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Abstract

We study dangling-aware entity alignment in
knowledge graphs (KGs), which is an under-
explored but important problem. As different
KGs are naturally constructed by different sets
of entities, a KG commonly contains some
dangling entities that cannot find counterparts
in other KGs. Therefore, dangling-aware en-
tity alignment is more realistic than the con-
ventional entity alignment where prior studies
simply ignore dangling entities. We propose
a framework using mixed high-order proximi-
ties on dangling-aware entity alignment. Our
framework utilizes both the local high-order
proximity in a nearest neighbor subgraph and
the global high-order proximity in an embed-
ding space for both dangling detection and en-
tity alignment. Extensive experiments with two
evaluation settings shows that our framework
more precisely detects dangling entities, and
better aligns matchable entities. Further in-
vestigations demonstrate that our framework
can mitigate the hubness problem on dangling-
aware entity alignment.

1 Introduction

Knowledge graphs (KGs) have become the back-
bone of many intelligent applications (Ji et al.,
2021). In spite of their importance, many KGs
are independently created without considering the
interrelated and interchangeable nature of individ-
ually created knowledge (Chen et al., 2020). To
allow complementary knowledge to be automat-
ically combined and migrated across individual
KGs, entity alignment seeks to identify equivalent
entities in distinct KGs (Sun et al., 2020a). Re-
cent literature has focused on learning embedding
representations of multiple KGs where identical
entities are aligned based on their embedding simi-
larity (Chen et al., 2017; Cao et al., 2019; Fey et al.,
2020; Sun et al., 2020a; Liu et al., 2021).

Aside from the surge of research effort on en-
tity alignment (Zeng et al., 2021), an unresolved
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Figure 1: Toy examples for mixed high-order proximi-
ties. (a) Nearest neighbor (NN) subgraph where entities
connect to NNs in the other KG using embedding simi-
larities. 4 and its nearest neighbor B have 0.85 similarity.
B prefers 2 and 3 with higher similarities. 1 and A are
mutual nearest neighbors. (b) Labeled alignments and
dangling entities. (c) Aligning matchable source and
target distributions rather than only labeled alignments.

but important challenge that existing methods face
is the dangling entity problem. Dangling entities
are those unique entities in a KG that cannot find
counterparts in another KG. Considering that in-
dividually created KGs are unlikely to share the
same set of entities, identifying dangling entities is
undoubtedly an indispensable step of any practical
solution to entity alignment. However, nearly all
prior studies have neglected dangling entities and
assume there must be one-to-one entity mapping
from the source KG to the target one (Sun et al.,
2020c). This assumption prevents prior methods
from practically supporting the alignment between
KGs in real-world scenarios. To fill the gap, Sun
et al. (2021) formally define a more practical prob-
lem setting where a model needs to both determine
whether each given source entity is a matchable
one, as well as retrieve counterparts for the pre-
dicted matchable entities.
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Although some preliminary attempts have been
made to implement dangling-aware entity align-
ment (Sun et al., 2021), the attempted methods still
suffer from a major drawback, i.e., they only con-
sider the first-order proximity (namely, pairwise co-
sine similarity) between source and target entities.
However, to effectively discover dangling entities
as outliers in the embedding representation, we ar-
gue that high-order proximity measures should also
be involved. Fig. 1a shows the intuition of using the
high-order proximity for dangling entity detection.
Despite a fairly high cosine similarity, the source
entity 4 is not the nearest neighbor of target entity
B, indicating that 4 is likely to be dangling. In con-
trast, 1 and A are mutual nearest neighbors even
with a relatively low similarity, indicating that 1 is
more likely to be matchable. Hence, in addition to
the first-order proximity from source to target, the
local high-order proximity (e.g., the second-order
proximity1 in the nearest neighbor subgraph) is also
useful for detecting dangling entities. In alignment
learning, the previous works neglect global infor-
mation since they merely optimize the entity-level
alignment loss on labeled alignments without con-
sidering entity embedding distributions as shown
in Fig. 1b. In Fig. 1c, we show that a desirable
dangling-aware model should align the global dis-
tributions of matchable source and target entities
(i.e., global high-order proximity in an embedding
distribution space), such that dangling entities in
both KGs could appear as dissimilar outliers in
both distributions.

Motivated by the above intuition, we propose a
dangling-aware entity alignment framework based
on mixed high-order proximities (MHP). MHP
considers both local and global high-order proxim-
ities to foster both dangling entity detection and
matchable entity alignment. We introduce the opti-
mization of global high-order proximity measure as
finding the Optimal Transport between matchable
source entities and target entities. Through this op-
timization process, to facilitate dangling detection,
MHP also encourages a large distance between
the dangling entity distribution and matchable en-
tity distribution. Additionally, to leverage the local
high-order proximity, we propose a dangling entity
classifier which takes into account the second-order
proximity in the nearest neighbor subgraph. Fur-
thermore, with the similar principle of local high-

1The second-order proximity of a source entity s is defined
as aggregated cosine similarities between the nearest targets
of s and the nearest sources of these nearest targets.

order proximity, we adopt an NCA (Neighborhood
Component Analysis) loss (Goldberger et al., 2004;
Liu et al., 2021) for alignment learning to mitigate
the hubness problem2 (Radovanovic et al., 2010),
which is severe in dangling-aware entity alignment
as observed in our experiments.

