








samples $tep 3. The re-weighted data is used to ne-tuning with LiST that requiresA = 14M
train the student adapteBiep 4. Since adapter (tunable) adapter parameters for every task while
training with noisy pseudo labels is quite unstakeeping the PLM xed. This results in overall
ble, we introduce knowledge distillation warmupM + A T = 1:8B parameters, thereby, reduc-
(discussed in Section 4.3.1). Finally, we assigring the overall storage cost by 20x. Adapters have
the trained student adapter to be the new teachéeen shown to match the PLM performance in fully
adapter $tep J. Following true few-shot learning supervised settings with thousands of training la-
settings, we do not use any held-out development doels in classic ne-tuning. In contrast, this is the
validation set. Therefore, we repeat the above stepsst work to study the role of adapters in few-shot
for a pre-de ned number of timed = 6). The prompt-based FN. We explore different design and
overall training procedure is summarized in Algo-placement choices of adapters in few-shot settings
rithm 1 (Appendix B). Throughout the training, we and investigate the performance gap with fully su-
keep the shared student and teacher encoder pargpervised as well as fully tunable parameter space.
eters frozen and update the corresponding adapter

parameters along with their language model heads.

Fill MASK] by label words:
Lite Prompted Unlabeled
Self-training data

(1) Teacher Adapter
Tuning

Teacher

.ﬂiaptcr Frozen Adapter
~ # pLm
N
N

1 I
\ 1 1

. \
Few-shot (2) Assign \ [CLS] Houston is
Labeled data Pseudo-labels \ [CLS] The movie really humid now?

was very boring. It [MASK], Houston is

II was [MASK]. [SEP] freezing and dry
Pseudo-labeled / right now. [SEP]
data SST-2 Example MNLI Exam
g - S ple
(3) Re-weighting /
1 (5)Knowledge

Transfer Figure 3: The underlined text depicts task prompt to

(4) Student Adapter _- . . . .
Tuning Student transform classi cation into Fill-in-MASK task. Label
Adapter words are used as proxy for original task labels.

Repeat above steps M times

The adapter tuning strategy judiciously intro-
Figure 2: Lite prompted self-training on unlabeled dataduces new parameters into the original PLMs. In
with prompts and adapters make parameter-ef cient feweontrast to standard prompt-based FN that updates
shot learners withiST . all the PLM parameters p_ v , prompt-adapter tun-
ing only updates the newly introduced adapter pa-
rameters as well as the (masked) language model
head of the PLM (jointly denoted ag), while keep-
The predominant methodology for task adaptaing the remaining parameters of the original net-
tion is to tune all of the trainable parameters ofwork frozen. The adapter usedliiST consists

the PLMs for every task. This raises signi cant of two fully connected layers as shown in Figure 4,
resource challenges both during training and devhere a feedforward layer down projects input rep-
ployment. A recent study (Aghajanyan et al.resentations to a low dimensional spaogeferred
2021) show that PLMs have a low instrinsic di-as the bottleneck dimension), and another feedfor-
mension that can match the performance of thard layer up projects the low-dimensional features
full parameter space. To adapt PLMs for downhack to the original dimension. However, these
stream tasks with a small number of paramenewly-inserted parameters can cause divergence
ters, adapters (Houlsby et al., 2019) have recentlyesulting in up to020% performance degradation
been introduced as an alternative approach fap few-shot settings (discussed in Section 5.3). To
lightweight tuning. Consider the following sce- handle this issue, we adopt a skip-connection de-

nario for demonstration, where we want to usesign where the adapter parameters are initialized
RoBERTa-large wittM = 355M parameters as with zero-mean small Gaussian noise.

