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Abstract

Cross-modal language and image processing
is envisaged as a way to improve language un-
derstanding by resorting to visual grounding,
but only recently, with the emergence of neu-
ral architectures specifically tailored to cope
with both modalities, has it attracted increased
attention and obtained promising results.

In this paper we address a cross-modal task
of language-driven image design, in particular
the task of altering a given image on the basis
of language instructions. We also avoid the
need for a specifically tailored architecture and
resort instead to a general purpose model in the
Transformer family.

Experiments with the resulting tool, LX-DRIM,
show very encouraging results, confirming the
viability of the approach for language-driven
image design while keeping it affordable in
terms of compute and data.

1 Introduction

The fields of image and language processing have
mostly progressed independently of one other, each
focusing on its own modality. Recently, though,
there have been promising prospects for advance-
ment in cross-modal processing. A major moti-
vation for this has been the realization that the
so-called grounding is necessary for progress in
language understanding (Bisk et al., 2020), and
a major enabling factor has been the emergence
of underlying technology that can be successfully
applied to both modalities and their cross-modal
processing (Dosovitskiy et al., 2020; Ramesh et al.,
2021; Wu et al., 2021; Radford et al., 2021).

In the image to language direction, there has
been considerable progress in the task of image cap-
tioning, that is of generating a language description
for an input image (Radford et al., 2021; Xu et al.,
2015; Wu et al., 2017; Hossain et al., 2019), and the
subsidiary task of image retrieval from a language
description (Reed et al., 2016; Guo et al., 2018; Yu

and Grauman, 2017; Kovashka et al., 2012); while
in the language to image direction promising results
have been obtained on the task of image generation
from an input language description (Ramesh et al.,
2021; Wu et al., 2021).

Conditional Generative models based on the
Transformer architecture (Vaswani et al., 2017) be-
came one of the mainstream approaches for virtu-
ally any language processing task (Radford et al.,
2019; Brown et al., 2020; Devlin et al., 2018) due
to their ability to cope with the intrinsically com-
positional nature of language and the meaning con-
veyed by contextualized expressions. Recently,
these models have also shown promise for im-
age processing tasks, namely in image generation
(Ramesh et al., 2021; Wu et al., 2021), showcas-
ing their capacity to handle multi-modal input, and
how general purpose the Transformer architecture
can be, coping also with data rooted in signals that
are not linguistic in nature.

The DALL-E model (Ramesh et al., 2021) deliv-
ered promising results in such a task, by receiving
a description in the form of a snippet of text (e.g. “a
green clock in the form of an hexagon”) and cre-
ating an image that humans recognize as one that
could correspond to that input description. And its
extension DALL-E 2 (Ramesh et al., 2022) under-
takes also a more restricted task, where a specified
subarea of the image is to be completed on the basis
of the language description. These models achieve
these results by leveraging massive quantities of
data and compute that are hardly accessible to most
research groups and organizations.

Adopting a distinct line of inquiry, in the present
paper we aim at addressing a challenge of language
driven image design, consisting of editing an image
on the basis of language instructions to do so. Here
the output image is conditioned not only on a text
snippet but also on an input image, such that that
image is appropriately altered taking into account
the language input.
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Figure 1: First (left to right): image with the cap-
tion “dark red pumps”. Second: image generated (CIG
model) with only the textual description in the caption
of the first image. Third: outcome of the alteration of
the second image (CIA model) with the instruction “are
a darker red”. Fourth: image retrieved from the database
by using the second image for matching.

For example, given an image of a piece of furni-
ture, the model is asked to change its color. And
then possibly its height, shape, viewing perspective,
or the direction of the light. This process should
allow one to iteratively and interactively modify the
design of some object without any specific image
manipulation software, and with no knowledge of
how to work with it.

This workflow can be exploited in a wide range
of innovative applications, such as supporting a
shopping assistant that progressively matches im-
ages altered by language instructions against cur-
rent stock and suggests increasingly suitable prod-
ucts, among others examples.

Also concerned with addressing the issue of re-
source cost, in this paper we present exploratory
research results on affordable Language Driven Im-
age Design (LDID). The major contributions and
findings of this study are: (i) a suitably instantiated
GPT-2 (Radford et al., 2019) is an effective option
to perform LDID; (ii) in what concerns the task
of Conditional Image Generation, our approach of-
fers a more streamlined setup than the one adopted
in DALL-E; (iii) as a by-product of its ability for
LDID, our model may usefully support the sub-
sidiary task of image retrieval; and (iv) extending
this set up with a pre-trained language model may
improve the performance in some LDID tasks. This
study resulted on the creation of a tool, LX-DRIM,
for editing an image on the basis of language in-
structions.

