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Abstract

We present a textless speech-to-speech trans-
lation (S2ST) system that can translate speech
from one language into another language and
can be built without the need of any text data.
Different from existing work in the literature,
we tackle the challenge in modeling multi-
speaker target speech and train the systems with
real-world S2ST data. The key to our approach
is a self-supervised unit-based speech normal-
ization technique, which finetunes a pre-trained
speech encoder with paired audios from multi-
ple speakers and a single reference speaker to
reduce the variations due to accents, while pre-
serving the lexical content. With only 10 min-
utes of paired data for speech normalization, we
obtain on average 3.2 BLEU gain when train-
ing the S2ST model on the VoxPopuli S2ST
dataset, compared to a baseline trained on un-
normalized speech target. We also incorporate
automatically mined S2ST data and show an
additional 2.0 BLEU gain. To our knowledge,
we are the first to establish a textless S2ST tech-
nique that can be trained with real-world data
and works for multiple language pairs1.

1 Introduction

Speech-to-speech translation (S2ST) technology
can help bridge the communication gap between
people speaking different languages. Conventional
S2ST systems (Lavie et al., 1997; Nakamura et al.,
2006) usually rely on a cascaded approach by first
translating speech into text in the target language,
either with automatic speech recognition (ASR) fol-
lowed by machine tranlsation (MT), or an end-to-
end speech-to-text translation (S2T) model (Bérard
et al., 2016), and then applying text-to-speech
(TTS) synthesis to generate speech output.

On the other hand, researchers have started ex-
ploring direct S2ST (Jia et al., 2019, 2021; Tjandra

1Audio samples are available at https:
//facebookresearch.github.io/speech_
translation/textless_s2st_real_data/
index.html

et al., 2019; Zhang et al., 2020; Kano et al., 2021;
Lee et al., 2021), which aims at translating speech
in the source language to speech in the target lan-
guage without the need of text generation as an
intermediate step. However, text transcriptions or
phoneme annotations of the speech data is often
still needed during model training for multitask
learning (Jia et al., 2019; Lee et al., 2021) or for
learning a decoder that generates intermediate rep-
resentations (Jia et al., 2021; Kano et al., 2021) to
facilitate the generation of speech output.

More than 40% of the languages in the world
are without text writing systems2, while very lim-
ited work exist to tackle the challenge of train-
ing direct S2ST systems without the use of any
text data (Tjandra et al., 2019; Zhang et al., 2020).
Moreover, due to the lack of S2ST training data,
previous work on direct S2ST mainly rely on TTS
to generate synthetic target speech for model train-
ing. The recent release of the large-scale S2ST data
from VoxPopuli (Wang et al., 2021c) has opened
up the possibility of conducting S2ST research on
real data. In addition, Duquenne et al. (2021) have
demonstrated the first proof of concept of direct
S2S mining without using ASR or MT systems.
The approach may potentially mitigate the data
scarcity issue, but the authors had not evaluated the
usefulness of such data for S2ST frameworks.

Most recently, Lee et al. (2021) have proposed
to take advantage of self-supervised discrete rep-
resentations (Lakhotia et al., 2021), or discrete
units, learned from unlabeled speech data as the
target for building a direct S2ST model. Experi-
ments conducted with synthetic target speech data
have shown significant improvement for transla-
tion between unwritten languages. In this work,
we extend the textless S2ST setup in (Lee et al.,
2021), i.e. training an S2ST system without the use
of any text or phoneme data, and conduct exper-
iments on real S2ST datasets, including VoxPop-

2https://www.ethnologue.com/
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uli (Wang et al., 2021c) and automatically mined
S2ST data (Duquenne et al., 2021). To tackle the
challenge of modeling real target speech where
there are multiple speakers with various accents,
speaking styles and recording conditions, etc., we
propose a speech normalization technique that
finetunes a self-supervised pre-trained model for
speech with a limited amount of parallel multiple-
to-single speaker speech. Experiments on four
language pairs show that when trained with the
normalized target speech obtained from a speech
normalizer trained with 10-min parallel data, the
performance of a textless S2ST model can be im-
proved by 3.2 BLEU points on average compared
with a baseline with un-normalized target speech.

The main contributions of this work include:

• We propose a speech normalization technique
based on self-supervised discrete units that
can remove the variations in speech from mul-
tiple speakers without changing the lexical
content. We apply the technique on the tar-
get speech of real S2ST data and verify its
effectiveness in the context of textless S2ST.

• We empirically demonstrate that with the
speech normalization technique, we can fur-
ther improve a textless S2ST system’s perfor-
mance by augmenting supervised S2ST data
with directly mined S2ST data, demonstrating
the usefulness of the latter.

• To the best of our knowledge, we are the first
to establish a textless S2ST technique that
can be trained with real-world data, and the
technique works for multiple language pairs.