Our main technical contributions to the studied
problem are two-fold. First, the local high-order
proximity (i.e., the second-order proximity in the
nearest neighbor subgraph) is modeled to facilitate
both dangling detection and alignment learning.
Second, we design the use of the global high-order
proximity to align the distributions of matchable
entities, therefore precisely separating the repre-
sentations of dangling entities and matchable ones.
In addition, the techniques are model-agnostic and
can be incorporated with various alignment meth-
ods (e.g., MTransE (Chen et al., 2017) or AliNet
(Sun et al., 2020a)) and dangling detection meth-
ods (e.g., the marginal or background ranking (Sun
et al., 2021)). Extensive experiments on DBP2.0
demonstrate its effectiveness and adaptiveness.

2 Preliminary

In this section, we provide the problem definition
of dangling-aware entity alignment and briefly in-
troduce previous methods for this problem.

2.1 Problem definition

A KG is defined as G = (E ,R, T ), where E de-
notes a set of entities; R denotes a set of relations,
and T ⊂ E×R×E is a set of triples. Following the
convention (Chen et al., 2017), we consider entity
alignment between a source KG Gs = (Es,Rs, Ts)
and a target KG Gt = (Et,Rt, Tt). Our study fo-
cuses on a more practical and challenging setting
with dangling entities (Sun et al., 2021). In this
setting, the training data contain a set of seed entity
alignment A = {(xs, xt) ∈ Es × Et∥xs ≡ xt} and
a set of source dangling entities D ⊂ Es that has
no counterparts in target KG. After training, the
model is required to first identify dangling entities
and then find alignment for predicted matchable
entities. This definition breaks the one-to-one as-
sumption used in previous studies on the conven-
tional setting (Sun et al., 2020c) and causes their
methods to not be directly usable in our setting.

2The hubness problem is where some target entities domi-
nantly appear as the nearest neighbors of many source entities.
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2.2 Dangling-aware entity alignment

To the best of our knowledge, there is only one
previous work (Sun et al., 2021) which has been at-
tempted for dangling-aware entity alignment along
with the proposing of this important problem. This
work also incorporates an embedding-based entity
alignment technique (i.e., MTransE (Chen et al.,
2017) and AliNet (Sun et al., 2020a)) as the back-
bone, which learns alignment of KG embeddings
based on the seed entity pairs. Taking MTransE as
an example, for each pair (xs, xt) ∈ A, MTransE
uses the learned embedding xs and xt to optimize
a linear transformation matrix M by minimizing
||Mxs − xt||. To detect dangling entities in the
embedding space, a margin ranking (MR) loss and
a background ranking (BR) loss are experimented
with, both encouraging dangling entities to be iso-
lated from others in the embedding space. MR
sets a distance margin λ to separate the dangling
entity x and its nearest neighbors by minimizing
max (0, λ− ∥Mx− xnn∥). In like manner, BR
treats dangling entities as the background of embed-
ding space and learns to separate dangling entities
and randomly-sampled other entities.

3 Methodology

In this section, we introduce the techniques in our
framework which captures both local and global
high-order proximities to collaboratively tackle
dangling detection and entity alignment.

3.1 Global high-order proximity

To leverage the global high-order proximity in an
embedding space, in MHP, we introduce a method
based on Optimal Transport (OT) for globally align-
ing the distributions of matchable source and target
entities. In addition, to facilitate dangling entity
detection, the OT model encourages a large dis-
tribution distance between source- and target-KG
dangling entities. Intuitively, this strategy treats
dangling entities as dissimilar parts of two embed-
ding distributions, therefore tending to put dangling
entities as outliers in the embedding space.

Optimal transport. Let s and t be the distribution
of transformed source-space embeddings Mxs and
target space embeddings xt, respectively.3 Intu-
itively, s should be similar with t if they represent
matchable entities. Meanwhile, to make dangling

3Without loss of generality, we use a matrix M to transform
embeddings from source KG to target KG.

entities distinguishable, the distribution of trans-
formed dangling entity vectors Mxd should be dif-
ferent from t. The discrepancy between s and t
can be represented as a Wasserstein distance which
is one type of OT distance (Peyré et al., 2019):

Dc(s, t) = inf
γ∈Π(s,t)

E(x,y)∼γ [c(x,y)], (1)

where Π(s, t) is the set of all possible joint distribu-
tions γ(s, t) and c(x,y) denotes the cost function
describing the distance between x and y. Then the
Wasserstein distance Dc(s, t) denotes the cost of
the optimal transport plan.

However, the infimum to calculate Dc(s, t) is
highly intractable (Arjovsky et al., 2017). To han-
dle this, the Kantorovich-Rubinstein duality points
out that Eq. (1) can be transformed to:

Lot(s, t) =
1

K
sup

∥f∥L≤K
Ex∼t[f(x)]−Ex∼s[f(x)],

(2)
where the supremum is over all possible K-
Lipschitz functions f . As Arjovsky et al.
(2017) point out that optimizing Wasserstein GAN
(WGAN) can be used to solve this optimal transport
problem, we utilize WGAN in our study. Specifi-
cally, we adopt a MLP to approximate the function
f (called as critic D) since neural networks are
universal approximators (Hornik et al., 1989). The
objective of the critic is defined as follows:

max
D

Ey∼t [fD(y)]− Ex∼s [fD (Mx)] . (3)

Thus, the critic D aims to distinguish transformed
source embeddings from target embeddings. In
contrast, the transformation matrix M tries to min-
imize the distance between the two sets of embed-
dings. The objective to optimize M is defined as:

min
M

Ey∼t [fD(y)]− Ex∼s [fD (Mx)]

= min
M

−Ex∼s [fD (Mx)] . (4)

Therefore, conducting entity alignment with the
consideration of whole embedding distributions is
converted to the problem of optimizing a WGAN.