the PLM for T = 100 tasks. Full ne-tuning Adapter placement. Prior works on lightweight
for this scenario requires updating and storingadaptation tune bias (Cai et al., 2020b) or embed-
M T = 35:5B parameters. Now, consider dings (Lester et al., 2021a) of Transformers in
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teacher( pium ; "tea) in the t-th iteration where
N is the number of unlabeled instances aih
represent the teacher adapter parameters. In self-
&5 e e e e
1. u. . '
L(¥n’;encXn; pum; o)) to be the loss of the
. t
student model with parametefs pv ; gt&) on
the pseudo-labeled data in thh iteration, where
pLv and gy represent the PLM and the student
Figure 4: LiST explores several adapter placementadapter parameters respectively. In order to reduce
choices (humbered positions in left) in standard Transerror propagation from noisy pseudo-labels, we
former architecture, with adapter design shown in right-leverage meta-learning to re-weight them based on
the student model loss on the validation set as our

fully-supervised settings for improving parametermeta-objective. The intuition of meta re-weighting
ef ciency with minimal performance loss. How- iS to measure the impact or weight of a pseudo-
ever, for few-shot settings, we note that adaptelabeled example given by its performance on the
placement is critical to bridge the performance gapralidation set Since we do not have access to
with that of a fully tunable model and the choices@ separate validation set in the spirit of true few-
of tuning bias or embedding can result in upto 109shot learning, we leverage the labeled training set
performance degradation (discussed in Section 5.3px™" judiciously for re-weighting. To this end,
To this end, we explore several choices of adaptete leverage the idea of weight perturbation (Ren
placement (refer to Figure 4) corresponding to theet al., 2018) to set the weight of pseudo-labeled
most important transformer modules, namely, emexample(%“;yi(t)) to i(t) at iterationt as:

bedding, intermediate feedforward, output feedfor-

ward and attention module ievery layerof the (. ) — S - £, enc(@; Opia, Pt V)]
™ ) N .

Transformer. Based on empirical experiments (re- 3)
fer to Section 5.3) across six diverse NLU tasks, - . ”
we observe the feedforward output and attention Vs (€) = s — aVL (€,). )

modules to be the most important components fowhere is the step size. Weight perturbation is
parameter-ef cient adaption in few-shot settings. used to discover data points that are most impor-
Formally, consideDEra"‘ = fx';y'gto be the tantto improve performance on the validation set.
few-shot labeled data ar@V = fXug to be the Optimal value for the perturbatiorﬁt) can be ob-
unlabeled data, where we transform the input sdained via minimizing student model loss on the
guences to cloze-style inpuk containing a single validation set at iteratiohas:
mask following the prompting strategy outlined i
) . DR . ® (.
in Section 2. We use the same pattern templates) _ g min 2=t L0 enc(@i Orian, Yuru(€:))
and verbalizers (output mapping from the task- DR ©)
speci ¢ Iabel;Y to single tokens in the vocabulary To obtain a cheap estimate of the meta-weight at
V) from tradltlor_lal prompt-based FN works. (Gao stept, we take a single gradient descent step on a
et al., 2021). Given the above adapter design anﬁ!]ini-batchﬁ(t) > 5;’3‘” as:

placement of choice with parametersa dataset
D" with shotsk , a PLM encodeenc with

ib (] = . 5()
parameters piv , where piy , we want  u{” = *%(Z":l E(yi’emgi; GPLNI’wSt"(G))))
to perform the following optimization for ef cient 7’ Dol (6)
model adaptation: The weightw" of (x¥;9") at iterationt is set
b  argmin £(DT™; Oprar, 0) 2y 1o be proportional to the negative gradielﬁtt) to
v re ect the importance of pseudo-labeled samples.
4.3 Re-weighting Noisy Prompt Labels Samples with negative weights are Itered out since

: they could potentially degrade the student perfor-
Considerf 9r(])g§:1 to be the pse~ud0 prompt- mance. Finally, we update student adapter param-
labels (for the masked tokensxi 2 X ) fromthe eters &, while accounting for re-weighting as:
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from GLUE (Wang et al., 2019), including

N MNLI (Williams et al., 2018b) for natural language
oL Z[wz‘” LY, enc(FY; Opian, 90 ). inference, RTE (Dagan et al., 2005; Bar Haim et al.,

N= 2006; Giampiccolo et al., 2007; Bentivogli et al.,

" 2009) for textual entailment, Q@For semantic

4.3.1 Knowledge Distillation For Student equivalence and SST-2 (Socher et al.) for sentiment
Warmup classi cation. The results are reported on their
Sevelopment set following (Zhang et al., 2021).

