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Abstract

Several popular Transformer based language
models have been found to be successful for
text-driven brain encoding. However, existing
literature leverages only pretrained text Trans-
former models and has not explored the effi-
cacy of task-specific learned Transformer rep-
resentations. In this work, we explore trans-
fer learning from representations learned for
ten popular natural language processing tasks
(two syntactic and eight semantic) for predict-
ing brain responses from two diverse datasets:
Pereira (subjects reading sentences from para-
graphs) and Narratives (subjects listening to
the spoken stories). Encoding models based on
task features are used to predict activity in dif-
ferent regions across the whole brain. Features
from coreference resolution, NER, and shallow
syntax parsing explain greater variance for the
reading activity. On the other hand, for the
listening activity, tasks such as paraphrase gen-
eration, summarization, and natural language
inference show better encoding performance.
Experiments across all 10 task representations
provide the following cognitive insights: (i)
language left hemisphere has higher predic-
tive brain activity versus language right hemi-
sphere, (ii) posterior medial cortex, temporo-
parieto-occipital junction, dorsal frontal lobe
have higher correlation versus early auditory
and auditory association cortex, (iii) syntactic
and semantic tasks display a good predictive
performance across brain regions for reading
and listening stimuli resp.

1 Introduction

Brain encoding aims at constructing neural brain
activity given an input stimulus. Since the discov-
ery of the relationship between language stimuli
and functions of brain networks using fMRI [for
ex., (Constable et al., 2004)], researchers have been
interested in understanding how the neural encod-
ing models predict the fMRI brain activity. Sev-
eral brain encoding models have been developed

to (i) understand the ventral stream in biological
vision (Yamins et al., 2014; Kietzmann et al., 2019;
Bao et al., 2020), and (ii) to study the higher-level
cognition like language processing (Gauthier and
Levy, 2019; Schrimpf et al., 2021; Schwartz et al.,
2019).

Some recent studies (Nishida et al., 2015; Huth
et al., 2016) have been able to identify brain ROIs
(Region of Interest) that respond to words that have
a similar meaning and have thus built a “semantic
atlas” of how the human brain organizes language.
Further, several studies (Oota et al., 2018; Jain and
Huth, 2018; Hollenstein et al., 2019) have used
a wide variety of word embeddings where words
represented as vectors in an embedding space are
mapped to brain activation for improved neural
coding.

Recently, Transformer (Vaswani et al., 2017)
based models like BERT (Devlin et al., 2019) have
been found to be very effective across a large num-
ber of natural language processing (NLP) tasks.
These Transformer based models have been pre-
trained on millions of text instances in an unsuper-
vised manner and further finetuned to specialize for
various NLP tasks. Natural language understand-
ing requires integrating several cognitive skills like
syntactic parsing of the language structure, identify-
ing the named entities, capturing the word meaning
in the context, coreference resolution, etc. Learn-
ing from massive corpora enables these models to
excel at cognitive skills required for language un-
derstanding. Interestingly, such Transformer-based
neural representations have been found to be very
effective for brain encoding as well (Schrimpf et al.,
2021).

Despite the recent advances in mapping be-
tween language Transformers and the brain activity
recorded with reading (Schrimpf et al., 2021), the
Transformer features themselves are notoriously
difficult to interpret. In recent works, Caucheteux
et al. (2021a); Antonello et al. (2021) address this
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issue by disentangling the high-dimensional Trans-
former representations of language models into
four combinatorial classes: lexical, compositional,
syntactic, and semantic representations to explore
which class is highly associated with language cor-
tical ROIs. Representations do not exist in a vac-
uum but become meaningful only when they ac-
complish a task. Therefore, the next logical step is
to see which of these Transformer representations
most effectively drive the linear mapping between
language models and the brain in the context of
NLP tasks. Gauthier and Levy (2019) fine-tune a
pretrained BERT model on multiple tasks to find
tasks best correlated with high decoding perfor-
mance. In this study, we investigate the correlation
between brain activation and feature representa-
tions learned by different task-specific networks,
and ask which tasks lead to improvements in brain-
encoding performance.

Recently, a study using multiple computer vi-
sion tasks has shown that 3D vision task models
predict better fMRI brain activity than 2D vision
task models (Wang et al., 2019) for visual stim-
uli. Inspired by the success of correlations in the
vision field (Wang et al., 2019), and brain encod-
ing study of a variety of language Transformer
models (Schrimpf et al., 2021; Caucheteux et al.,
2021b,a), we build neural language taskonomy
models for brain encoding and aim to find NLP
tasks that are most explanatory of brain activations
for reading and listening tasks.

In this paper, we uncover insights about the as-
sociation between fMRI voxel activations and rep-
resentations of diverse NLP tasks representations.
The predictive power of task-specific representa-
tions with brain activation is ascertained by (1)
using ridge regression on such representations and
predicting activations and (2) computing popular
metrics like 2V2 accuracy and Pearson correlation
between actual and predicted activations.

Specifically, we make the following contribu-
tions in this paper.

• Given Transformer models finetuned for var-
ious NLP tasks, we propose the problem of
finding which of these are the most predic-
tive of fMRI brain activity for reading and
listening tasks.

• Our language taskonomy results reveal that
Coreference Resolution, Named Entity Recog-
nition, and Shallow Syntax Parsing tasks have

higher predictive performance while reading
the text. On the other hand, paraphrase detec-
tion, summarization, and Natural Language
Inference tasks display better correlation dur-
ing listening.

• We also perform similarity analysis between
task representations from transfer learning and
neural taskonomy and derive interesting cog-
nitive insights from brain maps.

