiners yes yes rc

noun-det order rc noun-det rc

det required optional rc rc

has auxiliaries no no no

verb valence trans rc rc

case frame none none none

s coordination asyndeton rc

vp coordination asyndeton rc

np coordination asyndeton rc

n coordination asyndeton rc

subj-drop all all rc

obj-drop all rc

Table 7: Grammar specifications for syntactic phenom-

ena for three baseline systems. rc indicates a random

choice

ISO Number of POS tags

Language 639-3 Source of IGT in source

Arapaho arp Toolbox 5000 yes

Hixkaryana hix Toolbox 5749 yes

South Efate erk Toolbox 1875 yes

Titan v Toolbox 1799 yes

Wakhi wbl FLEx 683 yes

Table 8: Source, number of IGT and presence of POS

tags for the held-out datasets

6.3 Held-out Languages

To test how well basil generalizes to new languages, we

acquired datasets for five additional languages, which

we did not consider during development and which are

genealogically and geographically varied from the de-

velopment languages. These languages are listed in

Table 8 and the locations where they are spoken are

shown in green on the map in Figure 10.

We pre-processed each dataset by filtering out un-

grammatical examples (examples marked with a *) and

removing duplicates. For held-out evaluation, we se-

lected only languages with POS tags in the original

dataset. This information as well as the type of source

dataset and the number of IGT aer filtering are sum-

marized in Figure 8. In this section, we provide a brief

description of each language and dataset. For a full list

of citations for datasets and descriptive resources ref-

erenced in this section, see Appendix C.

Arapaho [arp] is an Algonquian language of the Algic

language family with only about 250 native speakers

in the United States (Cowell and Moss Sr, 2011). The

dataset we use is a 5,000 item subset of a ~60,000 IGT

corpus (Cowell, 2018), randomly selected from fully-

glossed examples. The corpus includes elicitations and

transcribed conversations, among other genres.

Hixkaryana [hix] is a Cariban language in theWaiwai
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subgroup with about 1,200 speakers (Eberhard et al.,

2019). Aer removing IGT with incomplete glosses, the

corpus (Meira, 2020) contains almost 6,000 IGT.

South Efate [erk] is a Vanuatu language of the

Austronesian language family, spoken by about 6,000

people on the Efate island in the Republic of Vanu-

atu (Thieberger, 2006b). From the 3,000 IGT corpus

(Thieberger, 2006a), we use 1,900 fully glossed exam-

ples.

Titan [v] is also an Austronesian language, and while

it and South Efate are both Oceanic, Titan is grouped as

a language of the Admiralty Islands while South Efate is

Central-Eastern Oceanic. The various dialects of Titan

are spoken by approximately 3,500-4,500 people (Bow-

ern, 2011). This corpus contains just under 1,800 IGT

aer filtering for glossing (Bowern, 2019). For this cor-

pus, we obtain POS tags from the accompanying Tool-

box lexicon. This introduces some noise, due to lexical

ambiguity, but less than if we had used the projected

POS tags from INTENT.

Wakhi [wbl] is an Iranian language of the Indo-

European language family and is spoken primarily in

Afghanistan and has a growing speaker population

of about 17,000 (Eberhard et al., 2019). The dataset

is small, containing only about 700 IGT aer filter-

ing (Kaufman et al., 2020). However, it is thoroughly

glossed and is made up primarily of elicitations target-

ing specific syntactic phenomena.

7 Results

Using the methodology in Section 6, we performed ten-

fold cross-validation on the evaluation languages for

the basil inference system and the three baselines de-

scribed in Section 6.2.
24

We show lexical coverage in

Table 10, parse coverage in Table 11, coverage with cor-

rect predicate-argument structure in Table 12, coverage

with correct predicate-argument structure and seman-

tic features in Table 13 and ambiguity in Table 14.

For each language, we treebanked n folds such

that the number of parsed sentences in n folds is

greater than 100. The results for lexical coverage,

parse coverage and ambiguity are averages across

ten folds, while the results for coverage with correct

predicate-argument structure and coverage with cor-

rect predicate-argument structure and features are av-

erages across n folds where n is given in Table 9.

There is a great deal of variation in how well any

of the systems did at inferring grammars that can

parse held-out sentences for each language, as illus-

trated by the graph in Figure 14. Coverage for Ara-

paho was very low, at roughly 3% lexical coverage for

each system and similar parse coverage for basil and

24
The code to reproduce these results is available at https://

git.ling.washington.edu/agg/repro/basil-2020.

Tree- Parsed Total

banked sentences sentences

Language folds (n) in n folds in n folds

Arapaho [arp] 7 109 3500

Hixkaryana [hix] 1 198 575

South Efate [erk] 7 110 1504

Titan [v] 6 110 1080

Wakhi [wbl] 5 115 345

Table 9: Number of sentences treebanked across n folds
for each held-out language

broad-cov. Across all systems, Hixkaryana and Wakhi

had significantly higher lexical and parse coverage, ex-

ceeding basil’s performance on most of the develop-

ment languages. South Efate and Titan fall between

these two extremes. The correct coverage is more

consistent across languages with Wakhi as an outlier.