estimate the weight of noisy pseudo labels. HowMPQA (Wiebe et al., 2005) and Subj (Pang and
ever, the gradients of adapter parameterare Lee, 2004) are used for polarity and subjectivity

not stable in the early stages of training due tgietection, where we follow (Gao et al., 2021) to
random initialization and noises in pseudo labeld€eP2; 000examples for testing and use remaining
This instability issue is further exacerbated with€@mples for semi-supervised learning.
adapter tuning that usually requires a larger learn- FOr €ach dataset, we randomly samjlg 2

ing rate (Pfeiffer et al., 2020). Therefore, to staf 10;20,30g manually labeled samples from the
bilize adapter tuning, we propose a warmup traintf@ining data, and add the remaining to the unla-
ing stage via knowledge distillation (Hinton et al., Péléd set while ignoring their labels — following
2015) to rst tune adapter parameters via knowlStandard setups for semi-supervised learning. We
edge distillation 10ss foFwarm Steps and then we epeatedly samplé labeled instances ve times,
continue self-training with re-weighted updates via™!n €ach model wit)s different seeds and report av-
Eq. 7. Since the re-weighting procedure has acces29€ performance with standard deviation across
to our training labels, we do not use labeled data ifh€ runs. For the average accuracy over 6 tasks, we
knowledge distillation while using only the unsu-4did notinclude standard_dewatlon across tasks. Fur-
pervised consistency loss between teacher modl€rmore, for every split and shot, we sample the
( pim: “ea) and student modeél pw ; ") on labeled data such thexjgan  p Jran p lrain

Meta re-weighting leverages gradient as a proxy t

unlabeled data as. tp evaluate the impact of incremental sample injec-
tion.
arg min KL(f(Z%; ©OpLm, Yrea) || f(Z"; OpLM, Pstu))- Following true few-shot learningetting (Perez

Pstu

8 etal, 2021), we do not use additioradvelop-
We further validate the effectiveness of knowledgement sebeyondKj labeled samples for any hyper-

distillation for warmup with ablation analysis. ~ parameter tuning or early stopping. The perfor-
mance of each model is reported after xed training

A typical challenge in few-shot settings is the lackBaselines. In addition to classic-tuning (Classic
of a separate validation set. In the spiritfefew-  FN), we adopt prompt-based ne-tuning (Prompt
shot learning, we use only the available few-shoFN) from (Gao et al., 2021) as labeled-only base-
labeled exampleBy " as the validation set for lines. We also adopt several state-of-the-art semi-
meta-learning of the student model. This poses asupervised baselines including UST (Mukherjee
interesting challenge of preventing label leakageand Awadallah, 2020), MetaST (Wang et al., 2021c)
To address this issue, we-initialize the student and iPET (Schick and Schitze, 2021a). UST and
adapter parametersvery time at the start of each MetaST are two self-training methods which are
self-training iteration to mitigate interference with based on classic ne-tuning strategies. iPET is a
labeled data. Note that the student and teach&emi-supervised method leveraging prompt-based
model share the encoder parameteggy thatare  ne-tuning and prompt ensembles to obtain state-
always kept frozen and not updated during trainingof-the-art performance. While iPET ensembles
) multiple fully-tuned models, we develop a lite self-
5 Experiments training framework to achieve both data and param-
eter ef ciency. As the strongest semi-supervised
baseline, we implement a new methBbmptST

Dataset. We perform large-scale experimentSyqeq on self-training using prompts and adapters
with six natural language understanding tasks

as summarized in Table 6. We use four tasks “https://www.quora.com/g/quoradata/
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https://www.quora.com/q/quoradata/