2 Related work

Direct S2ST Jia et al. (2019, 2021) propose a
sequence-to-sequence model with a speech encoder
and a spectrogram decoder that directly translates
speech from one language into another language
without generating text translation first. The model
can be trained end-to-end, while phoneme data
is required in model training. On the other hand,
Tjandra et al. (2019); Zhang et al. (2020) build di-
rect S2ST systems for languages without text writ-
ing systems by adopting Vector-Quantized Vari-
ational Auto-Encoder (VQ-VAE) (van den Oord
et al., 2017) to convert target speech into discrete
codes and learn a speech-to-code translation model.
Most recently, Lee et al. (2021) propose a direct

S2ST system that predicts self-supervised discrete
representations of the target speech. The system,
when trained without text data, outperforms VQ-
VAE-based approach in Zhang et al. (2020). As a
result, in this work, we follow the design in Lee
et al. (2021) and focus on training direct S2ST sys-
tems with real data.

S2ST data VoxPopuli (Wang et al., 2021c) pro-
vides 17.3k hours of S2ST data from European par-
liament plenary sessions and the simultaneous inter-
pretations for more than 200 language directions,
the largest to-date. There exists few S2ST cor-
pora as the creation process requires transcribing
multilingual speech (Tohyama et al., 2004; Bendaz-
zoli et al., 2005; Zanon Boito et al., 2020) or high-
quality ASR models (Wang et al., 2021c). On the
other hand, Duquenne et al. (2021) extend distance-
based bitext mining (Schwenk et al., 2021) to the
audio domain by first learning a joint embedding
space for text and audio, where sentences with sim-
ilar meaning are close, independent of the modality
or language. The technique was applied to mine for
speech-to-speech alignment in LibriVox3, creating
1.4k hours of mined S2ST data for six language
pairs. The usefulness of the S2ST datasets is of-
ten showcased indirectly through a speech retrieval
task (Zanon Boito et al., 2020) or human evaluation
of the data quality (Duquenne et al., 2021), since
existing direct S2ST systems are mostly trained
with synthetic target speech (Jia et al., 2019; Tjan-
dra et al., 2019; Zhang et al., 2020; Lee et al., 2021;
Jia et al., 2021). In this work, we develop an S2ST
system that can be trained on real target speech to
mitigate the discrepancy between the S2ST system
and corpus development process.

Speech normalization Speech normalization re-
duces the variation of factors not specified at the
input when building TTS systems. One manual
approach is to use clean data from a single speaker
with minimal non-textual variation (Wang et al.,
2017; Shen et al., 2018; Ren et al., 2019; Ito and
Johnson, 2017). For automatic methods, silence
removal with voice activity detection (VAD) is
a fundamental approach (Gibiansky et al., 2017;
Hayashi et al., 2020; Wang et al., 2021a). Speech
enhancement can remove the acoustic condition
variation when building TTS models with noisy
data (Botinhao et al., 2016; Adiga et al., 2019).
Speaker normalization through voice conversion,

3https://librivox.org/api/info
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(a)

(b)

(c)

Figure 1: Audio samples from one female ((a), (b)) and
one male speaker ((c)) from VoxPopuli (Wang et al.,
2021c) for the word “parliament” and the reduced units
(consecutive duplicate units removed) encoded by the
HuBERT model in Section 4.2. Differences in the units
with respect to (a) are marked in gray.

which maps target speech into the same speaker
as the source speech in the context of S2ST (Jia
et al., 2021), can be considered as another speech
normalization method. In this work, we propose
a novel speech normalization technique based on
self-supervised discrete units, which maps speech
with diverse variation to units with little non-textual
variation.

3 System

We follow Lee et al. (2021) to use HuBERT (Hsu
et al., 2021) to discretize target speech and build
a sequence-to-sequence speech-to-unit translation
(S2UT) model. We describe the proposed speech
normalization method and the S2UT system below.

3.1 Self-supervised Unit-based Speech
Normalization

HuBERT and discrete units Hidden-unit BERT
(HuBERT) (Hsu et al., 2021) takes an iterative pro-
cess for self-supervised learning for speech. In
each iteration, K-means clustering is applied on the
model’s intermediate representations (or the Mel-
frequency cepstral coefficient features for the first

orig-unit reduced orig-unit

Pre-trained
HuBERT

Reference 
speaker

33 93 93 4 4 4 …

Pre-trained
HuBERT

Random 
speaker

33 93 4 …

Any 
speaker

K-means CTC Finetuning
Speech Normalizer

Finetuned
HuBERT

CTC Decoder
Speech Normalizer

Data Preparation Training Inference

norm-unit
1 3 88 23 …

Figure 2: Illustration of the self-supervised unit-based
speech normalization process. Left: orig-unit sequences
extracted for audios from the reference speaker. Mid-
dle: CTC finetuning with reduced orig-unit from the
reference speaker as the target and input audio from
different speakers speaking the same content. Right:
For inference, we apply the finetuned speech normalizer
and obtain norm-unit from CTC decoding.

iteration) to generate discrete labels for comput-
ing a BERT-like (Devlin et al., 2019) loss. After
the last iteration, K-means clustering is performed
again on the training data, and the learned K clus-
ter centroids are used to transform audio into a
sequence of cluster indices as [z1, z2, ..., zT ], zi ∈
{0, 1, ...,K−1},∀1 ≤ i ≤ T , where T is the num-
ber of frames. We refer to these units as orig-unit.