For Wakhi, basil achieves correct predicate-argument

structure for 14.20% of the items in the test set and

correct predicate-argument structure and features for

5.8% and the broad-cov baseline achieves 12.75% cor-

rect predicate-argument structure, while the remain-

ing languages have much lower correct coverage across

systems. Finally, the ambiguity (or average number of

parses per parsed item) for these languages is quite low

for Wakhi, on the order of tens, and extremely high for

South Efate, on the order of 100,000. We provide more

detail on the causes of ambiguity in the inferred South

Efate grammar in Section 8.3.

Overall, the systems performed best on Wakhi

across the five metrics. Performance for Hixkaryana,

South Efate and Titan was somewhat lower, with cov-

erage for Arapaho being the lowest. In Sections 8.1 and

8.2, we explore sources of this variation, including char-

acteristics of the languages and of the IGT datsets.

To understand the impact of syntactic inference on

automatic grammar generation, we compare basilwith

three baselines that use the samemorphotactic and lex-

ical inference system as basil, but must specify the syn-

tactic portions of the grammar specification through

some other means. The broad-cov system uses the

specifications that are expected to parse the most sen-

tences, whether correctly or incorrectly. typ uses the ty-

pologically most common specification and rand uses

a random choice (for details, see §6.2). Each of these

baselines uses a random choice for at least one speci-

fication, where no clear determination could be made

for broad coverage or typological frequency, so ten-fold

cross validation (given that a new random choice is

made when specifying the grammar for each fold) is

important to reduce the eect of chance on the overall

performance of each baseline.

Because the same morphotactic and lexical infer-

ence system was used for the baselines as for basil,

the lexical coverage across systems is roughly compa-
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Language basil broad-cov typ rand

Arapaho [arp] 3.64 3.52 3.64 3.18

Hixkaryana [hix] 38.09 36.01 35.88 35.92

South Efate [erk] 12.80 13.55 14.29 13.17

Titan [v] 13.56 19.40 20.34 19.40

Wakhi [wbl] 39.68 29.72 31.48 31.04

Table 10: Lexical coverage for held-out languages as a

percentage of the total number of test items across ten

folds

Language basil broad-cov typ rand

Arapaho [arp] 3.04 3.06 0.50 0.26

Hixkaryana [hix] 34.18 31.28 2.80 1.25

South Efate [erk] 6.77 9.81 0.27 0.27

Titan [v] 10.34 16.18 0.06 0.17

Wakhi [wbl] 30.31 24.89 10.25 3.22

Table 11: Parse coverage for held-out languages as a

percentage of the total number of test items across ten

folds

Language basil broad-cov typ rand

Arapaho [arp] 0.17 0.20 0.00 0.03

Hixkaryana [hix] 2.26 2.26 1.57 0.52

South Efate [erk] 0.38 0.31 0.00 0.00

Titan [v]
25

0.28 0.65 0.09 0.19

Wakhi [wbl] 14.20 12.75 2.61 0.58

Table 12: Coverage with correct predicate-argument

structure as a percentage of the total number of test

items across n folds

Language basil broad-cov typ rand

Arapaho [arp] 0.09 0.06 0.00 0.00

Hixkaryana [hix] 0.00 0.00 0.00 0.00

South Efate [erk] 0.15 0.00 0.00 0.00

Titan [v] 0.19 0.00 0.00 0.00

Wakhi [wbl] 5.80 0.58 0.00 0.00

Table 13: Coverage with correct predicate-argument

structure and semantic features as a percentage of the

total number of test items across n folds

Language basil broad-cov typ rand

Arapaho [arp] 145 936 4 3

Hixkaryana [hix] 5642 15596 2 6

South Efate [erk] 126379 9759 2 4

Titan [v] 595 6201 2 1

Wakhi [wbl] 10 26 1 2.5

Table 14: Average number of results per parsed sentence

for across ten folds

Figure 14: Lexical coverage, parse coverage, correct

pred-arg structure and correct features by language for

held-out languages

rable. For some languages, the baseline lexical cover-

age is lower because the baselines can only use POS

tags to identify lexical items, while basil uses addi-

tional heuristics. For other languages, it is slightly

higher because basil strategically excludes ditransitive

and clausal complement-taking verbs (which it would

not handle correctly) from the lexicon.
26

Additional

variation in the lexical coverage across systems can be

aributed to variations in the morphological graph: It

is dierent for each baseline, because it is sensitive to

verb valence assignments and these are done at random

in each run for the typ and rand baselines.