2 Related Work

Older methods for text-based stimulus rep-
resentation include text corpus co-occurrence
counts (Mitchell et al., 2008; Pereira et al., 2013;
Huth et al., 2016), syntactic and discourse fea-
tures (Wehbe et al., 2014). In recent times, both
semantic and experiential attribute models have
been explored for text-based stimuli. Semantic rep-
resentation models include distributed word embed-
dings (Pereira et al., 2016; Anderson et al., 2017a;
Pereira et al., 2018; Toneva and Wehbe, 2019; Hol-
lenstein et al., 2019; Wang et al., 2020), sentence
representation models (Sun et al., 2019; Toneva and
Wehbe, 2019; Sun et al., 2020), recurrent neural net-
works (Jain and Huth, 2018; Oota et al., 2019), and
Transformer-based language models (Gauthier and
Levy, 2019; Toneva and Wehbe, 2019; Schwartz
et al., 2019; Oota et al., 2022a,b). Experiential at-
tribute models represent words in terms of human
ratings of their degree of association with different
attributes of experience, typically on a scale of 0-
6 (Anderson et al., 2019, 2020; Berezutskaya et al.,
2020; Jat et al., 2020; Caucheteux et al., 2021a;
Antonello et al., 2021) or binary (Handjaras et al.,
2016; Wang et al., 2017). Fine-grained details such
as lexical, compositional, syntactic, and semantic
representations of narratives are factorized from
Transformer-based models and utilized for train-
ing encoding models. The resulting models are
better able to disentangle the corresponding brain
responses in fMRI (Caucheteux et al., 2021a).

In this paper, we focus on Transformer-based lin-
guistic stimuli representations since they have been
found to be most effective. Unlike previous stud-
ies which directly used existing task-agnostic pre-
trained models, we train task-specific Transformer
models and aim to find which model leads to the
best encoding accuracy given reading and listening
language stimuli.
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3 Brain Imaging Datasets

We work with two datasets: Pereira and
Narratives-Pieman. Results on Narratives-Lucy
and Narratives-SlumLord show similar trends.
Hence, we also show results on Narratives-Lucy
and Narratives-SlumLord in the appendix.
Pereira Dataset (Reading Sentences from Pas-
sages) For the Pereira dataset, similar to earlier
work (Sun et al., 2019, 2020), we combine the data
from sentence-based experiments (experiments-2
and 3) from Pereira et al. (2018). Five subjects were
presented a total of 627 sentences from 48 broad
topics, spanning over 168 passages, where each
passage consists of 3-4 sentences. As in (Pereira
et al., 2018), we focused on nine brain ROIs (re-
gions of interest) corresponding to four brain net-
works: (i) Default Mode Network (DMN) (linked
to the functionality of semantic processing), (ii)
Language Network (related to language process-
ing, understanding, word meaning, and sentence
comprehension), (iii) Task Positive Network (TP)
(related to attention, salience information), and (iv)
Visual Network (related to the processing of visual
objects, object recognition). We briefly summarize
the details of the dataset and the number of voxels
corresponding to each ROI in Table 1. We use the
AAL parcellation Atlas (116 × 116 brain ROIs) to
present the brain map results, since Pereira dataset
contains annotations tied to this atlas.

ROIs→ Language Vision DMN Task Positive
↓Subj LH RH Body Face Object Scene Vision RH LH
P01 5265 6172 3774 4963 8085 4141 12829 17190 35120
M02 4930 5861 3873 4782 7552 3173 11729 15070 30594
M04 5906 5401 3867 4803 7812 3602 12278 18011 34024
M07 5629 5001 4190 4993 8617 3721 12454 17020 30408
M15 5315 6141 4112 4941 8323 3496 12383 15995 31610

Table 1: # Voxels in each ROI in the Pereira Dataset.
LH - Left Hemisphere. RH - Right Hemisphere.

ROIs→ EAC AAC PMC TPOJ DFL
LH RH LH RH LH RH LH RH LH RH

# Voxels 808 638 1420 1493 1198 1204 847 1188 1061 875

Table 2: # Voxels in each ROI in the Narratives Dataset.
LH - Left Hemisphere. RH - Right Hemisphere. Pieman
has 82, Lucy has 16 and SlumLord has 18 subjects. #
Voxels across ROIs are same for all the three.

Narratives-Pieman (Listening to Stories) The
“Narratives” collection aggregates a variety of fMRI
datasets collected while human subjects listened to
naturalistic spoken stories. The Narratives dataset
that includes 345 subjects, 891 functional scans,
and 27 diverse stories of varying duration totaling

∼4.6 hours of unique stimuli (∼43,000 words) was
proposed in (Nastase et al., 2021). Similar to ear-
lier works (Caucheteux et al., 2021b), we analyze
data from 82 subjects listening to the story titled
‘PieMan’ with 259 TRs (repetition time – fMRI
recorded every 1.5 sec.). We list number of voxels
per ROI in this dataset in Table 2. We use the multi-
modal parcellation of the human cerebral cortex
(Glassar Atlas: consists of 180 ROIs in each hemi-
sphere) to display the brain maps (Glasser et al.,
2016), since Narratives dataset contains annota-
tions tied to this atlas. The data covers ten brain
ROIs in the human brain, i.e., Left hemisphere (L),
and Right hemisphere (R) for each of the following:
(i) early auditory cortex (EAC: A1, LBelt, MBelt,
PBelt, and R1) which plays a key role for sound per-
ception since it represents one of the first cortical
processing stations for sounds; (ii) auditory associ-
ation cortex (AAC: A4, A5, STSdp, STSda, STSvp,
STSva, STGa, and TA2) which is concerned with
the memory and classification of sounds; (iii) pos-
terior medial cortex (PMC: POS1, POS2, v23ab,
d23ab, 31pv, 31pd, 7m); (iv) the temporo parieto
occipital junction (TPOJ: TPOJ1, TPOJ2, TPOJ3,
STV, PSL) which is a complex brain territory heav-
ily involved in several high-level neurological func-
tions, such as language, visuo-spatial recognition,
writing, reading, symbol processing, calculation,
self-processing, working memory, musical mem-
ory, and face and object recognition; and (v) the
dorsal frontal lobe (DFL: L_55b, SFL, L_44, L_45,
IFJA, IFSP) which covers the aspects of pragmatic
processing such as discourse management, integra-
tion of prosody, interpretation of nonliteral mean-
ings, inference making, ambiguity resolution, and
error repair.