The remainder of this document is structured
as follows: Section 2 describes the neural model
used in this study; Section 3 explains the experi-
ments performed and introduces the data sets used;
Section 4 presents the results obtained; Section 5
proceeds with error analysis; Section 6 discusses
related work; and Section 7 closes the paper with
concluding remarks.

2 Model

In looking for affordable LDID, we resorted to a
GPT-2 small model (Radford et al., 2019), namely
its current implementation from the transformers
package of HuggingFace,1 including their English
pre-trained GPT-2 as well.2

GPT-2 has been successfully applied to virtually
all language processing tasks. Given it was con-
ceived for text, some adaptation is required in order
for it to handle images. Interestingly, changes to
the model architecture can be dispensed with, and
the required adaptations can be restricted solely to
the way the input data is pre-processed.

The minimal twist is to pass the images through
a Vector-Quantized Variation Auto Encoder (VQ-
VAE) that is both capable of describing an image
with tokens according to an internal vocabulary of
images and of constructing an image from those
tokens (Ramesh et al., 2021).

Similarly to Variational Autoencoders, the main
goal of VQ-VAEs is the encoding of an image into
a vector, or group of vectors, that can then be de-
coded as closely as possible into the same original
image. However, while in standard Variational Au-
toencoders, the latent space is continuous and is
sampled from a Gaussian distribution, VQ-VAEs
operate on a discrete latent space by maintaining
a codebook. This codebook can then be used as
vocabulary for text conditioned image generation.

Therefore, by passing an image through a VQ-
VAE, one gets a sequence of tokens that represents
the image. This sequence can be fed to a GPT-2
model like it is done with the sequence of tokens
for language, given that the image tokens also have
their own embedding in the embedding layer.

In this work we use the VQ-VAE from (Esser
et al., 2021)3, with a “vocabulary” for images of
size 1024, which is added to the GPT-2 embed-
ding map, and by means of which every image is
represented.

With this extension to images in place, one can
now proceed to train GPT-2 as it is done when it
is applied solely to text, whereby given an input
token it learns to predict the next one.

As training parameters for the GPT-2, we use
a batch size of 6 with gradient accumulation of
16, meaning that at each step our model back-
propagates with 96 training instances. We evaluate

1https://huggingface.co/docs/transformers/index
2https://huggingface.co/gpt2
3https://github.com/CompVis/taming-transformers
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on the development set every 250 steps, and stop
training when the development set loss does not
decrease from its lowest point after 5 evaluations.

After the training of the GPT-2 model, we option-
ally rank its outputs using CLIP4 over the various
images from the same input. After using two sepa-
rate encoders, for image and for text, CLIP maps
their encoding vectors into a common embedding
so that a caption and its respective image end up
with the same representation (Radford et al., 2021).
CLIP can thus support the ranking of images gen-
erated from a caption given the encoded image that
is closer (in vector space) to the encoded caption is
the one more closely described by the caption.

3 Experiments

With this model in place, the following experiments
were undertaken:5 (i) a warm up experience, aimed
at assessing the capability of the model for Con-
ditional Image Generation (CIG)—generating an
image from a text snippet describing it; (ii) the cen-
tral experiment of interest here, aimed at assessing
how well the model is able to perform Conditional
Image Alteration (CIA)—generating an image both
from another image and from a text snippet describ-
ing how the later should be altered; and, in addi-
tion, (iii) a comparison between the model and a
variant obtained by extending it with a language
pre-training phase.

3.1 Data sets
We resorted to the two data sets developed by (Guo
et al., 2018)6 for their research on image retrieval,
which we re-purposed for the tasks of interest here,
which differ from that original image retrieval task.

These data were developed through crowdsourc-
ing with Amazon Turk and include: (i) a dataset
of images of women shoes and respective captions,
re-purposed here for the CIG task; and (ii) a dataset
where each instance contains a source image of a
shoe, a target image of another shoe, and a short
textual description of how the source image relates
to the target one, re-purposed here for the CIA task.
Figure 2 shows an example from each data set.

