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Abstract

This paper presents the contributions of the
CoToHiLi team for the LSCDiscovery shared
task on semantic change in the Spanish lan-
guage. We participated in both tasks (graded
discovery and binary change, including sense
gain and sense loss) and proposed models based
on word embedding distances combined with
hand-crafted linguistic features, including pol-
ysemy, number of neological synonyms, and
relation to cognates in English. We find that us-
ing linguistically informed features combined
using weights assigned manually by experts
leads to promising results.

1 Introduction

In recent years, more and more studies in compu-
tational linguistics have focused on the issue of
lexical semantic change, tracking the shift in the
meaning of words by looking at their usage across
time in corpora dating from different time periods
(Hamilton et al., 2016; Schlechtweg et al., 2020).
Vector spaces and word embeddings have widely
been used for tracking semantic shifts of words
across different time periods.

Previous studies on the computational analysis
of lexical semantic change have found that differ-
ent word properties such as word frequency and
polysemy have a role in influencing the potential
semantic shift of the word, proposing statistical
laws of semantic change such as the law of innova-
tion and the law of differentiation (Hamilton et al.,
2016; Xu and Kemp, 2015; Uban et al., 2021b,
2019). Uban et al. (2021a, 2019) have proposed
that semantic change can be studied cross-lingually,
by comparing present meanings of cognate words,
which by definition share a common etymon from
which the current meanings have diverged. The re-
sulting implication is that analyzing cognates of the
target word in other languages can also potentially
provide clues regarding the word’s prior semantic
change. We provide more details on the linguistic

motivation for regarding these features as relevant
for the task of analyzing semantic change in the
following sections.

2 Background

The LSCDiscovery shared task (D. Zamora-Reina
et al., 2022) on predicting semantic change for the
Spanish language consisted of two sub-tasks. For
the first task - graded discovery - the participants
were asked to rank the set of content words (N, V,
A) in the lemma vocabulary intersection of C1 and
C2 according to their degree of semantic change
between C1 to C2. The predictions were scored
against the ground truth via Spearman’s rank-order
correlation coefficient.

For the second sub-task - binary change - partic-
ipants were be asked to classify a pre-selected set
of content words (N, V, A) into two classes, 0 for
no change and 1 for change. The second sub-task
also included two optional sub-tasks on predict-
ing whether the target word undergoing semantic
change has gained or lost senses, also formulated
as a binary classification problem. Submissions
were graded using precision, recall and F1-score.

The data consisted of two corpora of texts in the
Spanish language: old corpus, created using differ-
ent sources freely available from Project Gutenberg
(containing texts published between 1810 - 1906),
and modern corpus, created using different sources
available from the OPUS project (with texts pub-
lished between 1994 - 2020).

We participated in the LSCDiscovery shared task
on semantic change in the Spanish language with
submissions in both main sub-tasks: graded dis-
covery and binary change, as well as the optional
tasks on sense gain and sense loss. For all tasks
we experimented with approaches based on dis-
tances in word embedding spaces combined with
hand-crafted linguistic features.
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3 System Overview

In this section we describe the features and models
used to make automatic predictions on the seman-
tic change of target words, for both sub-tasks. We
release all the code used for implementing our sub-
missions.1

The general method for our submissions in all
tasks has consisted of computing, for every given
target word, several metrics including embedding
distances and linguistic hand-crafted features, and
subsequently weighing them as features in a model
used to predict the final score. The list of features
used consists of the following:

• word embedding cosine similarity scores -
3 different scores according to the different
alignment methods (see following section for
details)

• word polysemy degree

• number of neological synonyms of the word

• Levenshtein distance to closest English word

In the following subsections we describe in detail
both the features and the models used to achieve
predictions.

3.1 Word Embedding Distances
The first type of features we used is based on word
embedding distances. Following already standard
approaches in the study of semantic change based
on diachronic corpora, we trained word embed-
dings separately on the two provided corpora, sub-
sequently used an alignment algorithm to obtain a
common embedding space, and finally measured
the cosine-distance between each target word’s rep-
resentation in the two embedding spaces, as a proxy
for the degree of its semantic shift between the two
periods represented in the corpora.