Unit-based speech normalization We observe
that orig-unit from audios of different speakers
speaking the same content can be quite different
due to accent and other residual variations such
as silence and recording conditions, while there
is less variation in orig-unit from speech from
the same speaker (Figure 1). Following the suc-
cess of self-supervised pre-training and Connec-
tionist Temporal Classification (CTC) finetuning
for ASR (Graves et al., 2006; Baevski et al., 2019),
we propose to build a speech normalizer by per-
forming CTC finetuning with a pre-trained speech
encoder using multi-speaker speech as input and
discrete units from a reference speaker as target.

Figure 2 illustrates the process. First, a pair
of audios from a random speaker and a reference
speaker speaking the same content is required.
Then, we convert the reference speaker speech into
orig-unit with the pre-trained HuBERT model fol-
lowed by K-means clustering. We further reduce
the full orig-unit sequence by removing repeat-
ing units (Lakhotia et al., 2021; Lee et al., 2021;
Kharitonov et al., 2021; Kreuk et al., 2021). The
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Figure 3: Illustration of the textless S2ST model. Left: The speech-to-unit translation (S2UT) model with an
auxiliary task. Right: The unit-based HiFi-GAN vocoder for unit-to-speech conversion. We apply the speech
normalizer (Fig. 2) to generate norm-unit as the target for S2UT training. The vocoder is trained with orig-
unit obtained from HuBERT and K-means model. Only the shaded modules are used during inference.

resulting reduced orig-unit serves as the target in
the CTC finetuning stage with the speech from the
random speaker as the input.

The process can be viewed as training an ASR
model with the “pseudo text”, i.e. units from speech
from a single reference speaker. The resulting
speech normalizer is a discrete unit extractor that
converts the input speech to units with CTC decod-
ing. We refer to these units as norm-unit.

3.2 Textless S2ST

Figure 3 shows the main components of the system.

Speech encoder The speech encoder is built by
pre-pending a speech downsampling module to a
stack of Transformer blocks (Vaswani et al., 2017).
The downsampling module consists of two 1D-
convolutional layers, each with stride 2 and fol-
lowed by a gated linear unit activation function,
resulting in a downsampling factor of 4 (Synnaeve
et al., 2019) for the log-mel filterbank input.

Discrete unit decoder We train the S2UT system
with norm-unit as the target. The unit decoder is
a stack of Transformer blocks as in MT (Vaswani
et al., 2017) and is trained with cross-entropy loss
with label smoothing. The setup can be viewed
as the same as the “reduced” strategy in Lee et al.
(2021), as the speech normalizer is trained on re-
duced orig-unit sequences.

Auxiliary task We follow the unwritten language
setup in Lee et al. (2021) and incorporate an auto-
encoding style auxiliary task to help the model con-
verge during training. We add a cross-attention
module and a Transformer decoder to an inter-
mediate layer of the speech encoder and use re-
duced orig-unit of the source speech as the target.

Unit-based vocoder The unit-to-speech conver-
sion is done with the discrete unit-based HiFi-GAN
vocoder (Kong et al., 2020) proposed in Polyak
et al. (2021), enhanced with a duration prediction
module (Ren et al., 2020). The vocoder is trained
separately from the S2UT model with the com-
bination of the generator-discriminator loss from
HiFi-GAN and the mean square error (MSE) of
the predicted duration of each unit in logarithmic
domain.

4 Experimental Setup

We examine four language pairs: Spanish-English
(Es-En), French-English (Fr-En), English-Spanish
(En-Es), and English-French (En-Fr). All experi-
ments are conducted using fairseq (Ott et al.,
2019; Wang et al., 2020a, 2021b)4.

4.1 Data

Multilingual HuBERT (mHuBERT) As we fo-
cus on modeling target speech in En, Es or Fr, we
train a single mHuBERT model (Section 4.2) by
combining data from three languages. We use the
100k subset of VoxPopuli unlabeled speech (Wang
et al., 2021c), which contains 4.5k hrs of data for
En, Es and Fr, respectively, totaling 13.5k hours.