Labels Models Avg #Tunable MNLI(m/mm) RTE QQP SST-2 Subj MPQA
Params  (acc) (acc) (acc) (acc) (acc) (acc)
K] = 30 Classic FN 60.9 355M 38.07/39.0c1y 51.4a7n 64.3ey 65.0015 90.2¢c2 56.163
B PromptFN 77.6 355M 62.86)/ 64.133 66.1c2 71.1as 91500 91.00s 82.7 s
UST 65.8 355M 40.%3/41.509 53.407 61.8ws 76.2w4 91.5¢1y 70.962
|K| =30 MetaST 62.6 355M 39.49/40.544 52.9¢00 65.762 65.3us2 91.4¢3 60.5c¢
+Unlabeled Data  jPET 75.5 355M 61.@s/61.8¢7 54.7¢s 67.3wy 93.80s 92.6as 83.1lus
PromptST 77.2 14M 61.89)/ 63.129 66.261 71.4¢1 91.1as 90.3us) 81.8¢s
LiST 82.0 14M 73.5¢8/ 75.067 71.0@4y 75.209 92.809 93.5¢2 85.2¢1
Supervision with  Classic FN 90.9 355M 89.6/89.5 83.0 91.8 95.2 97.2 88.8
# Full Train Prompt FN 92.0 355M 89.3/88.8 88.4 92.1 95.9 97.1 89.3

Table 1: Performance comparison of different tuning strategies on different NLU tasks with RoBERTa-large as the
encoder with standard deviation in parantheses. UST, MetaST, PromptST and iPET are semi-supervised methods
using unlabeled data, whereas Classic and Prompt FN only use labeled data.

(as a subset of the methods used.iST ), but
without any re-weighting, or KD warmup that are
additionally used irLiST . The methods Prompt
FN, PromptST andliST adopt same prompts and
label words as in (Gao et al., 2021). We implement

1 P S—

our framework in Pytorch and use Tesla V100 gpus
for experiments. Prompts used in experiments and
hyper-parameter con gurations are presented in

|-+ BERT-base-C RoBERTa-base-P
20 |~ RoBERTa-base-C RoBERTa-large-P
10} RoBERTa-large-C <4-LiST

-7 BERT-base-P

10 20 30 100 500 1000

Appendix.
# Labeled Examples

5.2 Key Results (@) MNLI

Table 1 shows the performance comparison among
different models withKj = 30 labeled examples
with xing ROBERTa-large as the encoder. Fully-
supervised RoBERTa-large trained on thousands of
labeled examples provides the ceiling performance
for the few-shot setting. We obserl&ST to sig-
ni cantly outperform other state-of-the-art base-
lines along with96% reduction in tunable param-
eters, achieving both labeled data- and parameter-
ef ciency. More speci cally,LiST improves over
Classic FN, Prompt FN, iPET and PromptST by
34:6%, 5:7%, 8:6% and6:2% respectively in terms
of average performance on six tasks. This demor-gure 5: Performance comparison of Classic-tuning
strates the impact of self-training with unlabeleg(denoted as *C") and prompt-based ne-tuning (denoted
data and prompt-based FN. Additionally, iPET and®> ) WIthLIST on MNLI and RTE using language
. . .. model encoders of different sizes.

LiST both leverage prompt-based FN to signif-
icantly improve over UST and MetaST that use
classic ne-tuning strategies, con rming the ef- and encoders of different sizes. We observe that
fectiveness of prompt-based FN in the low datdarge models are more data-ef cient compared to
regime. iPET ensembles multiple prompts withsmaller models. However, large fully-tunable mod-
diverse qualities and under-performs Prompt FNels are expensive to use in practise. We observe
on average in our few-shot setting without usingthatLiST with small number of tunable parame-
any development set. ters consistently outperforms fully-tunable classic

Figure 5 compares the performance of tuningand prompt-based FN strategies in all labeled data
methods with varying number of training labels settings, demonstrating both data and parameter ef-
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Labels  Fine-tuning Method Avg MNLI(m/mm) RTE QQP SST-2  Subj MPQA
(acc) (acc) (acc) (acc) (acc) (acc)

GPT-3 In-context 615 36ds/36.703 53.2a8 61.830 86.6¢74 61.0012) 66.70s5
jKj =10 Prompt-based FN 69.3 548)/55.646 60.0s4 58.7ues) 89507 84.566 67.869
LiST 72.8 62.666/63.3707 61.209 60.4¢00 91.1az 91.0as 70.3w0s