A larger and more meaningful dierence between

the systems is seen in parse coverage. Here, the typ

and rand baselines have much lower coverage than

basil and broad-cov. While the typ baseline has a

beer chance of using the correct value for each in-

dividual specification, it will not necessarily be cor-

rect for enough phenomena to produce a grammar that

can parse simple sentences: For example, even if the

order of verbs with respect to subjects and objects is

correct, sentences with determiners won’t parse if the

determiner-noun order is incorrect. By design, the

broad-cov system has the highest parse coverage, of-

ten outperforming basil; however, without syntactic in-

25
For Titan we report a correct coverage that is higher than the

parse coverage for the typ and rand baselines. This is possible be-

cause there were more parsed items per fold in the 6 folds we tree-

banked than in the remaining 4.

26
basil cannot properly account for ditransitives as they are not

currently supported by the Grammar Matrix. Clausal complement-

taking verbs have also been le out of scope at this time.
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ference this coverage could be spurious, so we must

consider correct coverage (described in §6.1). Again,

the typ and rand baselines under-perform the other

systems, as there is a relatively low chance that their

specifications will correctly model any given language.

In terms of correct predicate-argument structure, basil

outperforms broad-cov for South Efate and Wakhi,

while broad-cov does beer for Arapaho and Titan.

They tie on Hixkaryana. As broad-cov is designed to

maximize coverage, it specifies asyndetic coordination

for each language, enabling it to parse sentences for

languages where basil failed to infer this strategy. For

correct predicate-argument structure and semantic fea-

tures, basil outperforms all baselines, as they cannot

posit semantic features. Only in rare cases did broad-

cov have the ‘correct features’, because the semantic

representation shouldn’t include any features at all.

So far, we have shown that basil and broad-cov

out-perform the other two baselines in parse coverage

and correct predicate-argument structure, while basil

out-performs all of the baselines in correct predicate-

argument structure and semantic features, as illus-

trated in Figure 14. The last thing to consider is how

much ambiguity each of the grammars contain. typ

and rand produced grammars with very lile ambigu-

ity. These grammars only parsed simple sentences, so

low ambiguity is not surprising. broad-cov was de-

signed to maximize coverage, but this comes at the cost

of increased ambiguity. For example, positing free word

order for each language will ensure that all word orders

will parse, but will also allow parses where the wrong

constituents are identified as subjects and objects. As a

result, the broad-cov baseline has significantly higher

ambiguity than basil for all languages but South Efate.

While the results show a great deal of variation

across the test languages, basil and broad-cov outper-

form the typ and rand baselines for most metrics. basil

and broad-cov perform fairly comparably for a number

of the metrics, but basil excels in two areas. First, basil

generally has fewer parses per test item than broad-

cov, suggesting that there is less spurious ambiguity

in the inferred grammars than in that baseline. While

typ and rand have even lower ambiguity scores, they

also have such low coverage that this is not an advan-

tage. Second, the semantic representations produced

by basil are more correct in that they contain seman-

tic features, resulting in higher scores for the correct

predicate-argument structure and features metric.

8 Error Analysis

8.1 Out of Scope Phenomena

We begin our error analysis by establishing first what

we do not expect basil’s grammars to parse. Focusing

on sentences where lexical coverage was achieved but

the sentence did not parse or parsed incorrectly, we de-

scribe phenomena that are frequent in the test data but

are beyond the scope of the current inference system.

basil currently handles a number of lexical types

such as transitive and intransitive verbs, auxiliaries,

nouns, determiners and case-marking adpositions, as

well as phenomena including word order, case, argu-

ment optionality, sentential negation and coordination.

However, it does not yet handle a number of very com-

mon phenomena such as adjectives, adverbs, ditransi-

tive or clausal complement-taking verbs, content ques-

tion words, possessives, etc. Therefore, sentences con-

taining these lexical items will only have lexical cover-

age if a lexical item was inferred in error. At the same

time, sentences that contain these syntactic phenom-

ena will not parse at all or will not parse correctly.

In particular, frequent error types include: (i) verb

valence, where basil posited intransitive or transitive

entries for verbs which were actually ditransitive or

clausal-complement taking; (ii) adnominal possession,

where grammars produced by basil parsed but could

not aribute the correct semantics to examples with

possession; (iii) vocatives analyzed as subjects or ob-

jects; (iv) sentence linkers parsed as coordination; and

(v) disfluency markers (e.g. P for ‘pause’) analyzed as

verbs.

8.2 In Scope Phenomena

Whereas the previous section described common errors

due to out of scope phenomena in the test data, this

section focuses on errors due to basil failing to cor-

rectly infer phenomena that it was designed to handle.

The sources of these errors range from the input data

to problems with basil’s inference algorithms or their

implementation.

8.2.1 Wrong Part-of-Speech

Both basil and MOM rely on POS tags in the input to

identify nouns and verbs. In some cases, the POS tag

in the corpus may be incorrect. For example, in (7) the

word titko is glossed as ‘brazil.nut’ but marked with a

verbal POS tag. Such errors are not uncommon, as even

the most careful human annotation is subject to error.