Speech normalization We use multi-speaker
speech from the VoxPopuli ASR dataset (Wang
et al., 2021c) and convert text transcriptions to ref-
erence units for training the speech normalizer. The
text-to-unit (T2U) conversion is done with a Trans-
former MT model (Vaswani et al., 2017) trained

4Code is available at https://github.com/
pytorch/fairseq/blob/main/examples/
speech_to_speech/docs/textless_s2st_
real_data.md
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duration En Es Fr

train

10 mins 89 97 86

1 hr 522
612

510
(61% CV)

10 hrs 5.1k
6.7k 5.9k

(96% CV) (56% CV)
dev - 1.2k 1.5k 1.5k

Table 1: Number of samples of the data used in training
speech normalizers. For Es and Fr, as there is no enough
data from VoxPopuli ASR dataset after filtering out the
overlap with the S2ST data, we include random samples
from the Common Voice 7.0 (CV) (Ardila et al., 2020)
dataset (denoted as X%).

on single-speaker TTS data (described later) with
characters as input and reduced orig-unit as target.

We build training sets of three different sizes (10-
min, 1-hr, 10-hr) for each language (Table 1). We
remove the audios that exist in the VoxPopuli S2ST
dataset (described later) and randomly sample from
the Common Voice ASR dataset (Ardila et al.,
2020) if there is no enough data. We also randomly
sample 1000 audios from Common Voice dev sets
and combine with the filtered VoxPopuli ASR dev
sets for model development. Though the reference
target is created synthetically, we believe that col-
lecting a maximum of 10-hr speech from a single
speaker is reasonable as in TTS data collection (Ito
and Johnson, 2017; Park and Mulc, 2019).

S2UT We use the VoxPopuli S2ST dataset (Wang
et al., 2021c) as the supervised S2ST data for model
training. Take Es-En for example. We combine
data from Es source speech to En interpretation
with Es interpretation to En source speech for train-
ing. We evaluate on the dev set and test set from
Europarl-ST (Iranzo-Sánchez et al., 2020), as it pro-
vides text translation for BLEU score computation
and is of the same domain as VoxPopuli. In addi-
tion, we investigate incorporating S2ST data auto-
matically mined from LibriVox (Duquenne et al.,
2021).5 Table 2 summarizes the statistics of the
data for each language pair.

TTS data We train the unit-based HiFi-GAN
vocoder using TTS data, pre-processed with VAD
to remove silence at both ends of the audio. No
text data is required during vocoder training. In
addition, we use the same TTS dataset to train the
T2U model for generating reference target units

5https://github.com/facebookresearch/
LASER

in speech normalizer training and to build the cas-
caded baselines described in Section 4.3.

4.2 Multilingual HuBERT (mHuBERT)

We build a single mHuBERT model for all three
languages using the combination of 13.5k-hr data
without applying any language-dependent weights
or sampling, since the amount of data is similar
between all three languages. A single codebook
is used for all three languages, and no language
information is required during pre-training. The
mHuBERT model is pre-trained for three iterations
following Hsu et al. (2021); Lakhotia et al. (2021).
In each iteration, model weights are randomly ini-
tialized and optimized for 400k steps. We find that
K = 1000 with features from the 11-th layer of
the third-iteration mHuBERT model work the best
for our experiments.

4.3 Baselines

S2UT with reduced orig-unit First, we consider
a basic setup by training the S2UT system using
reduced orig-unit extracted from the target multi-
speaker speech with mHuBERT (Lee et al., 2021).
For the second baseline, we concatenate a d-vector
speaker embedding (Variani et al., 2014) to each
frame of the speech encoder output to incorporate
target speaker information. A linear layer is applied
to map the concatenated feature vectors to the same
dimension as the original encoder output. The 256-
dimensional speaker embedding, which remains
fixed during the S2UT model training, is extracted
from a speaker verification model pre-trained on
VoxCeleb2 (Chung et al., 2018). During inference,
we use the speaker embedding averaged from all
audios from the TTS dataset of the target language.

S2T+TTS We transcribe all the S2ST data with
open-sourced ASR models (Section 4.4) and train a
S2T+TTS system for each language pair. We build
2000 unigram subword units (Kudo, 2018) from
the ASR decoded text as the target. For TTS, we
explore two approaches: (1) Transformer TTS (Li
et al., 2019), and (2) text-to-unit (T2U). The Trans-
former TTS model has a text encoder, a spectro-
gram decoder and a HiFi-GAN vocoder (Kong
et al., 2020). The T2U model is the same model
used in preparing reference units for speech nor-
malizer training (Section 4.1), and we apply the
same unit-based vocoder for the S2UT model for
unit-to-speech conversion. Both Transformer TTS
and T2U are trained with characters as input.
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Es-En Fr-En En-Es En-Fr

VP mined
EP

VP mined
EP

VP mined
EP

VP mined
EP

dev test dev test dev test dev test
# samples 159k 314k 1.9k 1.8k 156k 338k 1.5k 1.8k 126k 314k 1.3k 1.3k 138k 338k 1.3k 1.2k

source (hrs) 532.1 441.7 5.4 5.1 522.9 447.1 3.7 4.7 414.7 424.7 3.0 2.9 450.6 469.5 3.0 2.8
target (hrs) 513.1 424.7 5.6∗ - 507.3 469.5 3.9∗ - 424.1 441.7 3.0∗ - 456.0 447.1 3.0∗ -