GPT-3 In-context 574 38800/38.4cs) 54.5as5 64.206 79.1c3 51.2an 72.4ss
jKj =20 Prompt-based FN 75.4 6023)/61.6¢7 64.30s 67.8¢2 90.6as 88.3c2 80.6¢75
LiST 795 68.931/70.433 69.06s5 72.3c7n 92.3a2 91503 82.26sy

GPT-3 In-context 615 3782/38.5¢sy 53.4¢p2 65.0un 79.7¢01y 57.764 T74.869
jKj =30 Prompt-based FN 77.6 628)/64.13 66.1cz 71.1as 91.5a0 91.00s5 82.7@s
LiST 82.0 73.528/75.0s7 71.0c4 75.209 92.809 93.5¢2 85.2¢ey

Table 2: Average performance and standard deviation of GRTB( params) in-context learning, Prompt-based
FN andLiST methods using Roberta-Largg5GV params) encoder with varying number of training lakji€js
LiST updatesldM params in contrast to Prompt-based FN with full model tuning.

Tuning #Params Avg Diff Tuning #Params Avg
Full 355M 776 — Head-only M 66.9
Embedding 53M 67.0 -10.7 Bias-only (Cai et al., 2020b) 1M 68.3
Attention 101M 77.0 -0.6 Prompt-tuning (Lester et al., 2021b) M 56.4
LiST Adapter (2) M 72.7

FF-output 102M 776 +00 oz O\ ___ S8 el

. . ) Houlsby Adapter (Houlsby et al., 2019) 14M 57.9
FF-intermediate 102M 759 -1.7 LIST Adapter (128) 14M 777
Full tuning 355M 77.6

Table 3: Average accuracy on tuning different modules
of RoBERTa-large withKj = 30 labels onsix tasks

Diff shows performance change relative to Full tuning. Table 4: Average accuracy of several lightweight
parameter-ef cient tuning strategies witkj = 30 la-

. i L bels without unlabeled data @ix tasksalong with the
ciency. Additional results with different backbone |, \mper &) of tunable parameters. Each task is run

encoders and varying number of shots and newith 5 different seeds.iST Adapter performance with
tuning strategies are presented in the Appendix imifferent bottleneck dimensiatof its adapters is shown
Tables 13, 14, 15 and 19 that demonstrate similain parantheses.

trends as we observe in Table 1 and Figure 5.

Comparison with GPT-3 in-context Learning. ble 3 shows the performance comparison of tuning
We perform a comparison between GPT-3 inspeci ¢ modules on six tasks with varying num-
context learning, RoBERTa-large Prompt-baseder of labeled examples. The main modules of
ne-tuning and LiST methods with varying number RoBERTa includeEmbeddingAttention Feedfor-

of training labels in Table 2. For a fair comparison,ward OutputandFeedforward Intermediatiayers.
the prompt and label words are same for the threéve observe that tuning only theedforward Out-
approaches. We observe thaST outperforms putor theAttentionmodule delivers the best per-
GPT-3 In-context learning and Prompt-based FNormance across most tasks with few-shot labels.

consistently with different number of labels. Correspondingly, this motivated us to insert our
adapter parameters into these two modules. More
5.3 Adapter Analysis detailed results are presented in Appendix Table 11.

In this section, we explore adapter design choice€omparison with other lightweight parameter

for prompt-based FN with RoBERTa-large as enef cient model tuning strategies. To validate
coderusing only few-shot labeled data the effectiveness dfiST adapters, we compare
Where to insert an adapter in Transformers?In it against several baselines in Table 4. For a fair
order to answer this question, we conduct an expecomparison, we present two variations of Qi T
iment to study the role of various Transformer mod-adapters with bottleneck dimensiods f 2; 128y

ules in few-shot prompt-based FN. To this end, wecorresponding talM and 14M parameters to
tune a given module along with the language modematch other adapter capacities; all the approaches
head while keeping all other parameters frozen. Tan Table 4 ardrained with 30 labels only without
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unlabeled datafor a fair comparison. (1) Bias- wetod AvgAcc Avg Std Datasets

only is a simple but effective lightweight method, ML (mimm) __ RTE

. . . . LiST (14M 72.6 2.8 73.%8/ 75.0@7 71.0¢24
which tunes bias terms of PLMs while keeping waremt e A
other parameters frozen. (2) Tuning head layers"e K> Warmup 688 88 67.80/69.0us 69.209