So far, only the distribution of matchable source
entity embeddings and that of target entity embed-
dings are considered, whereas the distribution of
dangling entity embeddings is neglected. There-
fore, to tailor the optimization problem for dangling
entities, we adopt an additional objective for the
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(a) Proximity distribution of nearest entities.
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(b) Proximity distribution of the second nearest entities.

Figure 2: Second-order proximity distributions.

transformation matrix M:

max
M

Ey∼t [fD(y)]− Ex∼d [fD (Mx)]

= min
M

Ex∼d [fD (Mx)] , (5)

where d denotes the distribution of dangling entity
embeddings. Hence, the transformation matrix M
is enforced to maximize the difference between the
distribution of transformed dangling embeddings
and that of target entity embeddings, which can
make dangling entities more distinguishable.

3.2 Local high-order proximity
In addition to the global proximity measure, MHP
also captures local high-order proximity measures
in the nearest neighbor subgraph. In contrast, the
previous work (Sun et al., 2021) merely uses the
first-order proximity between an individual source
entity s and its nearest target entity to decide
whether s should be dangling. However, apart
from the first-order proximity, the second-order
proximity measure could be informative as well for
detecting dangling entities.

Furthermore, we verify the above hypothesis em-
pirically using the previous work. From the nearest
target entity t of a given source entity, we obtain
the cosine similarities between t and its top 2 near-
est source entities as the second-order proximity
measures, and plot the proximity distributions in
Fig. 2a and 2b for the first and second nearest en-
tities, respectively. Fig. 2a shows that the second-
order proximity between matchable entities and

their nearest neighbors appear as a very different
distribution in comparison to that of the proximity
between dangling entities and their nearest neigh-
bors. Fig. 2b demonstrates a similar observation for
the proximity distributions of the second nearest en-
tities. Therefore, the second-order proximities are
informative and should be used for distinguishing
dangling entities, meanwhile combining proximity
measures that consider multiple neighboring enti-
ties is more useful than a single similarity measure
on only the nearest entity.

To this end, we design a dangling entity classi-
fier using both first-order and second-order prox-
imity measures as the input. From the perspec-
tive of a given source entity s, we conduct nearest
neighbor search to obtain top k nearest target en-
tities {t1, ..., tk} and their proximity score vector
d1 = [dst1 , ..., dstk ] ∈ R1×k. The proximity dst is
measured by the cosine similarity between trans-
formed source embedding Mxs and target entity
embedding xt:

dst1 =
〈 Mxs

∥Mxs∥2
,

xt

∥xt∥2

〉
(6)

After getting the first-order proximity vector d1

between the source and target, through the reverse
direction (target KG to source KG), we can further
obtain the second-order proximity vector. Specif-
ically, we retrieve top m nearest source entities
{s1, ..., sm} of each target entity t in {t1, ..., tk}.
Accordingly, through the target entity t, the second-
order proximity measures with regard to the m
retrieved source entities are obtained as the vec-
tor dt = [ds1t, ..., dsmt] ∈ R1×m. Subsequently,
we can collect {dt1 ...dtk} and concatenate them
as the whole second-order proximity vector d2 =
[dt1 ||...||dtk ] ∈ R1×km.

To utilize both second-order and first-order in-
formation, the whole proximity distribution vector
is constructed as d = [d1||d2] ∈ R1×(k+1)m. In
this way, we use the distribution as profile of the
neighborhood of a source entity s, then we adopt
a simple feed-forward neural network (FNN) bi-
nary classifier to determine whether s is dangling.
The probability of s being a dangling entity can
be calculated as p(y = 1|s) = sigmoid(FNN(d)).
Define D and A to be the training set of dangling
entities and that of matchable entities, respectively.
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We minimize the binary cross-entropy loss:

Ls = − 1

|D ∪ A|
∑

s∈D∪A
(ys log(p(y = 1|s))

+ (1− ys) log(1− p(y = 1|s)))
(7)

NCA loss. With the similar principle of local
high-order proximity, MHP adopts an additional
Neighbor Component Analysis (NCA) loss (Liu
et al., 2021) to mitigate the hubness problem. The
hubness problem can be more severe in dangling-
aware entity alignment as dangling entities might
be aligned to some certain hubs if they are not
detected as dangling. The NCA loss measures im-
portance of samples and punishes hard negative
pairs based on the proximities. Given the set of
seed entity alignments {(xs, xt) ∈ Es × Et}, let S
be the cosine similarity matrix between source and
target entity embeddings E1 and E2. The NCA
loss can be defined as follows:

LNCA =
1

N

N∑

i=1

( 1

α
log(1 +

∑

m̸=i

eαSim) +

1

α
log(1 +

∑

n̸=i

eαSni)− log(1 + βeSii)
)
,

(8)

where Sii denotes the proximity of the i-th positive
pair (i.e., the i-th source entity and the i-th target
entity); α, β are temperature hyper-parameters; and
N is the number of positive pairs in the mini-batch.