Table 2: Statistics of the data used in S2UT model training. We train the models on VoxPopuli (VP) (Wang et al.,
2021c) and mined S2ST data (Duquenne et al., 2021) and evaluate on Europarl-ST (EP) (Iranzo-Sánchez et al.,
2020). The source speech from plenary sessions before 2013 are removed from VP to avoid overlap with EP,
resulting in different amounts of data between X-Y and Y-X language pairs. (∗: speech is created with TTS for
tracking dev loss during training.)

dataset
duration (hrs)
train dev

En LJSpeech (Ito and Johnson, 2017) 22.3 0.7
Es CSS10 (Park and Mulc, 2019) 20.8 0.2
Fr CSS10 (Park and Mulc, 2019) 17.7 0.2

Table 3: Duration of the TTS datasets after VAD.

4.4 Evaluation

To evaluate translation quality, we first use open-
sourced ASR models6 to decode all systems’
speech output. As the ASR output is in lower-
case and without digits and punctuation except
apostrophes, we normalize the reference text by
mapping numbers to spoken forms and removing
punctuation before computing BLEU using SACRE-
BLEU (Post, 2018). To evaluate the naturalness of
the speech output, we collect mean opinion scores
(MOS) from human listening tests. We randomly
sample 200 utterances for each system, and each
sample is rated by 5 raters on a scale of 1 (the
worst) to 5 (the best).

4.5 Textless S2ST training

Speech normalization We finetune the mHu-
BERT model for En, Es and Fr, respectively, re-
sulting in three language-dependent speech normal-
izers. We perform CTC finetuning for 25k updates
with the Transformer parameters fixed for the first
10k steps. We use Adam with β1 = 0.9, β2 =
0.98, ϵ = 10−8, and 8k warm-up steps and then
exponentially decay the learning rate. We tune the
learning rate and masking probabilities on the dev
sets based on unit error rate (UER) between the
model prediction and the reference target units.

6En: https://huggingface.co/facebook/
wav2vec2-large-960h-lv60-self, Es:
https://huggingface.co/jonatasgrosman/
wav2vec2-large-xlsr-53-spanish, Fr:
https://huggingface.co/jonatasgrosman/
wav2vec2-large-fr-voxpopuli-french

S2UT We follow the same model architecture
and training procedure in Lee et al. (2021), except
having a larger speech encoder and unit decoder
with embedding size 512 and 8 attention heads.
We train the models for 600k steps for VoxPop-
uli S2ST data, and 800k steps for the combination
of VoxPopuli and mined data, and use Adam with
β1 = 0.9, β2 = 0.98, ϵ = 10−8, and inverse square
root learning rate decay schedule with 10k warmup
steps. We use label smoothing of 0.2 and tune the
learning rate and dropout on the dev set. The model
with the best BLEU on the dev set is used for eval-
uation. All S2UT systems including the baselines
are trained with an auxiliary task weight of 8.0.

Unit-based vocoder We train one vocoder for
each language, respectively. All vocoders are
trained with orig-unit sequences as input, since
they contain the duration information of natural
speech for each unit. We follow the training pro-
cedure in Polyak et al. (2021) and train for 500k
updates with the weight on the MSE loss set to 1.0.
The vocoder is used for generating speech from ei-
ther orig-unit or norm-unit, as they originate from
the same K-means clustering process.

5 Results

5.1 Textless S2ST

S2ST with supervised data Table 4 summa-
rizes the results from systems trained with Vox-
Populi S2ST data. We also list the results from
applying TTS on the ground truth reference text (8,
9) to demonstrate the impact from ASR errors and
potentially low quality speech on the BLEU score.

First, compared with the basic setup, the base-
line with target speaker embedding can give a 1.2-
3 BLEU improvement on three language pairs (1
vs. 2), implying that there exists variations in orig-
unit sequences which are hard to model without
extra information from the target speech signals.
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BLEU (↑) MOS (↑)