The embedding algorithm we used is word2vec
(Mikolov et al., 2013), trained with default parame-
ters in the gensim library. We trained two separate
models using the same settings on the tokenized
versions of the corpora (non-lemmatized). We then
aligned the obtained embedding spaces using three
different approaches based on (Artetxe et al., 2016,
2017, 2018a,b), using the open-source code pro-
vided by the authors2: supervised alignment using a
seed word dictionary and a linear mapping method,

1https://github.com/ananana/LSCDiscovery-cotohili
2https://github.com/artetxem/vecmap

semi-supervised alignment, optimized for using a
small seed word dictionary, and unsupervised align-
ment based on adversarial training.

We chose to include the semi-supervised and
unsupervised approach because of the small list
of seed words used (which we assumed could not
guarantee a high-quality aligned embedding space
using the supervised method). As seed words for
the supervised and semi-supervised settings we
used the same list of function words in Spanish
derived from the NLTK3 library, considering the
ones that also occur in the given corpora.

For all sub-tasks and systems submitted, we used
the aligned embedding spaces produced with the
method above. From a computational performance
perspective, the most costly process was alignment,
with the other steps completing in negligible time
on a GPU machine (using the default GPUs made
available on the Google Colaboratory4 platform):
from seconds for training the supervised models
to minutes for training the embedding spaces. For
the alignment stage, we ran the algorithms on a
CPU machine with an 8-core i7 processor. The
supervised alignment completed in approximately
5 minutes, while the semi-supervised and unsu-
pervised methods completed in 5 to 7 hours each.
The training phase for building and aligning the
embeddings models was the most costly from this
perspective, while the actual inference computed
for the sample of 4,000 target words was negligible
in comparison (consisting only of retrieving cosine
distance scores from the embeddings spaces and
combining it with linguistic features scores).

Model Correlation
LinReg with 0.282
cosine-dist and ling. feat.
Manual weighting (-)0.325
cosine-dist and ling. feat.
Baseline1 0.092
Baseline2 0.543

Table 1: Results for graded discovery task

3.2 Linguistic Features

Word Polysemy For each word, we computed its
polysemy degree by counting the number of synsets
it occurs in in WordNet(Miller, 1995), specifically
in Open Multilingual WordNet(Bond and Foster,
2013). The degree of polysemy is measured simply

3http://nltk.org/book/
4https://colab.research.google.com/
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Model F1 Precision Recall
Manual weighting of 0.636 0.353 0.750
cosine-dist and ling. feat.
DecisionTree with 0.4 0.143 0.211
cosine-dist and ling. feat.
Baseline1 0.537 0.846 0.393
Baseline2 0.222 0.500 0.143

Table 2: Results for binary change detection

as the number of synsets obtained (without distin-
guishing between polysemy and homonymy).

We assume that polysemy (i.e., the coexistence
of several possible meanings for one word) is a
relevant feature since it has been shown to be statis-
tically correlated with the rate of semantic change
in various previous studies (Bréal, 1897; Ullmann,
1963; Magué, 2005). Bréal (1897) and Ullmann
(1963) labelled polysemy as the core of meaning
change, considering that change occurs when a sec-
ondary or connotative meaning replaces the main
or denotative one. Ullmann (1963) underlines the
role of discontinuity as a "natural diachronic con-
sequence of the polysemic principle", explained in
terms of using a word outside of its initial context,
until its original meaning is either forgotten by the
speakers, or becomes secondary. Magué (2005)
defines polysemy as the synchronic manifestation
of semantic change. A possible difficulty in the
present task is that WordNet cannot make the dif-
ference between polysemic words and homonyms
(i.e., words that share the same form, but have dif-
ferent origins and, hence, meanings). Nonetheless,
the Spanish language has tended, throughout its
history, to avoid the homonymic clashes, either by
introducing a graphic distinction (e.g. Sp. gravar
"to charge" < Lat. gravare, vs Sp. grabar "to
record" < Fr. graver), either by simply replacing
one of the homonyms by an unambiguous lexeme.
Therefore, the cases of possible confusion between
polysemy and homonymy are found in a small per-
centage.

Number of Neological Synonyms As a second
feature, we considered the number of synonyms
the target word has, in particular neologisms. We
extract synonyms for a target word using WordNet
(considering all possible senses of the word). In or-
der to select only neological synonyms, we assume
a synonym is a neologism (literally, a new word) if
it does not occur in the old corpus provided in the
shared task.