3.3 Learning and inference
Note that our techniques are used to improve exist-
ing first-order methods. MHP optimizes the entity
alignment component and the dangling detection
component alternately. For entity alignment, be-
sides an entity-level loss (e.g., MTransE), we first
train WGAN for optimal transport and then opti-
mize the NCA loss LNCA. For dangling detection,
besides a first-order objective (e.g., a marginal rank-
ing loss) used in Sun et al. (2021), we train our dan-
gling classifier for detection. In the inference phase,
for each source entity, the dangling entity classifier
provides a probability score and uses a probability
threshold to decide whether an entity is dangling,
where the threshold is set as the average probability.
After this dangling detection process, the predicted
dangling entities are excluded from being aligned.
Then, in the alignment process, MHP conducts
nearest neighbor search to find the alignment in
the target KG embedding space for each of the rest
matchable source entities.

4 Experiments

In this section, we report our experiments to show
the effectiveness of MHP. We describe the evalu-
ation settings in Sec. 4.1, and present the results
in two alignment settings separately in Sec. 4.2
and 4.3. We conduct an ablation study and demon-
strate that MHP can mitigate the hubness problem
in Sec. 4.4, followed by a case study to show the im-
portance of local high-order proximity in Sec. 4.5.

4.1 Experimental settings

We use two evaluation settings as suggested by Sun
et al. (2021). The first one is consolidated evalua-
tion which requires a model to first detect and re-
move dangling entities, and then conduct alignment
search for the rest of entities. The performance of
dangling entity detection is also evaluated in this
setting. Besides, a simplified relaxed evaluation
setting seeks to test the performance of alignment
alone without involving dangling source entities in
the test set. In this setting, the effect of dangling
detection on entity alignment can be evaluated.

Evaluation protocol. For the relaxed setting, the
counterpart list is selected by the Nearest Neigh-
bor (NN) search in the embedding space for each
source entity. To assess the ranking list, we use
mean reciprocal rank (MRR), Hits@1 and Hits@10
(hereinafter H@1 and H@10) as metrics. Higher
values indicate better performance.

For the consolidated setting, we evaluate the per-
formance of both dangling entity detection and en-
tity alignment using precision, recall, and F1 score,
following Sun et al. (2021).4 In this setting, only
the source entities that are correctly predicted as
matchable are sent to the NN search and the nearest
counterpart is evaluated. Particularly, incorrect dan-
gling detection (i.e., a matchable entity is wrongly
predicated as dangling or a dangling entity is pre-
dicted as matchable) will propagate an error case
to the alignment process. We refer to this practical
entity alignment as two-step entity alignment.

Dataset. We use the cross-lingual dangling-aware
entity alignment dataset DBP2.0 (Sun et al., 2021),
which is constructed using multilingual DBpedia
(Lehmann et al., 2015). There are three language
pairs (ZH-EN, JA-EN, FR-EN) in DBP2.0 and
two alignment directions are considered for each
pair. We follow its data splits where 30% dangling

4Note that H@1, H@10 and MRR are not applicable to
this entity alignment in the consolidated setting.
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entities are for training, 20% for validation, and
50% for test. The dataset statistics are reported in
Appx. A.

Baselines. To the best of our knowledge, the frame-
work with a dangling detection module proposed
in Sun et al. (2021) is the only study on dangling-
aware entity alignment. It includes three dangling
detection techniques: (i) NN classification, (ii)
marginal ranking (MR), and (iii) background rank-
ing (BR). As the NN classification performs much
worse than others, we choose MR and BR as base-
lines. For a fair comparison with (Sun et al., 2021),
we use the same base alignment model MTransE
(Chen et al., 2017). The results using AliNet (Sun
et al., 2020b) 5 as a base are presented in Appx. D.
Note that our methods are model-agnostic and can
be incorporated with any detection and alignment
methods. The entity alignment models that con-
sider side information are left for future work.

Model configuration. In MHP, aside from our
proposed components as described in Sec. 3, we
have a base alignment module (e.g., MTransE) and
a base dangling entity loss (e.g., MR) as in Sun et al.
(2021). For KG embeddings and model weights,
we use Xavier initialization (Glorot and Bengio,
2010) and optimize them using Adam optimizer
(Kingma and Ba, 2014). The number of hidden
units in the dangling entity classifier is 128. The
number of nearest targets k and nearest sources m
are set as 5. The learning rate is set to 0.001 for all
components except WGAN where the learning rate
is 5e-5 for three objectives. To terminate training,
early stopping is used based on the F1 score of
two-step entity alignment on validation set. The
computational environment and other configuration
details are reported in Appx. B and C.

4.2 Consolidated evaluation

Dangling entity detection. According to the re-
sults in Tab. 1, no matter which base dangling de-
tection loss we adopt, MHP consistently achieves
better F1 scores compared with the corresponding
baseline by Sun et al. (2021) without our proposed
techniques. In terms of the recall, MHP also out-
performs baselines with a large margin, which in-
dicates that our framework has a better coverage
to find more dangling entities. With better recalls,
MHP has the same level or slightly worse precision

5AliNet performs worse than MTransE on dangling-aware
entity alignment as found by Sun et al. (2021).

compared with baselines. But our higher recall and
F1 scores in dangling detection imply that more
predicted matchable source entities would enter
two-step entity alignment, which can improve the
final alignment performance. Comparing MHP +
MR and MHP + BR, we can see that the MR vari-
ant is generally better than the BR variant. This
is because MR considers the similarity between
a source and its nearest neighbor, which can ben-
efit the learning of local high-order proximity in
MHP. In summary, MHP demonstrates superior
effectiveness for detecting dangling entities.