ID
tgt tgt tgt

Es-En Fr-En En-Es En-Fr Es-En Fr-En En-Es En-Fr
spkemb SN text

1 S2UT w/ orig-unit ✗ ✗ ✗ 13.1 15.4 16.4 15.8 2.32 ± 0.10 2.43 ± 0.11 2.97 ± 0.14 2.41 ± 0.08
2 S2UT w/ orig-unit ✓ ✗ ✗ 16.1 16.6 19.3 15.6 2.29 ± 0.11 2.25 ± 0.10 3.48 ± 0.11 2.25 ± 0.06
3 S2UT w/ norm-unit ✗ 10-min ✗ 17.8 18.5 20.4 16.8 2.99 ± 0.07 3.16 ± 0.07 3.92 ± 0.11 2.65 ± 0.08
4 S2UT w/ norm-unit ✗ 1-hr ✗ 18.8 20.3 21.8 18.7 3.20 ± 0.09 3.26 ± 0.08 4.09 ± 0.11 2.92 ± 0.09
5 S2UT w/ norm-unit ✗ 10-hr ✗ 18.9 19.9 22.7 18.7 3.26 ± 0.08 3.27 ± 0.08 4.17 ± 0.10 2.84 ± 0.08
6 S2T + tf TTS ✗ ✗ ASR 19.2 19.8 21.7 18.5 3.23 ± 0.13 3.22 ± 0.11 4.12 ± 0.11 2.44 ± 0.08
7 S2T + T2U ✗ ✗ ASR 19.4 19.7 21.8 18.9 3.16 ± 0.08 3.21 ± 0.07 4.11 ± 0.11 2.87 ± 0.09
8 gt + tf TTS ✗ ✗ ✗ 88.0 87.2 82.0 69.2 - - - -
9 gt + T2U ✗ ✗ ✗ 87.9 87.1 84.6 73.8 - - - -

Table 4: BLEU and MOS (reported with 95% confidence interval) from systems trained in a single run with
VoxPopuli S2ST data (Wang et al., 2021c) and evaluated on Europarl-ST (Iranzo-Sánchez et al., 2020) test sets. The
best results from S2UT w/ norm-unit are highlighted in bold. (tgt spkemb: target speaker embedding, SN: speech
normalization, gt: ground truth, tf: Transformer)

Es-En Fr-En En-Es En-Fr

ID data
tgt tgt tgt

EP CVST EP CVST EP EP
spkemb SN text

4 S2UT w/ norm-unit VP ✗ 1-hr ✗ 18.8 9.2 20.3 9.6 21.8 18.7
10 S2UT w/ orig-unit VP+mined ✗ ✗ ✗ 16.7 12.0 17.2 16.7 19.9 18.2
11 S2UT w/ orig-unit VP+mined ✓ ✗ ✗ 18.2 16.3 19.1 16.6 21.6 18.6
12 S2UT w/ norm-unit VP+mined ✗ 1-hr ✗ 21.2 15.1 22.1 15.9 24.1 20.3
13 S2T + tf TTS VP+mined ✗ ✗ ASR 21.4 14.8 22.4 16.7 24.3 20.9
14 S2T + T2U VP+mined ✗ ✗ ASR 21.3 14.9 22.3 16.7 24.8 21.6
15 S2T (Wang et al., 2021c) + tf TTS VP+EP+CVST ✗ ✗ Oracle 26.0 27.3 28.1 27.7 - -
16 S2T (Wang et al., 2021c) + T2U VP+EP+CVST ✗ ✗ Oracle 26.0 26.9 28.1 27.3 - -
8 gt + tf TTS ✗ ✗ ✗ ✗ 88.0 80.7 87.2 77.3 82.0 68.6
9 gt + T2U ✗ ✗ ✗ ✗ 87.9 78.8 87.1 75.9 84.6 73.8

Table 5: BLEU scores (↑) from systems trained in a single run with the combination of VoxPopuli S2ST data
(VP) (Wang et al., 2021c) and mined S2ST data (Duquenne et al., 2021) and evaluated on Europarl-ST (EP) (Iranzo-
Sánchez et al., 2020) and CoVoST 2 (CVST) (Wang et al., 2020b) test sets. The S2T model in Wang et al. (2021c)
is trained on more than 500 hrs of S2T data. The best results from S2UT with VP+mined data are highlighted in
bold. (tgt spkemb: target speaker embedding, SN: speech normalization, gt: ground truth, tf: Transformer)

However, with only 10 minutes of paired multiple-
to-single speaker speech data, we obtain norm-
unit that improves S2UT model performance by
1.5 BLEU on average (2 vs. 3). The translation
quality improves as we increase the amount of par-
allel data for training the speech normalizer. In the
end, with 10 hours of finetuning data, we obtain
an average 4.9 BLEU gain from the four language
pairs compared to the basic setup (1 vs. 5).

On the other hand, compared with S2T+TTS
systems that uses extra ASR models for converting
speech to text for training the translation model (6,
7), our best textless S2ST systems (5) can perform
similarly to text-based systems without the need of
human annotations for building the ASR models.

We see that the MOS of S2UT systems trained
with orig-unit is on average 0.85 lower than that
of systems trained with norm-unit (1 vs. 5). We
notice that the former often produces stuttering in
the output speech, a potential cause to lower MOS.
While worse audio quality may affect ASR-based

evaluation and lead to lower BLEU, we verify that
this was not the case as the ASR models could
still capture the content. We also see that the pro-
posed textless S2ST system can produce audios
with similar naturalness as Transformer TTS mod-
els (5 vs. 6).