The data set for CIG has 3600 examples. We
randomly shuffled it and produced a 80/10/10 split,
taking 2880 examples for training, 360 for devel-
opment and the remaining 360 for testing. The

4https://github.com/openai/CLIP
5Materials for the reproduction of the results reported here

are available at https://github.com/nlx-group/LX-DRIM.
6https://github.com/XiaoxiaoGuo/fashion-retrieval

Figure 2: Left image: example in the CIA dataset, where
the pair of images are associated to this textual instruc-
tion for the source image to be altered into the target
image: “are black with a thicker heel”. Right image:
example in the CIG dataset, associated to the caption
“dark red platform high heels with a strap”.

data set for CIA, in turn, has 10750 examples, and
it was also shuffled and submitted to a 80/10/10
split, with a 8600 example set for training, 1075
for development and 1075 for testing.

All images in these data sets are augmented via
several transformations: (i) images are flipped hori-
zontally with a 50% chance; (ii) rotated between 0º
and 20º clockwise or anticlockwise; (iii) distorted
in order to simulate different perspectives with a
50% chance; (iv) their sharpness increased by a
factor of 2 with a 50% chance; and finally (v) their
contrast is maximized with a 50% chance.

3.2 Input representation

3.2.1 Conditional Image Generation

For each instance in the CIG data set, 194 input
tokens were used: 128 text tokens, with the image
caption; followed by a delimiter token (<I>) in-
dicating where the image begins; followed by the
64 tokens output by the VAE, which represent the
image; and finally, another <I> token indicating
the end of the image.

During preliminary experimentation, we varied
the number of tokens that represent the image and
observed that using more tokens created a higher
resolution image at the cost of the image being
less precise. We empirically found that using 64
tokens to represent the image led to a good trade-
off between image quality and precision.

Also in preliminary experimentation, while ex-
perimenting with other data sets not used in this
study, another finding was that using images with
white backgrounds helped the model to focus on
the main object, being difficult for the model to
precisely detect the object in question when the
image had a noisier background.
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3.2.2 Conditional Image Alteration
For each instance in the CIA data set, 259 tokens
were used: 128 text tokens with the request for
alteration; a <I> token marking the beginning of
the source image; 64 image tokens from the source
image; a <I> token marking both the end of the
source image and the beginning of the target image;
another 64 tokens from the target image; and finally,
a <I> token marking the end of the target image.

Our initial approach was to provide the source
image first, followed then by the textual alteration.
However, the resulting model had worse perfor-
mance than the one with the text in the first (left-
most) place, as described above. This is possibly
due to the fact that, by having the textual tokens
first, the model can more easily learn the point
from which no more textual tokens occur—after
the first <I>—and after that point can attribute low
probabilities to textual tokens and focus solely on
generating image tokens.

3.2.3 Impact of CLIP
The notion of prompt engineering has emerged
in papers like the ones regarding GPT-2 (Radford
et al., 2019) or GPT-3 (Brown et al., 2020), and also
DALL-E (Ramesh et al., 2021) or CLIP (Radford
et al., 2021). This concerns how the textual input is
given to the model and how the user can condition
it to deliver the desired result.

Similarly to what is reported in those papers, the
performance of our CIA model improves when the
description of the object in the source image is in-
cluded in the alteration text, instead of this text only
stating the alteration to perform—e.g. “high heels
are a darker tone” vs. “are a darker tone”. This can
be partly attributed to the fact that the model gets
a confirmation of what image to generate ("high
heels" vs. "rain boots"). We use this approach to
help CLIP rank the generated images, by prefixing
the textual input with the expression denoting the
type of object of the source image.

While the type of object of the source image may
not always be the same as that of the target image,
in general a prompt prepared this way improves the
performance when CLIP is used for ranking.

4 Results

The evaluation of a generative task (e.g. summa-
rization, etc.), where typically there can be more
than one output that is acceptable as correct, tends
to be a problematic endeavour. While one could

try to compare to a gold standard in order to per-
form an automatic evaluation, small differences (of
equally acceptable outputs) to the gold example
inevitably makes most such metrics, like accuracy,
etc., useless, leaving only some kind of distance
metric to be resorted to.

In contrast to text processing, this problem tends
to be further aggravated for images, as metrics that
are used to evaluate textual generative tasks, like
BLEU (Papineni et al., 2002) or METEOR (Baner-
jee and Lavie, 2005), work by being able to refer
to some parts that are well defined substructures in
an expression (e.g. words), but for images there are
no clear substructures that can be resorted to, and
in most cases these distance metrics work only at
the pixel level.