(7) Tutko

titko

Brazil.nut

Vt

yakahetxkoni.

y-akaha-yatxkoni

rel-break-dpst2:col

prs-Vt-tamn

‘They were shelling Brazil nuts.’ [hix] (adapted

from Meira, 2020)

Because titko is glossed as a verb, the inferred gram-

mar treats it semantically as an event instead of as a
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participant of the breaking/shelling event, resulting in

an incorrect semantic representation.

8.2.2 Wrong Predication

We considered it an error anytime the predication as-

sociated with a word did not reflect the meaning in

the gloss, even if the overall shape of the predicate-

argument structure was correct. This can occur if

MOM’s heuristics for locating the root of a word fail in

a particular case. For example, the IGT in (8) had spaces

on both sides of the second hyphen. MOMguessed that

the hyphen belonged to neeni, which in turnmeant that

t was the root, leading to a lexical entry with the pred-

ication _3.S_v_rel.

(8) Nehe’

nehe’

this

hinen

hinen

man

nihneenit.

nih-

PAST-

neeni

itis

-

-

t

3.S

‘The man was the one.’ [arp] (adapted from Cow-

ell, 2018)

8.2.3 Missed Semantic Features

basil’s greatest advantage over the baseline systems is

its addition of semantic features to the grammars, but it

still made some errors in feature inference. There is sig-

nificant variation in the way linguists gloss syntactico-

semantic features, and basil’s most straight-forward

source of error for semantic features was in not prop-

erly identifying all grams in the held-out corpora. basil

uses a large dictionary of glosses, which it maps to

116 common PNG, TAM and case grams to identify

morpho-syntactic and morpho-semantic features (see

§4.1). Even so, the held-out corpora included grams

that were not in this dictionary. In particular, this dic-

tionary did not include any glosses for the pluperfect

aspect ‘plpf’, which appears in Wakhi, the immediate

past ‘ipst’ or distant past ‘dpst’ used in Hixkaryana, or

the narrative past ‘narrpast’ used in Arapaho. In ad-

dition, while the dictionary included ‘d’ as a gloss for

dual number and quite a few person and number com-

binations (e.g. ‘3du’), it did not contain ‘3d’ which is

used for third person, dual number in the South Efate

corpus. This led to test items, which otherwise parsed

correctly, not including all of the semantic features.

8.2.4 Auxiliaries

basil treats words that have only TAM and/or PNG

agreement features as auxiliaries (see §4.5.1). The abun-

dance of TAM auxiliaries in the held-out languages,

such as the future tense auxiliary in (9), revealed a

bug in our implementation of auxiliary inference. The

clause in basil’s code that infers where the auxiliary oc-

curs (before or aer its complement) assigns the wrong

value. This caused some inferred grammars to require

auxiliaries aer their verbal complements instead of be-

fore. Though our development languages included aux-

iliaries, these freer word order languages (Wambaya

and Nuuchahnulth) did not reveal this bug.

(9) Tumr@
tumr@
fut

maü
maü
1sg.obl

jiu.

jaw-tu

eat-plpf

‘I will have had eaten.’ [wbl] (adapted from Kauf-

man et al., 2020)

8.2.5 Coordination

Coordination inference, described in Section 4.5.5, errs

on the side of positing VP coordination unless it finds

explicit evidence of S coordination in the form of a pro-

jected subject dependency that intervenes between the

coordinator and a verb in the coordinand. This algo-

rithm may be too aggressive because dependency tag

projection is not always successful. In addition to that,

the algorithm does not consider cases where the sub-

ject is dropped or cases where there is no coordinator,

because an asyndetic strategy is employed. Because

the inference of S coordination relies on an overt co-

ordinator, sentences like the one in (10) from Titan are

taken by basil as evidence of VP coordination instead

of S even though each coordinand has an overt subject.

Thus asyndetic S coordination isn’t added to the gram-

mar and examples like this can’t be parsed.

(10) I

i

3sg

ani

ani

eat

pou

pou

pig

i

i

3sg

ani

ani

eat

ma.

ma

taro

‘He ate the pig and he ate the taro.’ [v] (adapted

from Bowern, 2019)

In addition, examples of monosyndetic S coordination

inWakhi weremisclassified as VP coordination because

of failure to align the subjects between the English

translation and the sentence. This prevented basil from

inferring S coordination strategies and adding them

to the grammar specifications. Because the broad-

cov baseline posits asyndetic S coordination for all

languages, that baseline was able to correctly parse

sentences with asyndetic S coordination in Titan and

Wakhi, giving it a boost in coverage over basil.

8.2.6 Case Frame

Finally, basil relies on the overt case markings on the

subject and object (according to projected dependen-

cies), to account for quirky case (§4.5.2). However, if no

overt argument is found, the verb’s case frame remains

under-specified until it is mergedwith another instance
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of the same verb. Even though basil inferred the over-

arching nominative-accusative paern for Wakhi, it

found verbs in the training data with oblique subjects

which were merged with verbs that did not have overt

case marking on their subjects. Because of this, the in-

ferred grammars for some of the Wakhi folds included

a rather large transitive verb class with oblique case on

the subject, resulting in a number of IGT with overtly

marked nominative subjects in the test data that did

not parse.