4 Encoding Model

To explore how and where contextual language
features are represented in the brain when read-
ing sentences and listening to stories, we extract
different features spaces describing each stimulus
sentence and use them in an encoding model to
predict brain responses. Our reasoning is as fol-
lows. If a feature is a good predictor of a spe-
cific brain region, information about that feature
is likely encoded in that region. In this paper, for
both datasets, we train fMRI encoding models us-
ing Ridge regression on stimuli representations ob-
tained using a variety of NLP tasks. The main goal
of each fMRI encoder model is to predict brain
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responses associated with each brain region given
a stimuli. In all cases, we train a model per subject
separately. Following literature on brain encod-
ing (Caucheteux et al., 2021b; Toneva et al., 2020),
we choose to use a ridge regression model instead
of more complicated models. We plan to explore
more such models as part of future work. We follow
K-fold (K=10) cross-validation. All the data sam-
ples from K-1 folds were used for training, and the
model was tested on samples of the left-out fold.
We used sklearn’s ridge-regression with default
parameters, 10-fold cross-validation, Stochastic-
Average-Gradient Descent Optimizer, Huggingface
for Transformer models, MSE loss function, and
L2-decay (λ) as 1.0. We used BERT Word-Piece
tokenizer for the linguistic Transformer input. All
experiments were conducted on a machine with 1
NVIDIA GEFORCE-GTX GPU with 16GB GPU
RAM. We make the code publicly available1.

4.1 Feature Spaces

To simultaneously test representations from mul-
tiple NLP tasks, we used the latent space features
from each of the following ten popular NLP tasks:
coreference resolution (CR), named entity recog-
nition (NER), natural language inference (NLI),
paraphrase detection (PD), question answering
(QA), sentiment analysis (SA), semantic role la-
beling (SRL), shallow syntax parsing (SS), sum-
marization (Sum) and word sense disambiguation
(WSD). All of these are discriminative NLP tasks,
and thus we use models obtained by task-specific
finetuning of the same pretrained Transformer en-
coder model (BERT-base-cased with dimension-
ality=768). Given an input sentence, each task
Transformer outputs token representations at the
final layer. We use the #tokens × 768 dimension
vector obtained from the last hidden layer to obtain
latent features for the stimuli. We then build indi-
vidual ridge regression models with the extracted
latent features to predict brain responses and mea-
sure the correlation between the prediction and the
true response.
Pereira: Since individual sentences were presented
to the subjects while modeling, sentences were
passed one by one to the task Transformer model,
and average-pooled representations were used to
encode the sentence stimuli.
Narratives-Pieman: Due to the constraint on input
sequence length for BERT (512), we considered

1https://tinyurl.com/langTask

a window size of 10 sentences with the last two
sentences of one window overlapping with the next
to be given as input to the BERT model. We use
the average-pooled representation from BERT to
encode text stimuli. To get the representation for
a TR, we pooled the representations of only those
words of the sentences in that TR.

4.2 Task Descriptions

Here we describe the functionality of each NLP
task that we used for fMRI encoding. CR: involves
finding all expressions that refer to the same entity
in a text. PD: involves taking a passage – either
spoken or written – and rewording it in shorter
or own words. Summarization (Sum): involves
selecting a few important sentences from a docu-
ment or paragraph. NER: involves detection of
the named entities such as person names, location
names, company names from a given text. NLI: in-
vestigates the entailment relationship between two
texts: premise and hypothesis. QA: aims to select
an answer given a passage, a question, and a set
of candidate answers. SA: involves determining
whether a piece of text is positive, negative, or neu-
tral. SRL: assigns labels to words or phrases in a
sentence that indicates their semantic role in the
sentence, such as that of an agent, goal, or result.
SS: provides an approximation of phrase-syntactic
structure of sentences. WSD: involves determining
which sense (meaning) of a word is activated by
the use of the word in a particular context.

Syntactic reasoning is rather shallow compared
to deep semantic reasoning. Syntactic reasoning
follows somewhat objective grammar rules. Com-
paratively semantic reasoning is often subjective
in nature and complex. The emerging evidence
from fMRI studies (Fedorenko et al., 2020, 2012)
also points out that processing of both syntax and
semantics is distributed in the brain and it is only
when violations of these processes are probed, we
see localization of function (Friederici et al., 2003).
Thus, in this work, we explore syntactic and seman-
tic tasks separately. Of the above mentioned tasks,
NER and SS are syntactic, while the others involve
semantic reasoning.

Our selection of these tasks was based on the fol-
lowing design principles: (1) We wanted to select
a set of tasks covering diverse cognitive-linguistic
skills. (2) We wanted to select tasks that are a part
of popular NLP benchmarks like GLUE (Wang
et al., 2018). (3) We selected tasks for which
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Figure 1: Pereira – 2V2 Accuracy (top figure) and Pearson correlation coefficient (bottom figure) between predicted
and true responses across different brain regions using a variety of NLP tasks. Results are averaged across all
participants. CR, NER, and SS perform the best.