Our hypothesis is that a word with new syn-

Model F1 Precision Recall
Manual weighing of 0.462 0.316 0.857
cosine-dist and ling. feat.
DecisionTree with 0.111 0.071 0.087
cosine-dist and ling. feat.
Baseline1 - - -
Baseline2 0.211 0.400 0.143

Table 3: Results for optional task on sense gain

onyms may have diverged from its original seman-
tic pattern, as its new lexical rival could have been
increasingly regarded as more suitable for the po-
sition of the target word. Obeying the tendency
of economy of language, it is counterproductive
to have two or more words occupying the same
position in the structure of the lexicon, therefore
one either migrates to a different semantic field,
either undergoes, most often, a semantic special-
ization (e.g. Lat. vivenda "living necessities" >
Sp. vivienda "living place"), a generalization (Lat.
denarius "an ancient Roman silver coin, worth ten
asses" > Sp. dinero "money" in general) or a cohy-
ponymic transfer (i.e. a word designating a certain
element of a class shifts as a denomination for an-
other element belonging to the same class, e.g. Lat.
pavus "peacock" > Sp. pavo "turkey"). This shift
generally affects the former holder of a position in
the lexical system, giving way to new candidates.

Levenstein distance to English Words English
has exerted, in recent decades, a strong influence
on the Romance languages, materialized both in
lexical borrowings, and especially in semantic bor-
rowings or calques (Dworkin, 2012).

We assume that the existence of a virtual cognate
in English (we understand by "virtual cognates"
two or more descendants of the same etymon in
different languages, without being inherited in each
language; in this investigation, we considered as
"virtual cognates" any pair consisting of a Romance
borrowing from a Latin word and the English loan-
word originated from the same Latin word, e.g. Sp.
directo and Eng. direct) with a similar pronunci-
ation (whether sharing the same meaning or not)
may be an indicator that the target word could have
been influenced by its English correspondent(Uban
et al., 2021a). As an example, we could mention
the case of Sp. servidor, whose significant diver-
gence from its original meaning could also be due
to the new acceptation it gained, in computer sci-
ence, through a calque of Eng. server "a computer
that provides client stations with access to files
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and printers as shared resources to a computer net-
work". We retrieve candidate cognate words in
English by using the Levenshtein distances from
the target word to any English word in the vocab-
ulary, and choosing the closest English word as
a potential cognate. We use the Levenshtein dis-
tance to this word as a feature in our model. Here
are just a few examples of Spanish - English word
pairs identified by using the Levenshtein distances,
where the influence of the English meaning on the
current use of the word in Spanish is significant:
Sp. administración, originally "act of administer-
ing", influenced by Eng. administration came to
mean as well "Government (of a country)"; Sp.
contemplar, originally "to see", also received the
meaning "to consider" under the influence of Eng.
contemplate; Sp. vegetales "plants" is also used in
the acceptation of Eng. vegetables "plant or part
of the plant used as food"; Sp. nominar "to give a
name" acquired as well the meaning of Eng. nomi-
nate "propose as a candidate for elections or for an
award", etc.

3.3 Linguistically-Informed Weighting of
Features

For one of our solutions submitted to the second
sub-task we attempt to combine the selected fea-
tures by manually assigning weights to each fea-
ture, using expert judgements from linguists spe-
cialized in Romance languages and in historical
semantics.

Table 4 shows the weights we assigned to each
feature. We chose the highest weights to the word
embeddings feature, giving more importance to
the ones obtained with the supervised alignment
approach. For the linguistic features, we consid-
ered word polysemy and number of neological syn-
onyms. The range of possible values for these fea-
tures contains higher numbers than the embedding
cosine distances, with comparable ranges between
the two linguistic features (natural numbers with
no upper limit in theory), which is why we assign
lower weights for the linguistic features. We con-
sider polysemy as more important than number of
synonyms (considering the theoretical justifications
presented above). Since the third linguistic feature,
designed to measure the closeness to an English
cognate (approximated with Levenshtein distance
to the closest English word) is less precise than the
other features in the way it is measured, and since
its effect on language change can be more com-

Feature Weight
embeddings-cosine-unsupervised 0.1
embeddings-cosine-supervised 0.4
embeddings-cosine-semi-supervised 0.1
nr-neo-synonyms 0.02
wordnet-polysemy 0.05

Table 4: Weights for the different features used, manu-
ally assigned with the assistance of linguistic experts

plex, it was difficult to decide on a specific relative
weight in this case that could be reliable, so we left
this feature out of this solution.