Two-step entity alignment. The results of two-
step alignment are shown in Tab. 2. In general,
MHP again consistently offers better F1 scores
than baseline methods. The relative improvement
ranges from 11% to 32%. The improvement can
be partly attributed to the more accurate dangling
entity detection performance, and thus less error
is propagated to the alignment process. In con-
trast, baselines may try to align many dangling
entities, which leads to lower performance on two-
step alignment. As MHP with MR outperforms
MHP + BR in dangling detection, MHP + MR also
achieves better performance in two-step alignment.
This indicates that dangling entity detection is of
importance on the dangling-aware entity alignment
problem since it has strong effects on the perfor-
mance of two-step alignment.

4.3 Relaxed evaluation

Tab. 3 shows the results of relaxed evaluation. This
setting only considers matchable source entities in
the test phase to investigate how our framework
affects the alignment learning of these entities.

Generally, MHP offers better performance than
baselines on all language pairs in terms of all met-
rics. This indicates that dangling awareness cap-
tured by MHP further helps with a more precise
alignment. The improvement can also be partly
attributed to the alleviated hubness problem by the
NCA loss which we investigate more in Sec. 4.4.
Comparing two variants of MHP, we can see that
MHP + MR usually outperforms the BR variants
on most language pairs except for FR-EN. The rea-
son could be that FR-EN has more entities and only
with sufficient data BR can effectively separate dan-
gling entities from randomly sampled target enti-
ties, while MR is not sensitive to data volume.
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Methods ZH-EN EN-ZH JA-EN EN-JA FR-EN EN-FR

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

MR .781 .702 .740 .866 .675 .759 .799 .708 .751 .864 .653 .744 .482 .575 .524 .639 .613 .625
BR .811 .728 .767 .892 .700 .785 .816 .733 .772 .888 .731 .801 .539 .686 .604 .692 .735 .713

MHP + MR .784 .831 .807 .858 .861 .859 .815 .791 .803 .865 .852 .858 .580 .724 .644 .707 .749 .727
MHP + BR .758 .815 .785 .832 .847 .839 .783 .785 .784 .834 .848 .841 .569 .706 .635 .685 .747 .714

Table 1: Dangling entity detection results on DBP2.0. MR refers to marginal ranking and BR refers to the
background ranking. The base alignment model is MTransE. More results based on AliNet are in Appx. Tab. 7.

Methods ZH-EN EN-ZH JA-EN EN-JA FR-EN EN-FR

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

MR .302 .349 .324 .231 .362 .282 .313 .367 .338 .227 .366 .280 .260 .220 .238 .213 .224 .218
BR .312 .362 .335 .241 .376 .294 .314 .363 .336 .251 .358 .295 .265 .208 .233 .231 .213 .222

MHP + MR .400 .363 .381 .375 .372 .373 .378 .394 .386 .371 .384 .377 .310 .249 .276 .266 .260 .263
MHP + BR .393 .347 .368 .347 .331 .339 .374 .372 .373 .359 .344 .352 .290 .235 .259 .269 .239 .253

Table 2: Two-step entity alignment results on DBP2.0. The base alignment model is MTransE.

Methods ZH-EN EN-ZH JA-EN EN-JA FR-EN EN-FR

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

MTransE .358 .675 .463 .353 .670 .461 .348 .661 .453 .342 .670 .452 .245 .524 .338 .247 .531 .342
w/ MR .378 .693 .487 .383 .699 .491 .373 .686 .476 .374 .707 .485 .259 .541 .348 .265 .553 .360
w/ BR .360 .678 .468 .357 .675 .465 .344 .660 .451 .346 .675 .456 .251 .525 .342 .249 .531 .343

MHP + MR .418 .727 .523 .404 .724 .513 .408 .730 .517 .410 .747 .524 .274 .568 .371 .274 .566 .370
MHP + BR .412 .718 .517 .396 .714 .505 .400 .727 .511 .400 .728 .511 .278 .574 .376 .272 .569 .370

Table 3: Entity alignment results in the relaxed setting on DBP2.0.

Methods
Dangling detection Two-step alignment

F1 ∆ F1 ∆

MHP .807 0 .381 0

- Dangling cls. .752 -.055 .339 -.042
- OT .789 -.018 .369 -.012
- NCA .803 -.004 .361 -.020

Table 4: Ablation study in the consolidated setting on
ZH-EN. We remove each technique and report the per-
formance decline ∆ compared with the full MHP.