BERT-base-cased finetuned models were available.
Note that we did not finetune any of these models
ourselves but leveraged the state-of-the-art fine-
tuned models available on Huggingface. Details of
the specific finetuned model checkpoints are men-
tioned in Table 3 in the Appendix.

4.3 Evaluation Metrics

We evaluate our models using popular brain encod-
ing evaluation metrics described in the following.
Given a subject and a brain region, let N be the
number of samples. Let {Yi}Ni=1 and {Ŷi}Ni=1 de-
note the actual and predicted voxel value vectors for
the ith sample. Thus, Y ∈ RN×V and Ŷ ∈ RN×V

where V is the number of voxels in that region.
2V2 Accuracy is computed as
2V2Acc= 1

NC2

∑N−1
i=1

∑N
j=i+1 I[cosD(Yi, Ŷi) +

cosD(Yj , Ŷj) < cosD(Yi, Ŷj) + cosD(Yj , Ŷi)]
where cosD is the cosine distance function. I[c] is
an indicator function such that I[c] = 1 if c is true,
else it is 0. The higher the 2V2 accuracy, the better.
Pearson Correlation (PC) is computed as
PC= 1

N

∑n
i=1 corr[Yi, Ŷi] where corr is the corre-

lation function.
Mean Absolute Error (MAE) is computed as

MAE= 1
N

∑n
i=1 |[Yi − Ŷi]|.

Statistical Significance: In order to estimate the
statistical significance of the performance differ-
ences (across all results), we performed one-way
ANOVA on the mean values for the subjects. In
all such cases we report p-values corrected using
Bonferroni correction.

4.4 Neural Language Tasks Similarity
Computation

To estimate the similarity between 10 language
tasks, we took the prediction performance scores
across all the voxels in Pereira (97,539) and
Narratives-Pieman datasets (10,732). To analyze
the relationship between tasks based on neural rep-
resentations, we calculated the Pearson correlation
between predicted voxels of each task with the re-
maining tasks. These Pearson correlation values
were used to construct heatmaps and the task simi-
larity trees(dendograms) using hierarchical cluster-
ing for Pereira and Narratives-Pieman datasets.

5 Results

In order to assess the performance of the fMRI
encoder models learned using the representations
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Figure 2: Narratives-Pieman – 2V2 Accuracy (top figure) and Pearson correlation coefficient (bottom figure)
between predicted and true responses across different brain regions using a variety of NLP tasks. Results are
averaged across all participants. NLI, PD, and Summarization perform the best.

from a variety of NLP tasks, we computed the
2V2 accuracy and Pearson correlation coefficient
between the predicted and true responses across
various ROIs for both the reading (Pereira) dataset
(Fig. 1) as well as the listening (Narratives-Pieman)
dataset (Fig. 2).

5.1 Encoding performance of Language Task
models for reading vs listening tasks

Reading Sentences (Pereira): From Fig. 1, we
observe that tasks such as CR, NER, SRL, and
SS appear to have a better correlation to the brain
responses compared to the other tasks. In or-
der to estimate the statistical significance of the
performance differences, we performed one-way
ANOVA on the mean correlation values for the
subjects across the ten language tasks for the nine
brain ROIs. The main effect of the ANOVA test
was significant for all the ROIs with p≤ 10−2

with confidence 95% (see Appendix for detailed
ANOVA results). Further, post hoc pairwise com-
parisons (Ruxton and Beauchamp, 2008) confirmed
the visual observations that on both 2V2 accuracy
and Pearson correlation measures, tasks such as
CR, NER, SRL, and SS performed significantly
better compared to other tasks (see Appendix for

pairwise comparison results). These results demon-
strate that when reading a sentence, information
processing operations related to recognizing named
entities, labeling semantic roles to the constituents
of a sentence, identifying the references from a
sentence to the given topic (concept), and syntactic
processing may be engaged.

Further, we observe that the ROI corresponding
to language processing in the left hemisphere (Lan-
guage_LH) has higher encoding performance than
that of the right hemisphere (Language_RH). This
is in line with the left hemisphere dominance for
language processing (Binder et al., 2009). Also,
lateral visual ROIs such as Vision_Object, Vi-
sion_Body, Vision_Face, and Vision ROIs display
higher correlation with the language tasks associ-
ated with named entities (NER), relating the en-
tities (CR), and syntax processing (SS). Higher
correlations with all the visual brain regions point
to the possible alignment of visual and language
regions for semantic understanding (Popham et al.,
2021) in a reading task. Finally, across all regions,
pretrained BERT model has worse correlation com-
pared to at least 5 other task models.
Listening Stories (Narratives-Pieman): From
Fig. 2, we observe that the profiles of performance
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show low scores in the early auditory cortex (EAC),
auditory association cortex (AAC); average scores
in TPOJ and DFL; and superior scores in PMC.
This aligns with the known language hierarchy
for spoken language understanding (Nastase et al.,
2020). Tasks such as PD, Summarization, and
NLI seem to yield better performance in predict-
ing the brain responses than the other NLP tasks
across all the ROIs. These Pearson correlation (τ )
results are comparatively much higher compared
to those obtained using pretrained (task-agnostic)
GPT2 model in (Caucheteux et al., 2021a) (τ rang-
ing from 0.02 − 0.06). As shown in Fig. 2, our
method obtains much higher correlations (τ rang-
ing from 0.02 − 0.229). Similar to the Pereira
dataset, we estimate the statistical significance of
the performance differences using the one-way
ANOVA test. The main effect of task was signifi-
cant for all the ROIs with p≤ 10−3 with confidence
95% (see Appendix for detailed ANOVA results).
Also, Post hoc pairwise comparisons (Ruxton and
Beauchamp, 2008) revealed that on both 2V2 accu-
racy and Pearson correlation measures, tasks such
as PD, Sum, and NLI performed significantly better
compared to other tasks (see Appendix for pairwise
comparison results).