4.1 Distance metrics

Given these considerations, we resorted to four dis-
tance metrics, two of which are hash functions:7

Average hash (A. Hash), which takes the shape
into consideration but compares the images in gray
scale; Color hash (C. Hash), similar to A. Hash
but taking color into consideration; Mean Square
Error (MSE), the most rudimentary metric used,
which focuses on the distance between pixels; and
Structural Similarity Index Measure (SSIM) (Wang
et al., 2004), one of the most used metric for im-
age comparison, which extracts luminance, con-
trast and structure to compare two images. For the
first three, lower scores are better, while for SSIM
higher scores are better.

The results obtained with these automatic met-
rics will help to converge onto the more favorable
settings for the model whose performance will
eventually be submitted to the manual evaluation.

4.2 Conditional Image Generation

Table 1 presents the results obtained for CIG,
where images are generated from text descrip-
tions.8 All evaluation scores were obtained as the
mean score of the top four ranked images, with
the exception of the last line (as only one image
was available). The data for this task are available
at https://github.com/nlx-group/LX-DRIM, which
also include the images generated.

The best results under each metric concentrate
in the middle of the table, when CLIP is fed with

7https://pypi.org/project/ImageHash/
8Running on an NVIDIA 2080 RTX 8G, CIG models were

trained in 7 and 3 GPU hours, with and without language
pre-training respectively.
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N. Examples A. Hash C. Hash MSE SSIM A. Hash C. Hash MSE SSIM
Without textual pre-training With textual pre-training

32 13.553 4.6313 0.0868 0.5587 13.480 4.6458 0.0832 0.5658
16 13.510 4.6326 0.0859 0.5614 13.434 4.6340 0.0824 0.5691
8 13.594 4.6681 0.0850 0.5638 13.326 4.6285 0.0810 0.5741
4 18.826 5.0792 0.0859 0.5290 19.441 5.0451 0.0830 0.5226
1 33.575 6.0417 0.0916 0.4072 35.875 6.2944 0.0901 0.3704

Table 1: Evaluation of CIG with the averaged scores of top-4 images, with (right half) and without (left) textual
pre-training, with four image distance metrics (columns): Average Hash, Color Hash, Mean Square Error (lower
is better), and Structural Similarity Index Measure (higher is better). The first column indicates the number of
generated images (8, 16 and 32) given to CLIP.

eight examples. This indicates that using CLIP
improves performance only to a certain point, after
which increasing the number of examples given to
it induces a detrimental effect.

With only one image generated, the model has
the worst performance as there is no ranking to ex-
clude the worst images. However, with four images
generated (which also do not pass through CLIP),
there are better scores than with only one, indicat-
ing that the model is more prone to creating more
precise images than imprecise ones, and that by
having multiple images the error is averaged out.

Considering the best scores with each metric, the
models pre-trained with language data (right half of
the table) have better performance than those that
do not have such pre-training (left half). This may
hint at that language pre-training is still relevant
when there are images also in the fine-tuning phase.

4.3 Conditional Image Alteration

Table 2 presents the results for CIA, where images
are generated both from other images and from text
describing the alterations requested.9

The scores for the contribution of CLIP here are
less consistently aligned with each other. Like in
CIG, in general, a lower number of examples fed
into CLIP seems to lead to better results.

In fact, with the SSIM metric, the best results
are obtained with CLIP being fed with the lower
number (8) of examples. However, for the hash
metrics, it is hard to find such clear trend, other
than that CLIP supports the best scores—in many
setups with less examples, but in a few others with
more. And while lower number of examples fed
into CLIP also leads to better results with the MSE

9Running on an NVIDIA Titan RTX 24G, CIA models
were trained in 17 and 7 GPU hours, with and without lan-
guage pre-training respectively. Model inference (image gen-
eration) took less than a second.

metric, their best results, in turn, are obtained with-
out CLIP.

Additionally, considering the best scores with
each metric, in some metrics one gets better results
with textual pre-training, while with others is the
other way around. These results are thus inconclu-
sive with regards whether performance improves
with or without textual pre-training for CIA.