4.4 Ablation study

To investigate the effectiveness of each module in
MHP, we conduct an ablation study on the con-
solidated setting and show the results in Tab. 4.
Compared with the full version MHP, removing
any component causes the degraded performance.
Specifically, by removing the dangling classifier,
the F1 score of dangling detection drops 0.055,
which also leads to a large performance drop on
two-step alignment. This indicates that the local
high-order proximity is useful for dangling detec-
tion. Removing OT decreases the F1 scores on
both detection and two-step alignment, showing
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Figure 3: The number of total occurrences of most
frequently aligned target entities on ZH-EN.

the effectiveness of globally aligning distributions.
Lastly, leaving the NCA loss out makes the F1
score of two-step alignment decrease 0.02 com-
pared with MHP, because using the NCA loss re-
duces the extent of hubness, as discussed below.

Hubness problem. To examine whether the NCA
loss reduces the hubness problem, we list a set of
most frequently aligned (target) entities, and ob-
serve how frequently they appear as the nearest
neighbor of other entities in the embedding space.
We compare MHP with the MTransE + MR vari-
ant used by Sun et al. (2021). As shown in Fig. 3,
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the most frequently aligned target entity (i.e., top
1) appears over 200 times as the nearest neighbor
using the baseline, whereas it only appears around
100 times using MHP. A similar phenomenon is
also observed for the top 3, top 5, and top 10 fre-
quently aligned target entities. This indicates that
the hubness problem is mitigated by using NCA.

4.5 Case study

To further investigate the superiority of MHP, we
provide a case study on ZH-EN comparing MHP
with the previous method. Fig. 4 shows that, the
previous method predicts some dangling source en-
tities as matchable based on their high cosine sim-
ilarities (i.e., > 0.7) to their nearest target entities.
Each dangling entity and its corresponding nearest
target entity are different but share similar mean-
ings (e.g., are both war events in ancient China
or locations). However, the nearest targets prefer
other source entities with higher similarities. Us-
ing this second-order proximity information, MHP
correctly detects these dangling entities with high
probability scores (i.e., > 0.9).

Additionally, Tab. 5 demonstrates more dangling
entities which are not correctly detected by the
previous method (Sun et al., 2021). Most of the
dangling entities are aligned to some similar coun-
terparts sharing the same attribute. For example,
the dangling entity and its nearest target entity are
both colleges, theoretical physicists, or political
parties. However, from the view of the nearest
target entity, it prefers other nearest neighbors on
source KG. Such second-order proximity informa-
tion cannot be captured by the previous method,
which causes those dangling entities not able to
be detected. In contrast, MHP can successfully
detect those dangling entities with high probabili-
ties. This shows the effectiveness of MHP and the
informativeness of the second-order proximity.

5 Related Work

Entity alignment. Embedding-based entity align-
ment methods seek to find identical entities be-
tween KGs in their embedding spaces. Such a
method encodes each KG into an embedding space
and capture entity alignment by learning a linear
mapping between embedding spaces (Chen et al.,
2017) or directly infer the embedding proximity in
a shared space (Sun et al., 2017). Existing studies
mainly fall into two lines of improving the embed-
ding representations. The first line exploits bet-

诺顿(堪萨斯州)
(Norton County, Kansas)

Barton County, Kansas

Dangling ent. NN target
0.99

网页颜色
(Web colors)

White

0.94

兴势之战
(Battle of Xingshi)

Conquest of Shu by Wei

0.93

0.71

0.73

0.78

魏灭蜀汉之战

0.80

白色
(White)

0.81

0.77

巴顿县(堪萨斯州)
(Barton County, Kansas)

NN source

(Conquest of Shu by Wei)

Figure 4: Case study on ZH-EN where some dangling
entities wrongly predicted as matchable by the previous
first-order method can be correctly predicted as dan-
gling with high probabilities via MHP. Arrows point
from an entity to its NN in the other KG. The scores
above arrows denote cosine similarities and those beside
dangling ent. are probabilities of dangling by MHP.

ter graph encoders to improve embedding learning
(Sun et al., 2018; Wang et al., 2018; Cao et al.,
2019; Sun et al., 2020a,b; Fey et al., 2020). The
second group considers the side information of en-
tities (Chen et al., 2018b; Trisedya et al., 2019;
Zhang et al., 2019; Xu et al., 2019b; Wang et al.,
2020; Tang et al., 2020; Wu et al., 2019; Yang et al.,
2019; Liu et al., 2020, 2021). Interested readers
can refer to the recent surveys (Sun et al., 2020c;
Zeng et al., 2021). Note that prior methods nearly
all assume one-to-one perfect match exists between
two KGs, without considering dangling entities.

Recently, Sun et al. (2021) have proposed a new
problem setting, i.e., danging-aware entity align-
ment, which is more practical as dangling entities
naturally exist in real-world KGs. This problem
setting requests a model to both detect dangling
entities and align matchable ones. As the pioneer-
ing work, Sun et al. (2021) propose three base-
line methods (i.e., marginal ranking, background
ranking, and nearest neighbor classification) based
on the nearest neighbor of source entities. Thus,
these methods only rely on the first-order proximity,
which is the major difference with MHP.

Optimal transport. Optimal transport (OT) aims
to find the plan with minimal transportation cost for
changing one distribution to another distribution,
which naturally provides a way to align two distri-
butions. Arjovsky et al. (2017) use the Wasserstein
distances to recast the learning of generative ad-
versarial network (GAN) as a transportation prob-
lem. OT has been widely used in other applications
like text generation (Chen et al., 2018a) and graph
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Dangling entity Cls. Prob. The nearest target Cosine Sim. The nearest source Cosine Sim.