Further, from Fig. 2, we see that the bilateral
posterior medial cortex (PMC) associated with
higher language function exhibits a higher corre-
lation among all the brain ROIs. ROIs, including
bilateral TPOJ and bilateral DFL, yield higher cor-
relations with the five NLP tasks, which is in line
with the language processing hierarchy in the hu-
man brain. Finally, across all regions, pretrained
BERT model has worse correlation compared to at
least 5 other task models.

In summary, different and distinct language
Taskonomy features seem to be related to the encod-
ing performance in reading versus listening tasks.
CR, NER, SRL, and SS perform better for read-
ing. PD, Sum, and NLI perform better for listening.
While listening the subject is cognitively more in-
volved in the activity compared to reading (Buch-
weitz et al., 2009). Thus, it makes sense that shal-
low tasks like NER and SS are useful for reading
while more complex NLP tasks like PD, Sum and
NLI are effective for encoding listening stimuli.

5.2 Language Task Similarity Computation

Pearson correlation values between predicted re-
sponses for each pair of tasks were used to con-

Figure 3: Pereira – Prediction Similarity Matrix con-
structed from the task-wise brain response predictions
across 10 tasks averaged across all subjects.

Figure 4: Narratives-Pieman – Prediction Task Sim-
ilarity constructed from the task-wise brain response
predictions across 10 tasks averaged across all subjects.

struct the similarity matrix with heatmap for both
Pereira and Narratives-Pieman datasets, as shown
in Figs. 3 and 4. We observe that the following task
pairs are highly correlated for the Pereira dataset:
(NER and CR), (SS and CR) and (PD and Sum).
Also these task pairs are highly correlated for the
Narratives-Pieman dataset: (CR and NLI), (NLI
and SA) and (PD and Sum). Similarities are rela-
tively higher for Narratives-Pieman compared to
the Pereira dataset. Surprisingly, the (NLI, SA)
pair has lowest similarity for Pereira (reading) and
close to highest in Narratives-Pieman (listening).
We hypothesize that this is because sentiment is
best conveyed while the subject is listening.
Reading sentences (Pereira): The stimulus sen-
tences from the Pereira dataset were fed as input
to each of the 10 task Transformers. The similarity
among the resulting representations was analyzed
using hierarchical clustering, and the clusters are
visualized as dendrograms in Fig. 5 (left). We ob-
serve that the tasks are clustered into three groups
denoted using red, green, and blue colors. Next,
we wished to check if similar task grouping is ob-
served on brain activations predicted by ridge re-
gression trained on task-specific representations.
Hence, similar clustering analysis was conducted
on the neural space representations, and the clus-
ters are visualized as dendrograms in Fig. 5 (right)
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Figure 5: Left: Pereira Dendrogram constructed using
similarity on representations from task-specific Trans-
former encoder models with stimuli from the dataset
passed as input. Right: Pereira Dendrogram constructed
using similarity matrix shown in Fig. 3.

Figure 6: Left: Narratives-Pieman Dendrogram con-
structed using similarity on representations from task-
specific Transformer encoder models with stimuli from
the dataset passed as input. Right: Narratives-Pieman
Dendrogram constructed using similarity matrix shown
in Fig. 4.

across all subjects. Interestingly, the tree derived
from brain representation also shows a similar dis-
tribution of tasks across the three groups. Similar
dendrograms for individual subjects are illustrated
in Appendix-Fig. 11.
Listening Stories (Narratives-Pieman): Fig. 6
compares the task similarity tree based on the pat-
terns from the pretrained task Transformers, with
the task similarity tree generated based on similar-
ity in brain response prediction performance aver-
aged across all subjects. We observe that the tasks
are clustered into three groups denoted using red,
green, and blue colors. Again, the tree derived from
brain representation also shows a similar distribu-
tion of tasks across the three groups. Dendrograms
for individual subjects are in the Appendix-Fig. 12.

5.3 Brain maps for whole brain predictions

The mean absolute error (MAE) between predictive
and actual responses is obtained using individual
task features from the taskonomy. MAE values are
obtained for all the voxels in the brain for both the
reading (Fig. 7) and listening datasets (Fig. 8).

In the reading task, we observe from Fig. 7 that
CR has lower MAE compared to PD which in turn
has lower MAE compared to the NLI task (brain
maps for the other tasks are reported in Fig. 17
in the Appendix). Overall, for the reading stim-
uli, tasks such as NLI, QA, and SA display higher
MAE values. To further investigate which sub

ROIs (LPTG, LMTG, LATG, LFus, Lpar, Lang,
LIFGorb, LIFG, LaMFG, LpMFG, and LmMFG)
of the Language network are related to the predic-
tive task features, we train encoding models for
all the sub ROIs for the best encoding task, i.e.,
for the CR task (see Fig. 14 in Appendix). We no-
tice that both LMTG (middle temporal gyrus) and
LPTG (posterior temporal gyrus) are more accu-
rately predicted than the other sub ROIs. On the
other hand, LIFG-orb displays a lower Pearson cor-
relation for the CR task. The presence of superior
encoding information in the ROIs in the temporal
gyrus as compared to those in the inferior frontal
gyrus seems to mirror similar observations seen in
decoder performance (Anderson et al., 2017b).

On the other hand, in the listening task, we ob-
serve from Fig. 8 that Paraphrase and WSD display
lower MAE values compared to QA task (brain
maps for the other tasks are reported in Fig. 18
in the Appendix). Taken together, for listening
stimuli, tasks such as NER, QA, SA, CR, and SS
display higher MAE values. From Fig. 8, we see
that ROIs such as EAC and AAC have higher MAE
compared to PMC and TPOJ brain ROIs.