8.2.7 Summary

The majority of errors discussed in this section come

from lexical inference. Beyond that, we identified three

main sources of error in the syntactic specifications.

One was a bug that resulted in auxiliaries having the

wrong order with respect to their complements. Resolv-

ing this bug is trivial, while the errors in S coordination

and case-frame inference require some re-designing of

the algorithms. In particular, basil requires too much

evidence to infer S coordination. As future work, we

propose modifying the algorithm to rely less on pro-

jected dependencies and instead to leverage the depen-

dency parse of the English translation to distinguish be-

tween VP and S coordination in the translation. The

same redesign could be applied to N and NP coordina-

tion as well. The case frame inference algorithm may

assign quirky case too readily and rather than merging

lexical items with no case frame with those that have

quirky case, should assign default case to those verbs

unless a verb with the same orthography is found with

quirky case in the corpus. Alternatively, beer verb

classes could be inferred with some re-tooling of the in-

teraction between basil and MOM, so that case frame

inference happens aer morphotactic inference, similar

to the pronoun and auxiliary inference methodologies

in Section 4.2.2.

8.3 Ambiguity

basil’s inferred grammars generally had less ambigu-

ity than the broad-cov baseline for two intuitive rea-

sons. First, the free word order, argument optional-

ity and coordination specifications in broad-cov intro-

duce a lot of ambiguity in the number of ways nouns

and verbs can combine. Second, basil’s specifications

for case frame and agreement further constrain which

arguments can be subjects and objects, even in freer

word order languages. In spite of this, basil’s grammars

for South Efate have significantly more ambiguity than

broad-cov’s. To shed light on this, we present a specific

example from the fourth test fold from South Efate.

First of all, basil infers free word order, subject and

object dropping and asyndetic coordination for VPs and

NPs for this fold. Because of this, basil’s inferred gram-

S

VP

VP

V

V

V

kai=ler

unspec-lex-rule-2

head-opt-comp

vp-boom-coord
VP

NP

N

natus

bare-np
V

V

V

i=tut-ki

3rd-subj-lex-rule

unspec-lex-rule-1

head-comp

vp-top-coord
NP

N

Samuel

bare-np

subj-head

Figure 15: The parse tree generated by the basil and

broad-cov grammars that corresponds with the se-

mantic representation in Figure 16 for the sentence in

(11)

_name_n exist_q _drown_v _paper_n exist_q _return_v _and_coord

TOP

RSTR/H

ARG1/NEQ

ARG2/NEQ

RSTR/H

ARG1/NEQ

L-INDEX/NEQ

R-INDEX/NEQ

Figure 16: The best semantic representation generated

by the basil and broad-cov grammars for the sentence

in (11)

mar is not less ambiguous than broad-cov in those ar-

eas. In order to understand why basil’s grammar is

evenmore ambiguous than broad-cov’s, we explore the

parse forest for the sentence in (11), which has asynde-

tic coordination, lexical ambiguity, morphological am-

biguity and no overt case marking.

For this sentence, basil’s grammar produces 2448

trees, while broad-cov’s produces 19.
27

The best read-

ing, produced by both grammars, is shown in the parse

tree in Figure 15 and semantic representation in Fig-

ure 16.

(11) Samuel

Samuel

Samuel

itutki

i=tut-ki

3S.rs1-drown-tr

natus

natus

paper

kailer.

kai=ler

es1-return

‘Samuel threw in the paper and went back.’ [erk]

(Thieberger, 2006a)

We use the Full Forrest Treebanking soware

(FFTB; Packard, 2015) to eiciently investigate such

large parse forests with discriminant-based tree selec-

tion (Carter, 1997). Figure 17 shows the choices among

discriminants that we used to single out the tree in Fig-

ure 15 from the other 2447 trees in the parse forest.

The discriminants in Figure 17 are not ordered, and

represent one of many paths in the decision space. The

boom 4 choices in the decision tree result in no dier-

ence in the semantic representation, yet combined they

increase the ambiguity by a factor of 16. The no-drop-
lex-rule is added by the Grammar Matrix’s argument