哥伦比亚国际学院(Columbia International College) 0.95 University of Ottawa 0.67 渥太华大学(University of Ottawa) 0.80
丁肇中(Samuel C. C. Ting) 0.91 George Uhlenbeck 0.65 乔治·乌伦贝克(George Uhlenbeck) 0.78

美国国会地铁(Congressional Subway) 0.99 United States Congress 0.67 美国国会(United States Congress) 0.75
王豫元(Larry Wang) 1.00 Wu Den-yih 0.65 吴敦义(Wu Den-yih) 0.91

新生党(Japan Renewal Party) 1.00 Democratic Party of Japan 0.64 民主党(日本) (Democratic Party of Japan) 0.85
意大利裔澳洲人(Italian Australians) 0.99 Chinese Australians 0.64 澳大利亚华人(Chinese Australians) 0.71

新加坡发展部(Ministry of Development (Singapore)) 0.93 Ministry of Transport (Singapore) 0.72 林瑞生(Lim Swee Say) 0.75

Table 5: Some dangling source entities wrongly predicted as matchable by the previous method, while MHP predicts
them as dangling with high probabilities. Cls. Prob. denotes the probabilities of dangling generated by MHP. The
fourth column denotes the cosine similarity between the dangling entity and its nearest target. The nearest source is
the nearest neighbor of the nearest target on the source KG. The last column denotes the cosine cosine similarity
between the nearest target and its nearest source.

matching (Xu et al., 2019a). Pei et al. (2019) for-
malize entity alignment as OT in the conventional
setting, which however only considers one-to-one
alignment between matchable entities. We instead
leverage OT to identify dissimilar parts of embed-
ding distributions to detect dangling entities, mean-
while using OT only as one of the three high-order
measures for alignment.

6 Conclusion

In this paper, we propose a framework, MHP, with
mixed high-order proximities for dangling-aware
entity alignment. MHP captures the local high-
order proximity via a dangling classifier based on
both the first- and second-order proximities. Ad-
ditionally, we propose a Optimal Transport based
method considering the global high-order proxim-
ity to facilitate both dangling detection and entity
alignment. Comprehensive experiments on two
alignment settings show the effectiveness of uti-
lizing mixed high-order proximities. Furthermore,
our extensive ablation study demonstrates the ef-
fectiveness of each technique.
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Appendices

A Dataset Statistics

We present the dataset statistics of DBP2.0 (Sun
et al., 2021) in Tab. 6. DBP2.0 contains three cross-
lingual settings for dangling-aware entity align-
ment, i.e., Chinese-English (ZH-EN), Japanese-
English (JA-EN) and French-English (FR-EN).
Please note that FR-EN is much larger than ZH-EN
and JA-EN, and our methods are scalable to such a
large dataset.

Datasets # Entities # Danglings # Rel. # Triples # Align.

ZH-EN ZH 84,996 51,813 3,706 286,067 33,183EN 118,996 85,813 3,402 586,868

JA-EN JA 100,860 61,090 3,243 347,204 39,770EN 139,304 99,534 3,396 668,341

FR-EN FR 221,327 97,375 2,841 802,678 123,952EN 278,411 154,459 4,598 1,287,231

Table 6: Dataset statistics of DBP2.0

B Computational Environment

We run experiments on a Linux machine with a sin-
gle GeForce RTX 2080 Ti GPU with 11 GB GPU
memory and a Intel(R) Xeon(R) Gold 6240 CPU
@ 2.60GHz. The operating system of our machine
is Ubuntu 18.04.2 LTS. The major software pack-
ages used are as follows: TensorFlow 1.12; CUDA
10.1; Python 3.6; NumPy 1.18.1; SciPy 1.4.1. Our
source code is available in the attachment for repro-
ducible experiments.

C Hyperparameter Settings

To ensure a fair comparison, we follow the hyer-
parameter settings of the base alignment model
(i.e., MTransE and AliNet) and the base dangling
detection loss (i.e., MR and BR) reported in the
previous work (Sun et al., 2021). For our proposed
methods, in WGAN, we use a two-layer FNN with
500 hidden units for the critic. As suggested by
Arjovsky et al. (2017), we adopt weight clipping to
ensure K-Lipschitz for WGAN and train the critic
more than the generator (i.e., the transformation
matrix). Besides the hyperparameter stated in Sec-
tion 4.1, we tune other hyperparameters within a
search space as follows:

• The number of nearest targets k: {5, 10, 15}

• The number of nearest sources m: {5, 10, 15}

• Batch size: {4096, 8192, 10240, 20480}

D More on Experiments

As shown in Sun et al. (2021), AliNet (Sun et al.,
2020b) performs much worse than MTransE (Chen
et al., 2017) in dangling-aware entity alignment.
Dangling entity detection would also suffer as a
result of the poor alignment performance. How-
ever, in this section, we still present the results of
MHP with AliNet as the base alignment model to
demonstrate that MHP is model-agnostic and has
a good robustness.