We further demonstrate the prediction perfor-
mance of the encoder model trained on sub ROIs
for the paraphrase task in Fig. 15 in the Appendix.
It can be observed that sub ROIs such as Pos1 and
Pos2 have a higher Pearson correlation than other
sub ROIs of the PMC region. Both sfl and l55b dis-
play a higher correlation among all the sub ROIs
for the DFL ROI. However, all the sub ROIs in the
TPOJ yield higher correlation, as shown in Fig. 15.
The control and attention ROIs in the posterior
cingulate cortex (for ex., POS1 in PMC), together
with the superior frontal language region (sfl in
DFL) and TPOJ, are part of the well-known lan-
guage network associated with narrative compre-
hension (Nastase et al., 2020), and it is heartening
to see that task features from PD task also relate to
semantic analysis of the ongoing narrative.

5.4 Discussion

(1) We used a ridge regression model instead of
more complicated models for encoding. We be-
lieve that more complex models can lead to further
exciting insights. (2) We experimented with 10
NLP tasks. Models can be pretrained for more
such tasks to check if other tasks are better predic-
tive of voxel activations. (3) We leveraged models
finetuned using datasets of different sizes across
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Coreference Resolution Paraphrase Natural Language Inference

Figure 7: Pereira BrainMaps: Mean absolute error (MAE) between predictive voxels and actual voxels using task
features from Taskonomy in one sample subject (subject 1). Predictive regions of different tasks are dissimilar
across tasks. The MAE values of each brain ROI are: CR (Language: 0.64, Visual: 0.57, DMN: 1.19, TP: 0.67), PD
(Language: 0.81, Visual: 0.74, DMN: 1.34, TP: 0.87) and NLI (Language: 1.9, Visual: 1.88, DMN: 2.1, TP: 2.03).

Word Sense Disambiguation Paraphrase Question Answering 

LH

RH

LH

RH

LH

RH

Figure 8: Narratives-Pieman BrainMaps: Mean absolute error (MAE) between predictive voxels and actual voxels
using task features from Taskonomy in one sample subject (subject 1) of PieMan dataset. Predictive regions of
various tasks are different across tasks. The MAE values of each brain ROI: PD task (EAC: 0.74, AAC: 0.66, PMC:
0.60, TPOJ: 0.61, and DFL: 0.694), WSD task(EAC: 0.83, AAC: 0.75, PMC: 0.68, TPOJ: 0.68, and DFL: 0.76),
QA task (EAC: 0.92, AAC: 0.83, PMC: 0.74, TPOJ: 0.75, and DFL: 0.76).

tasks. While a fair comparison of dataset sizes
across tasks is impossible, we understand that this
could have resulted in some bias in our results.
(4) We used a different dataset for reading vs lis-
tening. While we believe that the differences in
task-specific model performances across reading
and listening are mainly due to the learned stimu-
lus representations, but they could also arise from
other factors such as experimental conditions, the
text domain of the stimuli or number of voxels,
etc. (5) On Natural Language Understanding tasks
such as NLI, SA, QA and PD, Gauthier and Levy
(2019) observed that scrambled sentence represen-
tations gave better decoding performance. But en-
coding models (especially for the listening task),
scrambled order would be detrimental to making
sense of what is being heard. It is an interesting
future task to see if the opposite result is seen in the
case of brain encoding models. It is plausible that
brain uses encoding models in a flexible way when
it comes to decoding (Kriegeskorte and Douglas,

2019). Kriegeskorte and Douglas (2019) mention
that “Decoding models can help reveal whether par-
ticular information is present in a brain region in a
format the decoder can exploit. Encoding models
make comprehensive predictions about representa-
tional spaces.” In this sense, results of current work
are not directly comparable to those of Gauthier
and Levy (2019).

6 Conclusion

In this paper, we studied the effectiveness of task
specific NLP models for brain encoding. We ob-
serve that building individual encoding models and
exploiting existing relationships among models can
provide a more in-depth understanding of the neu-
ral representation of language information. Our
experiments on Pereira and Narrative datasets lead
to interesting cognitive insights.
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7 Ethical Statement

We reused publicly available datasets for this work:
Pereira and Narratives. We did not collect any new
dataset.

Pereira dataset can be downloaded from https:
//osf.io/crwz7/. Please read their terms of
use2 for more details.

Narratives dataset can be dowloaded from
https://datasets.datalad.org/
?dir=/labs/hasson/narratives. Please
read their terms of use3 for more details.

We do not foresee any harmful uses of this tech-
nology.
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A Details of the Finetuned Models

We selected tasks for which BERT-base-cased fine-
tuned models were available. Note that we did not
finetune any of these models ourselves but lever-
aged the state-of-the-art finetuned models available
on Huggingface. Details of the specific finetuned
model checkpoints are mentioned in Table 3.