27
These numbers are estimates provided by FFTB based on the

packed forest, as opposed to ACE, which we used for Table 14.
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subj-head

yes

1368

vp-top-coord

yes

576

head-comp

yes

288

unspec-verb-pc

yes

144

n-coord

yes

96

no

48

n-coord

yes

32

no

16

at-lex-rule

yes

8

no

8

at-lex-rule

yes

4

no

4

no-drop-lex-rule

yes

2

no

2

no-drop-lex-rule

yes

1

no

1

no

144

no

288

no

792

no

1080

Figure 17: A decision tree illustrating the syntactic and

lexical rules that discriminate between dierent parse

trees produced by basil’s grammar for the sentence in

(11). The path in green shows the rules that we selected

or excluded to identify the parse tree shown in Figure 15

subj-head

yes

4

head-comp

yes

1

no

3

no

15

Figure 18: A decision tree illustrating the syntactic and

lexical rules that discriminate between dierent parse

trees produced by the broad-cov grammar for (11)

optionality library (Saleem, 2010; Saleem and Bender,

2010). This rule is intended to be further constrained by

agreement restrictions for dropped arguments, but be-

cause basil does not add this information to the gram-

mar, these optional, non-inflecting lexical rules add am-

biguity for both verbs in (11). The two at-lex-rules are
added by the case library (Drellishak, 2009) for lan-

guages with case-marking adpositions. These rules ap-

ply to both nouns in (11) and because they apply option-

ally, each of these lexical rules and each of the words

they apply to double the number of trees in the forest.
28

In addition to these sources of ambiguity, there is an

under-constrained noun coordination rule that applies

optionally to each noun and can apply either before or

aer the bare-np rule, tripling the number of parse trees

for each noun it can apply to. Because neither noun

has an adjacent noun to aach to, these parses should

not succeed, but they do as the result of a bug in the

Grammar Matrix customization system.

All together the spurious case, coordination and ar-

gument optionality rules increase the number of possi-

ble trees by a factor of 144. Seing those aside, the num-

ber of possible trees looks muchmore reasonable. Addi-

tional ambiguity is added by two homophonous lexical

rules for the kai- prefix: one adds first person agree-

ment to the subject and the other (which produces the

correct tree) does not add any features.
29

The three choices at the top of the decision tree dis-

criminate between trees in which natus is the object of
i=tut-ki or kai=ler and indirectly, prevent kai=ler from
being analyzed as a noun, coordinated with natus.

The decision tree for broad-cov to produce the

parse shown in Figure 15 is shown in Figure 18. The lex-

ical rules in the last four nodes in the tree in Figure 17

are not in the broad-cov grammar and therefore do not

apply. Because ambiguity is a maer of combinatorics,

the spurious lexical rules in basil’s grammar inflate the

ambiguity significantly. The same could be said for the

sources of ambiguity in the broad-cov grammars for

the other languages, where basil had less ambiguity.

Many of the sources of ambiguity in the South Efate

grammars trace back to bugs in the Grammar Matrix

customization system, rather than basil’s inference.

Furthermore, the high ambiguity for South Efate gram-

mars was an outlier among the ambiguity in basil’s

grammars for the evaluation languages. This suggests

that these sources of ambiguity, both fromMatrix bugs

and otherwise, are not particularly pervasive.

28
The optionality of a non-inflecting lexical rule was a bug in the

Grammar Matrix, and has since been addressed by (Conrad, 2021).

29
The morpheme is glossed by the linguist as es1. Thieberger

(2006b) defines the es abbreviation as “echo subject”, and we assume

that the 1 is a particular echo subject marker, but does not indicate

first person, as there is no first person noun in the translation.
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9 Conclusion

In this paper, we introduced basil—Building Analyses

from Syntactic Inference in Local languages— a system

for the automatic inference and generation of machine-

readable grammars from IGT data. Leveraging the rich

annotation in interlinear glossed text and syntactic in-

formation projected from parses of the English trans-

lation onto sentences in a local language, basil infers

grammar specifications. These, in turn, can be input

into the Grammar Matrix customization system to pro-

duce HPSG grammars.

basil utilizes an end-to-end pipeline that begins

with an IGT corpus of a language and produces an

HPSG grammar which can be loaded into parsing so-

ware to produce syntactic and semantic representa-

tions for strings in that language. Drawing on the lin-

guistic information encoded in IGT text and general-

izations about language from the typological literature,

we designed algorithms that infer lexical and syntactic

properties about a language and define these proper-

ties in a grammar specification. This grammar spec-

ification can be input into a grammar customization

toolkit (the Grammar Matrix; Bender et al., 2002, 2010;

Zamaraeva et al., forthcoming) to produce a machine-

readable HPSG grammar for that language.

We built on previous work in grammar inference

that produced both morphological (Wax, 2014; Zama-

raeva, 2016; Zamaraeva et al., 2017) and syntactic (Ben-

der et al., 2013, 2014; Howell et al., 2017; Zamaraeva

et al., 2019a), specifications for a language. That work

focused on lexical and morphotactic specifications for

nouns and verbs, word order, case system and case

frame for verbs. We integrated the existing modules

into a single system which we scaled by adding infer-

ence for determiners, auxiliaries, case-marking adpo-

sitions, PNG and TAM features, argument optionality,

negation and coordination.

The result is an inference system that identifies the

overarching typological paerns for each of these phe-

nomena and encodes that information in a grammar

specification, which is then used to produce a grammar.