4.4 Calibration

As an opportunistic extension or application of our
model, its conditional image editing capability can
easily support an image retrieval system. This can
be achieved by measuring the distance, from the
image generated for the input description, to every
image in a database and retrieve the one that is
found to be the most similar.10

While the performance of this kind of approach
is likely inferior when compared to the feature-
based methodology typically used in image re-
trieval systems, it is still worth experimenting with
it. This will have the virtue of helping to assess
the reliability of each one of the four evaluation
metrics we have been using: given every metric is
agnostic to the dataset, the domain or the model,
and with no possible bias sensitive to any of them,
the one with more matches to the gold counterparts
will turn out to be the best to be used to evaluate
image design tasks.

We evaluate the CIG model, with language pre-
training, with 8 images generated (and filtered to
4 by CLIP), for its retrieval accuracy within the
top 50, 10, 5 and 1 images retrieved, resorting to

10It is worth noting again that the data set we are using
(Guo et al., 2018) was originally developed to support a image
retrieval task, which the authors addressed by means of a
complex system that takes into account the user feedback so
that at each turn the system tends to get closer to the correct
image to be retrieved.
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N. Examples A. Hash C. Hash MSE SSIM A. Hash C. Hash MSE SSIM
Without textual pre-training With textual pre-training

32 14.272 4.2679 0.1103 0.5339 14.583 4.7551 0.1109 0.5352
16 13.952 4.2842 0.1076 0.5399 14.381 4.7409 0.1100 0.5401
8 14.431 4.6902 0.1074 0.5464 14.431 4.6902 0.1074 0.5464
4 17.633 4.3937 0.1041 0.5459 20.102 5.1612 0.1040 0.4976
1 27.836 4.8112 0.1049 0.5173 34.122 6.2688 0.0967 0.3650

Table 2: Evaluation of CIA.

N. Retrieved A. Hash C. Hash MSE SSIM
50 33.61% 30.28% 46.67% 9.17%
10 10.00% 11.11% 15.00% 1.94%
5 5.56% 6.39% 8.33% 1.39%
1 1.67% 1.39% 1.67% 0.28%

Table 3: Accuracy of retrieving images with images
generated from their captions by the CIG model where
the retrieval is based in each of the four distance metrics
(columns), for top-k retrieved images (first column).

the 360 examples in the test set. The respective
evaluation scores are displayed in Table 3.

These results on image retrieval are low, being,
nevertheless, above the random baseline (1/360 or
0.27% for 1 image retrieved). We tend to attribute
these low results mainly to the nature of the data
set as most images are very similar to each other—
more on this below, in Section 5.

Nonetheless, the important take away sought for
is the comparison between the four metrics, and
their calibration to serve as evaluation metrics for
our tasks of interest. Whereas MSE is the met-
ric with higher scores at all settings considered
(i.e. each line in the table), SSIM gets the lower
scores, practically at random performance, being
only 0.01% above it when one image is retrieved.
Hash metrics, in turn, perform practically on a par
with each other, with A. Hash performing slightly
above C. Hash for 1 and 50 retrieved images, and
C. Hash performing above A. Hash for 5 and 10 im-
ages. Accordingly, these results indicate that MSE
could be considered as a more reliable distance
metric than the other three.

4.5 Evaluation

Taking these preparatory findings into account, the
model was evaluated in the task of interest here,
CIA, under what appears as its most suitable set-
tings following MSE scoring, with one example
generated and language pre-training.

Two test sets were gathered, each with 25 ran-
domly selected examples. Test set A (cf. Ap-
pendix A.1) consisted of triples with, from left
to right in each line, source image, image produced
by the model, and the alteration instruction. In test
set B (cf. Appendix A.2), the examples consisted
of 4-ary tuples with, from left to right, the source
image, the gold target image, the image output by
our model, and the instruction for alteration.

Six independent and voluntary evaluators were
assigned the following task: given the original im-
age on the left and the alteration instruction, clas-
sify how much the image on the right is a satis-
factory result with a score from {1, 2, 3, 4}, where
4 indicates that it is fully satisfactory. They ran
the evaluation over the entire test set A first, and
then over the test B. To avoid eventual prejudice
and respective bias, they were not told that images
were generated by computer.

The averaged mean ratings of the evaluators
was 2.37 (s.d. 0.11) with test set A. With test set
B, the perceived quality slightly lowered to 2.26
(s.d. 0.36), showing that evaluators’ rating tended
to be pulled down by their seeing a result deemed
as fully satisfactory side by side to the one under
evaluation.