B ANOVA test results

B.1 Pereira dataset
The main effect of model was significant for the
ROIs with 95% confidence with these statistics:

• Language_LH: [F(9, 40) = 3.95, p=0.0052]

• Language_RH: [F(9, 40) = 4.53, p=0.0015]

• Vision_Body: [F(9, 40) = 4.397, p=0.00227]

• Vision_Face: [F(9, 40) = 3.46, p=0.0085]

• Vision_Object: [F(9, 40) = 3.40, p=0.0121]

• Vision_Scenes: [F(9, 40) = 4.917, p=0.0007]

• Vision: [F(9, 40) = 3.945, p=0.00385]

• DMN: [F(9, 40) = 6.28, p=0.00034]

• TP: [F(9, 40) = 6.54, p=0.00042]

B.2 Narratives-Pieman dataset
The main effect of model was significant for the
ROIs with 95% confidence with these statistics:

• EAC_L [F(9,810)=3.88, p=.00009]

• EAC_R [F(9,810)=3.34, p=.00055]

• AAC_L [F(9,810)=5.37, p=.0000007]

• AAC_R [F(9,810)=6.955, p=.00000]

• PMC_L [F(9,810)=37.21, p=.00000]

• PMC_R [F(9,810)=31.62, p=.00000]

• TPOJ_L [F(9,810)=9.166, p=.00000]

• TPOJ_R [F(9,810)=7.797, p=.00000]

• DFL_L [F(9,810)=12.445, p=.00000]

• DFL_R [F(9,810)=12.27, p=.00000]
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Task HuggingFace Model Name Dataset URL
NLI bert-base-nli-mean-tokens Stanford Natural Language Inference (SNLI), MultiNLIhttps://huggingface.co/

sentence-transformers/
bert-base-nli-mean-tokens

PD bert-base-cased-finetuned-mrpc Microsoft Research Paraphrase Corpus (MRPC) https://huggingface.co/
bert-base-cased-finetuned-mrpc

SS bert-base-chunl CoNLL-2003 https://huggingface.co/vblagoje/
bert-english-uncased-finetuned-chunk

Sum bart-base-samsum SAMSum https://huggingface.co/lidiya/
bart-base-samsum

WSD bert-base-baseline English all-words https://github.com/BPYap/BERT-WSD
CR bert_coreference_base OntoNotes and GAP https://github.com/mandarjoshi90/

coref
NER bert-base-NER CoNLL-2003 https://huggingface.co/dslim/

bert-base-NER
QA bert-base-qa SQUAD https://huggingface.co/docs/

transformers/model_doc/bert#
bertforquestionanswering

SA bert-base-sst Stanford Sentiment Treebank (SST) https://huggingface.co/barissayil/
bert-sentiment-analysis-sst

SRL bert-base-srl English PropBank SRL https://s3-us-west-2.
amazonaws.com/allennlp/models/
bert-base-srl-2020.02.10.tar.gz

Table 3: Details of the finetuned models

T1 T2 p-value
CR QA 0.024
CR SA 0.015
CR NLI 0.010

Table 4: Pairwise comparison one-way ANOVA results
for Language_LH region

T1 T2 p-value
CR SS 0.021
CR SRL 0.0003
CR Sum 0.003
CR QA 0.039
CR SA 0.013
CR WSD 0.016

Table 5: Pairwise comparison one-way ANOVA results
for Language_RH region

T1 T2 p-value
CR SRL 0.0011
CR Sum 0.0092
CR SA 0.039
CR NLI 0.0061

Table 6: Pairwise comparison one-way ANOVA results
for Vision_body region

T1 T2 p-value
CR SA 0.0404
CR nli 0.036

Table 7: Pairwise comparison one-way ANOVA results
for Vision_face region

T1 T2 p-value
CR SRL 0.0027

Table 8: Pairwise comparison one-way ANOVA results
for Vision_object region

T1 T2 p-value
CR Sum 0.027
CR QA 0.0036
CR SA 0.0022
CR NLI 0.0010

Table 9: Pairwise comparison one-way ANOVA results
for Vision_scene region

T1 T2 p-value
CR SRL 0.0014
CR Sum 0.0431
CR NLI 0.0177

Table 10: Pairwise comparison one-way ANOVA results
for Vision region

T1 T2 p-value
CR NLI 0.027
CR Sum 0.008
CR PD 0.0147
NLI SA 0.056
NLI SS 0.000011
SA Sum 0.0188
SA PD 0.032
SS Sum 0.000002
SS WSD 0.0059
SS PD 0.000004

SRL Sum 0.0545
SRL PD 0.08876

Table 11: Pairwise comparison one-way Anova results
for EAC-L region

T1 T2 p-value
NLI SS 0.00157
Sum SS 0.0015
PD SS 0.002
SA SS 0.0565
SS WSD 0.052

Table 12: Pairwise comparison one-way Anova results
for EAC-R region

T1 T2 p-value
NLI SS 0.000007
SA SS 0.029
SS SRL 0.0084
SS PD 0.000023
SS QA 0.00128

Table 13: Pairwise comparison one-way Anova results
for AAC-L region
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Figure 9: Narratives-Lucy Dataset: 2V2 Accuracy (top figure) and Pearson correlation coefficient (bottom figure)
between predicted and true responses across different brain regions using a variety of NLP tasks. Results are
averaged across all participants. NLI, Paraphrase, and Summarisation perform the best.

T1 T2 p-value
CR NLI 0.0203
CR PD 0.0072

NER PD 0.0291
NLI SS 0.0000013
SA SS 0.0299
SS SRL 0.0011
SS PD 2.97929e-7
SS WSD 0.0444
SS QA 0.00099
PD Sum 0.039

Table 14: Pairwise comparison one-way Anova results
for AAC-R region

T1 T2 p-value
CR NER 1.07034e-10
CR NLI 0.000001
CR SRL 0.0014
CR PD 0.0000047
CR QA 0.0023

NER NLI 9.02023e-11
NER SA 9.02993e-11
NER SS 0.000157159
NER SRL 9.02116e-11
NER PD 9.02023e-11
NER Sum 9.03064e-11
NER WSD 9.03172e-11
NER QA 9.02116e-11
NLI SA 0.0207013
NLI SS 9.03255e-11
NLI Sum 0.0043
NLI WSD 0.00036
SA SS 0.0000072
SS SRL 4.47012e-10
SS PD 9.04392e-11
SS Sum 0.00011
SS WSD 0.00084
SS QA 6.36666e-10
PD Sum 0.012
PD WSD 0.0012