S2ST with supervised data and mined data
Next, we add the mined S2ST data for model train-
ing, and the results are summarized in Table 5.
We apply the speech normalizer trained with 1-hr
data, as it provides similar translation performance
as a speech normalizer trained with 10-hr data in
VoxPopuli-only experiments (4 vs. 5 in Table 4).

On the Europarl-ST test set, we see consistent
trend across the S2UT models trained with norm-
unit and the two baselines with orig-unit, where the
proposed approach gives on average 3.9 BLEU im-
provement compared to the basic setup (10 vs. 12),
indicating that the speech normalizer trained on
VoxPopuli and Common Voice data can also be
applied to audios from different domains, e.g. Lib-
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riVox, where the mined data is collected. The ad-
dition of mined data with the proposed speech nor-
malization technique achieves an average of 2.0
BLEU gain over four language directions (4 vs. 12).

We also examine model performance on the CoV-
oST 2 test set (Wang et al., 2020b) and see even
larger improvements brought by mined data (10,
11, 12 vs. 4). One possible reason for this is that
LibriVox is more similar to the domain of CoVoST
2 than that of Europarl-ST. With target speaker em-
bedding, mined data improves S2ST by 7.1 BLEU
on average (4 vs. 11). S2UT with norm-unit does
not perform as well, and one explanation is that we
select the best model based on the Europarl-ST dev
set during model training.

Compared with S2T+TTS systems trained with
text obtained from ASR, there is an average of 0.6
BLEU gap from our proposed system on Europarl-
ST test sets (12 vs. 14). As the En ASR model was
trained on Libripeech (Panayotov et al., 2015), it
can decode high quality text output for the mined
data. We also list results from the S2T systems
from Wang et al. (2021c)7 (15, 16), which shows
the impact of having oracle text and in-domain
training data and serves as an upper bound for the
textless S2ST system performance.

5.2 Analysis on the speech normalizer

We analyze norm-unit to understand how the
speech normalization process helps improve S2UT
performance. First, to verify that the process pre-
serves the lexical content, we perform a speech
resynthesis study as in Polyak et al. (2021). We
use the VoxPopuli ASR test sets, run the unit-based
vocoder with different versions of discrete units ex-
tracted from the audio as input, and compute word
error rate (WER) of the audio output. In addition
to comparing between norm-unit and reduced orig-
unit, we list the WER from the original audio to
demonstrate the quality of the ASR models and the
gap caused by the unit-based vocoder.

We see from Table 6 that norm-unit from a
speech normalizer finetuned on 1-hr data achieves
similar WER as orig-unit, indicating that the nor-
malization process does not change the content of
the speech. In addition, we observe that norm-
unit sequences are on average 15% shorter than
reduced orig-unit sequences. We find that this is
mainly due to the fact that the speech normalizer

7Models downloaded from https://github.com/
facebookresearch/voxpopuli/.

WER (↓) En Es Fr
original audio 14.2 15.5 18.5
reduced orig-unit 22.4 22.7 24.1
norm-unit (10-min) 23.5 25.3 31.7
norm-unit (1-hr) 21.2 20.5 24.6
norm-unit (10-hr) 22.0 25.3 24.2

Table 6: Speech resynthesis results on the VoxPop-
uli ASR test set.

UER (↓) En Es Fr
reduced orig-unit 74.4 70.6 73.5
norm-unit (1-hr) 48.2 31.6 46.4

Table 7: Unit error rate (UER) between units extracted
from 400 pairs of audios from the Common Voice
dataset.

does not output units for the long silence in the
audio, while reduced orig-unit encodes non-speech
segments such as silence and background noises.
Therefore, norm-unit is a shorter and cleaner target
for training S2UT models.

Next, to examine that the speech normalizer
reduces variations in speech across speakers,
we sample 400 pairs of audios from Common
Voice (Ardila et al., 2020) for En, Es and Fr, respec-
tively. Each pair contains two speakers reading the
same text prompt. Table 7 shows the unit error rate
(UER) between the unit sequences extracted from
the paired audios. We see that norm-unit has UER
that is on average 58% of the UER of reduced orig-
unit, showing that norm-unit has less variations
across speakers.

5.3 Analysis of mined data

Each pair of aligned speech in the mined data has
an associated semantic similarity score. In exper-
iments above, we set the score threshold as 1.06,
and use all mined data with scores above it. Given

0 100 200 300 400
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t=1.065

t=1.07

t=1.075t=1.08

amount of mined data (hrs)

B
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Figure 4: BLEU scores (↑) on Europarl-ST Es-En test
set from models trained with VoxPopuli and mined data
filtered at different thresholds (t) for the similarity score.
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the trade-off between the quality and quantity of
mined data, we analyze how the S2ST performance
changes with the threshold set in mined data se-
lection. Figure 4 demonstrates BLEU scores on
Europarl-ST Es-En test set from S2UT systems
trained with 1-hr norm-unit. The mined data is use-
ful at different thresholds given its gains over the
model trained without mined data. As we increase
the threshold from 1.06 to 1.07, the performance
drops due to less training data.