Consolidated evaluation. Tab. 7 shows that, using
AliNet as the base model, MHP still outperforms
baselines in terms of F1 scores on dangling detec-
tion. We can see that baselines sometimes achieve
better precision with the sacrifice of recall, which
leads to unsatisfactory F1 scores. Comparing our
two variants MHP + MR and MHP + BR, there is
no one consistently achieving better performance
than the other one. We report the performance of
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Methods ZH-EN EN-ZH JA-EN EN-JA FR-EN EN-FR

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

MR .752 .538 .627 .828 .505 .627 .779 .580 .665 .854 .543 .664 .552 .570 .561 .686 .549 .609
BR .762 .556 .643 .829 .515 .635 .783 .591 .673 .846 .546 .663 .547 .556 .552 .674 .556 .609

MHP + MR .750 .711 .730 .838 .726 .778 .743 .702 .722 .831 .714 .768 .541 .601 .571 .638 .661 .649
MHP + BR .748 .718 .733 .841 .721 .776 .738 .702 .719 .833 .711 .767 .556 .568 .562 .681 .590 .632

Table 7: Dangling entity detection results on DBP2.0. MR refers to marginal ranking and BR refers to the
background ranking (Sun et al., 2021). The base alignment model is AliNet (Sun et al., 2020b).

Methods ZH-EN EN-ZH JA-EN EN-JA FR-EN EN-FR

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

MR .207 .299 .245 .159 .320 .213 .231 .321 .269 .178 .340 .234 .195 .190 .193 .160 .200 .178
BR .203 .286 .238 .155 .308 .207 .223 .306 .258 .170 .321 .222 .183 .181 .182 .164 .200 .180

MHP + MR .259 .280 .269 .222 .298 .254 .266 .288 .276 .225 .305 .259 .204 .186 .195 .197 .189 .193
MHP + BR .258 .274 .265 .223 .305 .257 .261 .281 .271 .224 .306 .258 .183 .180 .182 .172 .201 .185

Table 8: Two-step entity alignment results on DBP2.0. The base alignment model is AliNet.

Methods ZH-EN EN-ZH JA-EN EN-JA FR-EN EN-FR

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

AliNet .332 .594 .421 .359 .629 .451 .338 .596 .429 .363 .630 .455 .223 .473 .306 .246 .495 .329
w/ MR .343 .606 .433 .364 .637 .459 .349 .608 .438 .377 .646 .469 .230 .477 .312 .252 .502 .335
w/ BR .333 .599 .426 .357 .632 .451 .341 .608 .431 .369 .636 .461 .214 .468 .298 .238 .487 .321

MHP + MR .346 .613 .439 .375 .645 .469 .354 .617 .444 .379 .654 .473 .228 .477 .311 .253 .496 .335
MHP + BR .339 .611 .432 .373 .635 .464 .346 .614 .437 .367 .638 .460 .218 .473 .303 .244 .504 .331

Table 9: Entity alignment results in the relaxed setting on DBP2.0. The base alignment model is AliNet.

two-step entity alignment on Tab. 8. In general,
MHP offers better performance on two-step align-
ment compared with baselines that do not consider
high-order proximities. We observe that when we
choose AliNet as the base model, the improvement
over the baselines is less than the improvement
when using MTransE as the base model. The rea-
son could be that AliNet generally performs worse
than MTransE, even only with MR or BR. For ex-
ample, combining Tab. 1 and 7, MTransE+MR
can achieve 0.740 F1 score, while AliNet+MR
only obtains 0.627 F1 score. The observation is
also pointed out by Sun et al. (2021). The in-
herent inferiority of AliNet in dangling-aware en-
tity alignment can hinder our new proposed tech-
niques. Therefore, we suggest to use MTransE as
the base alignment model for dangling-aware en-
tity alignment. Future work could investigate other
advanced alignment models on this setting.

Relaxed evaluation. Tab. 9 demonstrates the re-
sults of entity alignment in the relaxed setting. We
observe that AliNet without any dangling detec-
tion technique performs the worst. By applying
dangling detection techniques, the alignment per-

formance increases, indicating that learning to de-
tect dangling entities can indirectly help alignment.
MHP with two different base dangling losses (i.e.,
MR and BR) generally outperforms the correspond-
ing baselines without our proposed techniques. For
our two variants, MHP + MR slightly outperforms
MHP + BR variants in most cases.

E Computational Cost

Note that, similar with the MR loss (Sun et al.,
2021), MHP also relies on nearest neighbor search
(NNS) for training. Therefore, MHP can reuse the
results of NNS obtained by MR during the training
phase, and cause negligible additional overhead.
On ZH-EN, MHP averagely spends around 60 sec-
onds training an epoch. When the efficiency is of
importance in some real-time applications, we can
adopt the large-scale efficient similarity search li-
brary faiss (Johnson et al., 2021) which uses GPUs
for fast NNS. Additionally, we could also maintain
a cache unit to store the results of NNS and only
lazily update the results every ten or twenty epochs
during training.
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F Limitations

We notice that many prior studies on conven-
tional entity alignment consider the side informa-
tion of entities (e.g., names, descriptions and at-
tributes) (Chen et al., 2018b; Trisedya et al., 2019;
Zhang et al., 2019; Xu et al., 2019b; Wang et al.,
2020; Wu et al., 2020). However, on dangling-
aware entity alignment, the pioneer work (Sun
et al., 2021) proposes a framework that only consid-
ers the structure information of entities since most
KGs are built around relation triples. Thus, for a
fair comparison, we follow their setting and do not
utilize side information of entities. Future work
could investigate how to effectively incorporate
side information for dangling-aware entity align-
ment in the proper way and with a fair evaluation.
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