To evaluate also the CIG task, as DALL-E is not
available, we resorted to its HuggingFace smaller
version, DALL-E mini,11 to generate images from
25 randomly selected captions in our data set (cf.
Appendix B). Our model was also run on these cap-
tions. Following the same comparative evaluation
approach used for CIG in DALL-E, in a best-of-
five vote, the images generated by our model were
always chosen as the most realistic and as best
matching the caption. The images generated by
the other system happen to be scrambled pieces of
disparate objects.

When compared to our model DALL-E mini has

11https://huggingface.co/flax-community/dalle-mini
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3 times more parameters (400 million vs 124 mil-
lion) and was trained on 5000 times more images
(15 million vs 2880).

5 Error analysis

To help in error analysis, difficult cases are exem-
plified in Figure 1. The two leftmost shoes are,
respectively, the target image and the (CIG) gener-
ated image with the description “dark red pumps”.

Both shoes are quite similar in terms of shape,
but their color is different. This is a good illus-
tration that color saturation and lightness are sub-
jective and hard to transmit via text. In the target
image (1st column), the desired dark red is almost
black, and the image generated (CIG) from “dark
red pumps” (2nd column) is lighter.

Interestingly, even the tentative correction (CIA)
of this image with the instruction “are a darker red”
still does not produce an image (3rd column) that
is not as dark as in the first column.

Though image retrieval is not a central task of
interest in this paper, it is worth noting that this
may be even more serious for image retrieval as
slight changes in saturation and lightness can make
the system choose a different image: When trying
to retrieve an image from the database, using the
generated image (2nd column), the image that is
retrieved is the one at the fourth column.

Further difficult examples, generated by the CIA
model, are shown in Figure 3.

One problem illustrated there concerns image
clarity. Even though some images (see 1st column)
are correct, they have some fuzzy details. This is
likely due to the reduced volume of the training
data set. However, as already mentioned, in order
to have images with higher resolution given a data
set of this size, one would have to sacrifice image
relevance and precision.

Another problem arises when the target image is
very different from the source image (see 2nd col-
umn). In such cases, the model is basically asked to
create a quite different object, for which the small
size of the data set provided limited evidence.

Additional problems occur when the images to
be generated are too similar to the source image
(see 3rd column), or the generated images are too
similar to each other (see 3rd and 4th images in the
1st column). While not necessarily a problem for
the overall quality of the output, the first kind of
cases becomes an issue for evaluation, as generated
images may be more similar to the source image

Figure 3: Examples of CIA for error analysis. First row:
source images. Second row: target images. Remaining
rows: top four generated images. Textual instructions
for image alteration in left column: “athletic shoes are
blue and silver”; middle column: “athletic shoes are
bronze-colored slingbacks”; right column: “pumps are
blue”.

than to the target one. As for the second kind of
cases, when the generated images are similar to one
another, it may become a problem if object design
is the intended use for the tool, and not just image
alteration.

To address these issues, further techniques to en-
hance image diversity should be explored in future
work, so that the model can suggest a more varied
set of images to the user.

6 Related Work

A promising application of deep learning to image
generation was presented in (Goodfellow et al.,
2014), with a Generative Adversarial Network
(GAN), a forerunner of a research line continued
in (Xu et al., 2017), (Zhu et al., 2019), (Tao et al.,
2021), a.o. A two part network containing a gen-
erator and a discriminator was proposed: The gen-
erator tries to create fake yet as realist as possible
images, while the discriminator tries to distinguish
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the fake images produced by the generator from
real ones.

Despite this early success being attributed also
to the use of Convolution Neural Networks (CNN)
(LeCun et al., 1989), the concept of GAN can be
used with other deep learning approaches. Such is
the case of the more recent work in (Jiang et al.,
2021b), where two Transformer models (Vaswani
et al., 2017) are used as a discriminator and a gen-
erator respectively. With no convolution at its core,
they achieve competitive scores when compared to
their CNN counterparts.

Transformers gained their notoriety with their
success in languages processing tasks of all kinds,
and recently they have been applied to other data
modalities. Relevant models that use Transformers
for Image Generation from captions are DALL-E
(Ramesh et al., 2021), and NUWA (Wu et al., 2021).
The major difference between them is that NUWA
also uses video while DALL-E works only with
pictures, and that NUWA uses a different type of
attention mechanism, 3D Nearby Attention.