) . . . - w/o Re-weighting 71.6 4.0 7200/ 74.2u5  69.7wy
is W|de|y used as a strong baseline for ||ghtwe|ght w/ Hard Pseudo-Labels 70.9 44 Tk 73.069 69.5u2

studies (Houlsby et al., 2019), where we tune last!ST WoAdaptergsM) 726 25 73&n/748e) Tl.2es

two layers including language model head WhileTable 5: Ablation analysis dfiST with 30 labels on

freezing other parameters. (3) prompt-tuning iSyNLI and RTE with tunable parameters in parantheses.
a lightweight method which only updates task

prompt embedding while keeping entire model

frozen. (4) Houls_by Adapter tunes inserted adapt_elr(nowledge distillation fromLiST (denoted as
parameters keeping the encoder frozen by adoptaniST wio KD Warmup”). Removing this compo-

classic tuning strategy. Besides these IightweighII\ent results iM% performance drop in terms of av-

rnethoqls, we also prese_nt a performance cor_npagfage accuracy ar@D0%larger standard deviation
ison with full model tuning as a strong baseline.

. . . .—demonstrating the importance of KD Warmup in
More detailed results are presented in Appendix 'rgtabilizingLiSTgtraining P

Tables 12 and 20 that demonstrate similar trends. _ _
LiST versusLiST w/o Adapter. In LiST , we

Table 4 shows thdtiST is able to match the
performance of full model prompt-based FN with only ne-tune the adapter and language mode! head
bottleneck dimensiod = 128 and outperforms while keeping other encoder parameters frozen to
achieve parameter ef ciency. Table 5 shows that

all other baselines with similar capacities. While* ! S | i |
lightweight model tuning choices like tuning the LIST using only4%tunable parametgrs is able to
atch the performance of fully tunalléST (that

bias or inserting adapters into classic tuning mouf:n ) X X
els are shown to be effective in fuIIy-supervised'S without using any adapters and tuning all encoder

settings (Cai et al., 2020b; Houlsby et al., 2019)parameters) on MNLI and RTE — demonstrating

we observe them to under-perform for few-shotthe effectiveness of our lightweight design. More

learning. We observe that simpler tuning choice?blaﬂon_ re_sults with varying shots are presented in
like Head-only and Bias-only results in upt6% Appendix in Tables 16, 17 and 18 that demonstrate

performance degradation. Houlsby adapter ana'mIlar trends as in Table 5.

Prompt-only results in upt®0% performance

degradation. In constradtjST adapter is able 6 Conclusions and Future Work

to match the performance of full tuning in few-shot

setting, demonstrating the importance of adaptefve develop a new methddST for lightweight

placement choices and parameter initialization. tuning of large language models in few-shot set-
5.4 Ablation Analysis tings. LIST uses prompted self-training to learn

from large amounts of unlabeled data from target
Table 5 demonstrates the impact of different comdomains. In order to reduce the storage and training
ponents and design choicesloST . cost,LiST tunes only a small number of adapter
Adapter training stability. Training with very  parameters with few-shot labels while keeping the
few labels and noisy pseudo labeled data results ifarge encoder frozen. With onBO labels for ev-
instability for adapter tuning. To demonstrate train-ery task,LiST improves by uptd5% over clas-
ing stability, we include the average accuracy angic ne-tuning and6% over prompt-tuning while
standard deviation across several runs and splits aeducing96% of the tunable parameters. With sig-
metrics. We observe that hard pseudo-labels huri cant reduction in the cost of (data) annotation
the model performance compared to soft pseud@nd overall model footprint,iST provides an ef-
labels and exacerbate the instability issue. Thiscient framework towards life-long learning of Al
is in contrast to observations from classic ne-agents (Biesialska et al., 2020). While adapters
tuning (Wang et al., 2021c). A potential reasonreduce storage codtiST does not reduce infer-
could be that the well pre-trained language modeénce latency given the PLM backbone. A future
head for prompt-based FN is able to capture bettarork is to consider combining model compression
associations among different prompt labels. techniques (Han et al., 2015; Cai et al., 2020a) with
Knowledge Distillation Warmup. In this ab- adapters to reduce FLOPS and latency.
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A Datasets the shared student and teacher encoder parame-
_ _ ters frozen and only updates the adapter parame-
A.1 Dataset information ters along with the corresponding language model