As one of the goals of this work is to automatically in-

fer grammars for a broad range of local and endangered

languages, we developed inference algorithms using a

data-driven process, testing our system on a genealogi-

cally and geographically diverse set of languages. Dur-

ing development, we consulted 27 languages from 19

language families, spread over 6 continents. We did

end-to-end system testing on 9 of those 27 development

languages.

In order to test the cross-linguistic generalizability

of our inference system, we evaluated it using 5 lan-

guages from 4 language families that were not con-

sidered during development and did not come from

any of the language families that we used in previ-

ous end-to-end testing. These languages were Arapaho,

Hixkaryana, South Efate, Titan and Wakhi. We com-

pared the performance of basil’s inferred grammars

with three baselines. The typ baseline used the cross-

linguisticallymost common specifications for each phe-

nomenon (based on typological surveys), while rand

used random specifications. The low coverage of these

baselines demonstrated that in order to produce a use-

ful grammar, it is not suicient to guess the right spec-

ifications for just some phenomena, but the specifica-

tions for a variety of interacting phenomena must be

correct. The third baseline, broad-cov, was designed to

parse as many sentences as possible in a language, and

in spite of this, basil’s overall coverage was comparable

to broad-cov, while its grammars had less ambiguity

for four of the five languages.

In addition to basil’s parse coverage being higher

than the typ and rand baselines and comparable with

broad-cov, the semantic representations produced by

basil’s grammars were richer. In evaluation, we as-

sessed not only the number of sentences that parsed,

but the correctness of those parses in terms of the

meaningfulness of their predications and the correct-

ness of the argument relations for those predications.

In this respect, basil and broad-cov performed compa-

rably, outperforming the other two baselines by a large

margin. However, basil’s grammars also added seman-

tic features for person, number, gender, tense, aspect

and mood on the semantic predicates, resulting in even

more detailed representations than those produced by

the broad-cov grammars.

Because basil relies on the GrammarMatrix’s typo-

logically robust syntactic analyses to produce the gram-

mars, basil can in principle be extended to account for

phenomena as they are added to the Grammar Ma-

trix. Recent work has added libraries for clausal com-

plements (Zamaraeva et al., 2019b), adverbial clausal

modifiers (Howell and Zamaraeva, 2018), nominalized

clauses (Howell et al., 2018), adnominal possession

(Nielsen, 2018; Nielsen and Bender, 2018) and con-

stituent questions (Zamaraeva, 2021). Leveraging the

analyses for these phenomena as well as others previ-

ously implemented in the Grammar Matrix, modules

can be added to extend basil’s scope.

Accounting for the characteristics of languages or

datasets that have the most impact on system perfor-

mance would enable beer assessment of the system’s

weaknesses and ways to improve it. For this reason, we

propose future work that systematically tests these fac-

tors by testing with dierent subsets of a single dataset

with dierent sizes, genres, completeness of glossing

or presence of part of speech tags. Upon identifying a

threshold for these factors above which system perfor-

mance stabilizes, it would then be possible to do more

rigorous cross-linguistic testing to find language fami-
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lies or typological properties that basil struggles with.

Acknowledging that basil’s grammars are currently

limited to a certain number of phenomena and are sub-

ject to some degree of error, we turn to a brief dis-

cussion of possible uses for these grammars both now

and aer additional inference modules are added. The

first of these is in accelerating the process of creat-

ing machine-readable grammars, as creating grammar

specifications, especially for languages with complex

morphology, can be quite tedious.

Machine readable grammars that are somewhat

larger than those produced by basil have been used for

a broad range of applications such as data exploration

(Letcher and Baldwin, 2013; Bouma et al., 2015), gram-

mar checkers (da Costa et al., 2016) and automatic tu-

tors (Hellan et al., 2013). Accelerating the process of

developing this type of grammar increases the num-

ber of grammars that can be used for these applica-

tions. At the current stage, inferred grammars could

still be useful for data exploration as they can be used

to search corpora for the phenomena they model. This

type of data exploration could assist linguists in find-

ing relevant examples of specific phenomena they wish

to analyze (as in Zamaraeva et al. 2017), or it could

be used to help teachers find varied examples to use

in lessons. Once a suicient number of phenomena

are handled by grammar inference, machine-readable

grammars inferred from descriptive grammars could

accompany those descriptive resources as a tool for fur-

ther investigating the language’s syntax, as described

by Bender et al. (2012) and Bouma et al. (2015). Our

inferred grammars for Wambaya, which were based on

IGT extracted from Nordlinger 1998, serve as proof of

concept for this possibility. Finally, as inferred gram-

mars help to streamline the process of grammar engi-

neering, ultimately grammars that started with basil

and were extended by hand could be used to produce

grammar checkers along the lines of da Costa et al. 2016

and other educational tools in order to assist in the ef-

fort of language revitalization.