The approach proposed in (Galatolo et al., 2021)
also achieves promising results in image genera-
tion with a pre-trained Transformer CLIP (Radford
et al., 2021), only by training a genetic algorithm.

More recently DALL-E 2 (Ramesh et al., 2022)
improves upon its predecessor by incorporating the
CLIP model for image and caption representation,
and through the use of a diffusion model for image
generation (Dhariwal and Nichol, 2021).

The architecture adopted in our model is simi-
lar to the backbone architecture on which the im-
plementation of DALL-E is based. Our model is
different from DALL-E, however, in not having
any specific optimization performed on the base
Transformer, like it was done to set up DALL-E,
and in being of a more reduced size (124M vs. 12B
parameters). Our system also differs in that it is
geared for a task other than the Conditional Image
Generation one, of DALL-E, namely the task of
Conditional Image Alteration. It happens also that
it was trained in a much smaller amount of data
(10750 vs. 250 million examples).

Also, related to our research topic, (Cheng et al.,
2020) tackles the same task, though by means of
a Generator/Discriminator architecture, with data
that while similar to ours is not the same. To the
best of our knowledge, that dataset is not publicly
available, so no comparison was possible. (Jiang
et al., 2021a) also work with language guided im-

age edition, with different datasets that do not
tackle the problem of object shape manipulation.

Work on image editing without language guid-
ance can be found in the work of (Zhu et al., 2020;
Zhuang et al., 2021), on different datasets.

The research presented here appears as a more
streamlined approach for the tasks involved in Lan-
guage Driven Image Design since most of the work
is performed with a common decoder-only archi-
tecture, in the form of a GPT-2 small model. This
is a generalist architecture that can be adapted for
other tasks, as it was the case here with the CIG
task, or any other task that can be represented by a
sequence (text, audio, image, etc.).

7 Conclusion

The present study explored Conditional Genera-
tive models for Language Driven Image Design, by
means of an affordable GPT-2 instantiation with
only 124M parameters. The central task of inter-
est here was Conditional Image Alteration, con-
sisting of generating a new image given a source
image and a textual instruction for its alteration, on
which the proposed LX-DRIM application showed
a performance rated at 2.37 (in 1–5) by manual
evaluators.

Resorting to the same data set, the task of Condi-
tional Image Generation, consisting of generating
an image given a textual description, was also ex-
perimented with. Very encouraging results were
also obtained, specially taking into account that
the data set used here was several orders of magni-
tude smaller than the one that has been used in the
literature for this task.

In addition, we found also that as by-product
of its cross-modal processing ability, our model
may usefully support the subsidiary task of image
retrieval through the use of its generated images.

Empirical experimentation obtained very en-
couraging results and demonstrated that the pro-
posed approach can support an effective solution
to Language Driven Image Design and represents
a promising research path whose potential is worth
being further exploited.

The present study focuses on changing a single
object in the image, rather than multiple objects
in a scene. Future work the task of scene manipu-
lation (El-Nouby et al., 2019; Zhang et al., 2021)
should be investigated by exploiting the approach
developed here with single object manipulation.
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 Are a lime green 
color  

 

 Are shiny grey 
clogs 

 

 Is white  

 Are metallic silver  

 Black flats  

 Is busier with 
contrasting panels 
and strap 

 

A CIA Manual Evaluation Sheet

A.1 TEST A
First page of the test set A. Remaining pages can be consulted at https://github.com/nlx-group/LX-DRIM.
From left to right: source image, generated image, and text snippet with alteration request.
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Is plum, not black  

 

Is gold  

 

Is busier with laces and 
zipper with rugged sole 

 

 

Have no heels  

 

White sneakers with 
blue trim 

 

 

Are yellow  

 

Are blue and silver  

A.2 TEST B
First page of the test set B. Remaining pages can be consulted at https://github.com/nlx-group/LX-DRIM.
From left to right: source image, target gold image, generated image, text snippet with alteration requested.
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ballet flats 

 

 
beige sneakers 

 

 
black flats with design 

 

 
black low heel motorcycle boot  

  
black mid-heeled long-on-the-leg 
boots 

 
 

B CIG Manual Evaluation Sheet

First page of the CIG test set. Other pages can be consulted at https://github.com/nlx-group/LX-DRIM.
From left to right: image caption, image generated by our system, image generated by DALL-E Mini.