While we did not submit results using manual
weighting for the first sub-task on graded discovery,
we did incorporate them in our submission for the
second sub-task which included an optional task
on graded discovery. Due to an error when com-
puting the results, we reported the opposite score
to the one generated by the model (with a negative
sign), leading to a negative rank correlation with
the ground truth. We suggest that, disregarding
this error, the results can be considered with an
opposite sign, leading to a positive correlation.

For binarizing the results, we used a threshold
equal to the median score on the full set of target
words.

3.4 Supervised Learning of Feature Weights
As a second solution, we learn the relative weights
of each of the features considered using a super-
vised approach by training a simple model on a very
small number of annotated examples. As training
data, we used the examples and scores provided by
the organizers5 containing a list of 20 target words
along with semantic shift scores.

For sub-task 1 (graded discovery) we used a
linear regression model, trained to predict the se-
mantic shift degree on the small set of annotated
examples.

For sub-task 2 along with the optional subtasks
on binary change, we trained a decision tree model
to predict binary labels. We binarized the contin-
uous labels in the annotated examples by setting
a threshold equal to the median value of semantic
shift on the dataset: any score below this thresh-
old was considered a negative label, and any score
above it a positive label.

We additionally analyzed the weights learned
by the models in order to gain some insights into
the importance awarded automatically to each fea-
ture. The linear regression model learned the fol-

5https://zenodo.org/record/6300105#.YlK2AXVBxhE
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lowing weights for the embedding-based cosine
scores: 0.35 for the unsupervised alignment space,
0.91 for the supervised space, and 0.34 for the
semi-supervised aligned space. For the linguistic
features, the model learned a weight of 1 for the
neological synonyms feature, 7 for polysemy de-
gree, and 0.27 for the Levenshtein score to English
words. We notice that all weights are positive, and
interestingly, that their relative importance matches
the one considered for setting weights manually
based on linguistic motivations.

For predicting decisions on the optional subtasks
of sense gain and sense loss, we combined the pre-
dictions for binary change with the values of some
of the linguistic features considered which could
serve as indicators for sense gains or losses, ac-
cording to the reasons stated before: we consider a
word to have lost a sense if it was predicted to have
changed its meaning, and it has any neological syn-
onyms, while polysemy is low (less than 2 senses).
Any word which was predicted to have changed
its meaning and not lost senses was considered to
have gained senses.

4 Results

4.1 Task 1: Graded Discovery

We show our results for sub-task 1 in Table 1. We
additionally report here the results obtained with
the manual weighting system not submitted to the
first sub-task, but submitted to the optional graded
change task in the second phase. The baselines
consisted of: a skip-gram embeddings model with
negative sampling, and orthogonal Procrustes for
embedding space alignment (baseline 2), and nor-
malized frequency difference.

4.2 Task 2: Binary Change

Results for sub-task 2 are shown in Table 2. We
also submitted predictions for the optional task of
sense gain, shown in Table 3. We obtained the
second place in terms of recall for sense gain. For
sense loss, we do not report detailed results since
neither of our systems were able to generate correct
predictions (obtaining scores of 0.0).

We notice that, in general, the unsupervised ap-
proach using manual weighting of features outper-
formed the supervised approach. This might be
due to the very small size of the annotated data, but
is also an encouraging result showing the success
of incorporating linguistically informed and expert
curated measures for predicting semantic change.

5 Conclusions

We have presented our methods and results in par-
ticipating in the Spanish semantic change shared
task. We proposed a system based in part on
word embedding distances, which are already the
norm in SOTA models for predicting semantic shift
(Schlechtweg et al., 2020), and in part on hand-
crafted linguistic features, chosen based on theo-
retical linguistic motivation and on empirical evi-
dence of their relevance to semantic change. While
we have done minimal experimentation with the
parameters and settings used in training word em-
beddings, and used supervised models trained on
very little data, we obtain encouraging results. For
the future, we suggest that combining embedding
models trained with more fine-tuned parameters op-
timized for the given task along with features such
as the ones described could lead to improved re-
sults. We conclude that incorporating linguistically
informed features (aside from word frequency)
in computational models for predicting semantic
change is a valuable and currently under-explored
avenue.
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