Finally, there is potential for a symbiotic relation-

ship between basil and typological resources such as

WALS (Dryer and Haspelmath, 2013), SAILS (Muysken

et al., 2016) and others. In particular, previous work has

found that a number of the Grammar Matrix’s spec-

ifications map directly to WALS features (de Almeida

et al., 2019). For languages where these features are en-

coded in WALS, this information can potentially be in-

corporated into the grammar inference pipeline to im-

prove the accuracy of inference for some phenomena.

On the other hand, for languages whose features have

not been added to databases like WALS, basil could be

used to automatically infer those features, if an IGT cor-

pus (or a descriptive grammar from which IGT can be

extracted) is available.

The primary contribution of this work is a gram-

mar inference system that takes an IGT corpus as input

and produces a machine-readable, HPSG grammar that

can be used for parsing and generation. Although pre-

vious work has automatically generated grammars for

English and other languages frequently studied in NLP

contexts, basil focuses on producing language tech-

nology in the form of syntactically precise grammars

for local and endangered languages. In light of this,

we tested the system on a large number of genealog-

ically and geographically diverse languages and veri-

fied its cross-linguistic generalizability. Although the

grammars produced by basil are still relatively low-

coverage over corpora containing the complexity and

variety inherent to human language, they provide a

valuable starting point for producing broader coverage

grammars which can be used to assist data exploration

and language documentation and revitalization.
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A Data Repositories

Alaskan Native Languages Archive (ANLA)

https://www.uaf.edu/anla/

Archive of Indigenous Languages in Latin America

(AILLA)

http://www.ailla.utexas.org/site/

welcome.html

Endangered Languages Archive (ELAR)

http://elar.soas.ac.uk/

Kaipuleohone

https://scholarspace.manoa.hawaii.edu/

handle/10125/4250

Kratylos

https://www.kratylos.org/~kratylos/

home.cgi

Multi-CAST

https://multicast.aspra.uni-bamberg.de/

ODIN

http://depts.washington.edu/uwcl/odin/

Pacific and Regional Archive for Digital Sources (PAR-

ADISEC)

http://www.paradisec.org.au/

B Code and Project Repositories

ACE

http://sweaglesw.org/linguistics/ace/

AGGREGATION, basil

https://git.ling.washington.edu/agg

DELPH-IN

www.delph-in.net

INTENT

https://github.com/rgeorgi/INTENT2

FFTB

http://moin.delph-in.net/FftbTop

Grammar Matrix

http://matrix.ling.washington.edu/

index.html

MOM

https://git.ling.washington.edu/agg/mom

Xigt

https://github.com/xigt/xigt
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C Languages, Corpora and Descriptive Resources

The languages and corpora used for this research are listed in the table below, together with any descriptive resources

we consulted during basil’s development and evaluation.

Descriptive

Language iso Corpus Resource

Development

1 Abui abz Kratochvíl 2019 Kratochvíl 2007

2 Chintang ctn Bickel et al. 2013b Schikowski 2013

3 Matsigenka mcb Michael et al. 2013 Michael 2008

4 Nuuchahnulth nuk Inman 2019b Inman 2019a

5 Wambaya wmb Nordlinger 1998 Nordlinger 1998

6 Haiki yaq Harley 2019 Sanchez et al. 2015

Dedrick and Casad 1999

7 Lezgi lez Donet 2014b Donet 2014a

8 Meithei mni Chelliah 2019 Chelliah 2011

9 Tsova-Tush bbl Hauk 2016–2019 Hauk and Harris forthcoming

Hauk 2020

Consulted

10 Bardi bcj Bowern 2012 Bowern 2012

11 Ik ikx Schrock 2014 Schrock 2014

12 Old Javanese jav Acri 2018

13 Yup’ik esu Miyaoka 2012 Miyaoka 2012

14 Basque eus Xia et al. 2016 de Urbina 1989

15 Dutch nld Xia et al. 2016 Booij 2002

16 Finnish fin Xia et al. 2016 Sulkala and Karjalainen 1992

17 Greek ell Xia et al. 2016 Holton et al. 2012

18 Hausa hau Xia et al. 2016 Newman 2000

19 Hungarian hun Xia et al. 2016 Kenesei et al. 2002

20 Indonesian ind Xia et al. 2016 Sneddon et al. 2012

21 Italian ita Xia et al. 2016 Monachesi 1996

22 Japanese jpn Siegel et al. 2016 Siegel et al. 2016

Xia et al. 2016 Hinds 1986

23 Korean kor Xia et al. 2016 Sohn 1994

24 Mandarin cmn Xia et al. 2016 Li and Thompson 1989

25 Polish pol Xia et al. 2016

26 Russian rus Xia et al. 2016

27 Turkish tur Xia et al. 2016 Kornfilt 1997

Held Out

28 Arapaho arp Cowell 2018 Cowell and Moss Sr 2011

29 Hixkaryana hix Meira 2020

30 South Efate erk Thieberger 2006a Thieberger 2006b

31 Titan v Bowern 2019 Bowern 2011

32 Wakhi wbl Kaufman et al. 2020
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