Table 15: Pairwise comparison one-way Anova results
for PMC-L region

T1 T2 p-value
CR NER 1.52787e-9
CR NLI 0.0000042
CR SS 0.0039
CR PD 0.00011
CR QA 0.0101

NER NLI 8.86012e-11
NER SA 8.87732e-11
NER SRL 8.88714e-11
NER PD 8.86092e-11
NER Sum 1.05034e-10
NER WSD 1.01319e-10
NER QA 8.86657e-11
NLI SA 0.0059
NLI SS 8.87066e-11
NLI Sum 0.000371
NLI WSD 0.000191
SA SS 0.0000021
SS SRL 0.00000142
SS PD 8.87554e-11
SS Sum 0.000126402
SS WSD 0.000128239
SS QA 1.31249e-10
PD Sum 0.00619
PD WSD 0.0036

Table 16: Pairwise comparison one-way Anova results
for PMC-R region
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Figure 10: Narratives-Slumlord Dataset: 2V2 Accuracy (top figure) and Pearson correlation coefficient (bottom
figure) between predicted and true responses across different brain regions using a variety of NLP tasks. Results are
averaged across all participants. NLI, Paraphrase, and Summarisation perform the best.

T1 T2 p-value
CR NLI 0.00069
CR PD 0.00395

NER NLI 0.0051
NER SS 0.0286244
NER PD 0.0235
NLI SS 4.43074e-10
NLI Sum 0.0068987
NLI WSD 0.02709
SA SS 0.0001732
SS SRL 0.0000530
SS PD 4.37008e-9
SS Sum 0.0219850
SS WSD 0.005447
SS QA 0.0000016
PD Sum 0.0306

Table 17: Pairwise comparison one-way Anova results
for TPOJ-L region

T1 T2 p-value
CR NLI 0.0064
CR PD 0.0148564

NER NLI 0.0449
NLI SS 3.74353e-8
NLI WSD 0.0321627
SA SS 0.0036278
SS SRL 0.001054
SS PD 1.33146e-7
SS Sum 0.025420
SS QA 0.000049

Table 18: Pairwise comparison one-way Anova results
for TPOJ-R region

T1 T2 p-value
CR NLI 0.000032
CR PD 0.000019

NER NLI 0.000619887
NER SS 0.040
NER PD 0.000399
NLI SS 1.61916e-10
NLI Sum 0.00074
NLI WSD 0.000462932
SA SS 0.000221241
SS SRL 0.0000123345
SS PD 1.30279e-10
SS Sum 0.0356814
SS WSD 0.0496343
SS QA 0.00000162
PD Sum 0.0004803
PD WSD 0.000296713

Table 19: Pairwise comparison one-way Anova results
for DFL-L region

T1 T2 p-value
CR NLI 0.000191
CR PD 0.00010

NER NLI 0.0168115
NER SS 0.0168115
NER PD 0.000674
NLI SS 1.05897e-10
NLI Sum 0.001194
NLI WSD 0.003894
SA SS 0.0000256
SS SRL 0.00000224
SS PD 9.81710e-11
SS Sum 0.0165866
SS WSD 0.0057237
SS QA 2.98083e-7
PD Sum 0.000685
PD WSD 0.00231873

Table 20: Pairwise comparison one-way Anova results
for DFL-R region
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T1 T2 p-value
CR NLI 0.0188070
CR PD 0.0099703

NER PD 0.0321010
NLI SS 6.37802e-7
SA SS 0.00642888
SS SRL 0.00051148
SS PD 2.42829e-7
SS QA 0.000162
PD WSD 0.0476

Table 21: Pairwise comparison one-way Anova results
for VC-L region

T1 T2 p-value
CR NLI 0.00498313
CR PD 0.000298933

NER NLI 0.024695
NER PD 0.0020556
NLI SS 4.16645e-8
NLI Sum 0.0449825
NLI WSD 0.0352242
SA SS 0.00120394
SS SRL 0.00002939
SS PD 7.70669e-10
SS Sum 0.0417081
SS QA 0.00000742881
PD Sum 0.00434934
PD WSD 0.0031

Table 22: Pairwise comparison one-way Anova results
for VC-R region

Figure 11: Dendrogram constructed using similarity
matrix constructed from the task-wise brain response
predictions across 10 tasks for subjects 1, 2 and 7 in
Pereira Dataset

Figure 12: Dendrogram constructed using similarity
matrix constructed from the task-wise brain response
predictions across 10 tasks for subjects 1, 21 and 31 in
Narratives Dataset

Figure 13: Pereira Dataset – Pearson correlation co-
efficient between predicted and true responses across
different sub ROIs of the Language Network using SRL
task. Results are averaged across all participants.
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Figure 14: Pereira Dataset – Pearson correlation co-
efficient between predicted and true responses across
different sub ROIs of the Language Network using CR
task. Results are averaged across all participants.

Figure 15: Narratives-Pieman – Pearson correlation
coefficient between predicted and true responses across
different sub ROIs of 5 brain ROIs using paraphrase
task. Results are averaged across all participants.

Figure 16: Narratives-Pieman – Pearson correlation
coefficient between predicted and true responses across
different sub ROIs of 5 brain ROIs using summarization
task. Results are averaged across all participants.
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Figure 17: Pereira BrainMaps: Mean absolute error (MAE) between predictive voxels and actual voxels using task
features from Taskonomy in one sample subject (subject 1). Predictive regions of different tasks are dissimilar
across tasks.
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Figure 18: Narratives BrainMaps: Mean absolute error (MAE) between predictive voxels and actual voxels using
task features from Taskonomy in one sample subject (subject 1) of PieMan dataset. Predictive regions of various
tasks are different across tasks.
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