6 Conclusion

We present a textless S2ST system that can be
trained with real target speech data. The key to
the success is a self-supervised unit-based speech
normalization process, which reduces variations in
the multi-speaker target speech while retaining the
lexical content. To achieve this, we take advantage
of self-supervised discrete representations of a ref-
erence speaker speech and perform CTC finetuning
with a pre-trained speech encoder. The speech nor-
malizer can be trained with one hour of parallel
speech data without the need of any human annota-
tions and works for speech in different recording
conditions and in different languages. We conduct
experiments on the VoxPopuli S2ST dataset and
the mined speech data to empirically demonstrate
its usefulness in improving S2ST system transla-
tion quality for the first time. In the future, we plan
to investigate more textless approaches to improve
model performance such as self-supervised pre-
training. All the experiments and ASR evaluation
are conducted with public datasets or open-sourced
models.
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A mHuBERT Training details

Table 8 lists the details for the three iterations of
mHuBERT training.

iteration target features K-means
1 MFCC 100
2 6-th layer from the first iteration 500
3 9-th layer from the second iteration 500

Table 8: Setup for the target labels used in mHuBERT
training.

B Unit-based Vocoder

Table 9 shows the resynthesis performance of the
unit-based vocoder of each language. The WER
on the original audio indicates the quality of the
open-sourced ASR model we use for evaluation.
The WER difference between original audio and
orig-unit shows the quality of the vocoder, and
the difference between orig-unit and reduced orig-
unit shows the further impact brought by the dura-
tion prediction module.

WER (↓) En Es Fr
original audio 2.0 8.4 24.0

orig-unit 2.8 12.0 29.3
reduced orig-unit 3.4 11.9 31.3

Table 9: WER on the TTS dev sets (LJSpeech for En,
and CSS10 for Es and Fr) of the audios resynthesized
from units.

C Text-to-Unit (T2U)

Table 10 lists the WER of the audios generated by
the T2U model, which is used in generating the
reference target units for speech normalizer train-
ing. As the T2U model is trained with reduced unit
sequences as the target, during synthesis, we apply
the unit-based vocoder with duration prediction.
We can see that T2U with a unit-based vocoder
can produce high quality audio and can serve as
another option of TTS.

WER (↓) En Es Fr
original audio 2.0 8.4 24.0

T2U 4.2 9.1 24.4

Table 10: WER on the TTS dev sets (LJSpeech for En,
and CSS10 for Es and Fr).

D Hyper-parameters

Table 11 lists the best hyper-parameters for train-
ing the speech normalizers for the three languages
and three data setups, respectively. All models are
trained on 8 GPUs with a batch size of 100-second
(maximum total input audio length).

Table 12 lists the best learning rate tuned on the
dev set for the S2UT experiments listed in Table 4
and Table 5. All models are trained on 8 GPUs
with a total batch size of 160k tokens and dropout
of 0.3, except for Es-En experiment ID 1 which
uses 0.1.

language duration
learning mask mask channel

rate prob prob
En 10-min 0.00003 0.75 0.75
En 1-hr 0.00005 0.5 0.5
En 10-hr 0.0001 0.5 0.75

Es 10-min 0.00003 0.5 0.75
Es 1-hr 0.00003 0.5 0.25
Es 10-hr 0.00005 0.5 0.5

Fr 10-min 0.00003 0.5 0.5
Fr 1-hr 0.00005 0.5 0.25
Fr 10-hr 0.00005 0.5 0.25

Table 11: Hyper-parameters for training the speech
normalizers.

ID Es-En Fr-En En-Es En-Fr
1 0.0005 0.0003 0.0003 0.0003
2 0.0003 0.0003 0.0003 0.0003
3 0.0003 0.0003 0.0003 0.0003
4 0.0003 0.0003 0.0003 0.0003
5 0.0003 0.0003 0.0003 0.0003
10 0.0005 0.0005 0.0005 0.0005
11 0.0005 0.0003 0.0005 0.0005
12 0.0005 0.0005 0.0005 0.0005

Table 12: Learning rate for S2UT model training.

E Dev BLEU

Table 13 shows the BLEU scores on the Europarl-
ST dev sets from systems in Table 4 and Table 5.
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ID Es-En Fr-En En-Es En-Fr
1 15.4 16.0 15.9 14.7
2 18.4 17.4 19.1 15.5
3 20.5 19.8 20.5 16.2
4 21.4 21.0 20.8 17.6
5 21.6 21.1 22.0 17.8
7 22.3 20.5 21.8 18.0
10 19.0 18.7 19.8 17.2
11 20.5 20.7 20.8 17.8
12 23.8 23.7 23.8 19.3
14 23.7 23.6 25.0 20.6
16 28.6 29.1 - -

Table 13: BLEU scores on the Europarl-ST dev sets
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