Table 6 summarize dataset statistics and task deeads. Beside the lightweight tuning design, an-
scriptions. All the datasets are in English Languagedther key step in our self-training framework is
The licence information is as follows. to utilize the few-shot labeled data to ne-tune
MNLI: The majority of the corpus is released the student model;)) in every self-training ses-
under the OANC's license, which allows all con-Sion. Such a step is different with conventional
tent to be freely used, modi ed, and shared undepelf-training framework, which either leverages la-
permissive terms. The data in the FICTION secbeled data for initial teacher ne-tuning or combine
tion falls under several permissive licenses; Seveffbeled data with unlabeled data for joint training
Swords is available under a Creative Common®f student model. The iterative usage of unlabeled
Share-Alike 3.0 Unported License, and with thedata and labeled data helps in better teacher initial-
explicit permission of the author, Living History ization before next round of adapter prompt-tuning
and Password Incorrect are available under Cr&n Dy "™ which further helps in improving model
ative Commons Attribution 3.0 Unported Licenses;tuning and the quality of pseudo labels.
the remaining works of ction are in the public
domain in the United States (but may be licensedAlgorithm 1: LiST Algorithm.

differently elsewhere). Input: Labeled sample®%" " = {Z', 7'}; Unlabeled samples
. . AU _ = - i )
RTE: The dataset is public release but the cor- o st saramerare "
respondlng licence information is not found in the Number of student training iteratios, KD warmup steps
. Twarm and self-training sessions .
source website. Initialize teacher adaptepiea = 1(*)
. . . T rain.
QQP: We did not nd the responding license. Jun® teacher adapteri., on smalllabeled da ;"""
The source websiteis not accessible. Initialize the student adaptefse, = v»(® ;
. . fort < 1toT do
SST-2 dataset: CCO: Public Domain Infer pseudo prompt labelgg (") }V_, for unlabeled
Subj: The dataset is public release but the Li- EigtaDsz {%)g}wnh teacher model
. . - - IPLM; Ptea ),
cence information is not presented in the source Randomly sample a batch of pseudo-labeled samples
website’ if ftromT(iu’ y(t: )
. Mt < Tyarm then
MPQA: The datasétis public release. Made o 1IN student adaptabey,, according to Eq. 8
available under the terms of GNU General Public Sample a mini-batch fro®®) € DLrain
. . . . as validation mini-batc for re-weighting;
License. They are distributed without any warranty. Train student adaptab. ., on re-weighted
We follow the licence of datasets for research oy Peudotabeled samples according to Eq. 7
use. We manually check no offensive content in end -
.. T nTrain.
our few-shot tralnlng dataset. Tune student adaptef_, . on small Ia(k;e:ed dat®@ ;

Update the teacher adaptelic, = 1

stu

end

A.2 Prompts

Table 7 summarizes manually-designed prompts
and label words for each dataset in our expel€ Experimental Details
iments. These prompts and label words were
adopted from (Gao et al., 2021). C.1 Hyper-parameters
Following the true few-shot learning spirit, we do

B Algorithm Flow not have any additional development set for hyper-

. . _ parameter tuning. Instead we keep all the hyper-
Algorithm 1 summarizes overall ow ofiST .We  harameter same for different tasks, different model
adopt a light self-training mechanism which keepsapilies and sizes as well as different shists We

" Shupsi/aciweb.org/achwiki/ retain most of the default hyper-parameter con g-

Recognizing_Textual Entailment urations from related work. For each task, we run
~ °https://data.quora.com/ . . the model ve times with different data splits and
Flrs;t-Quora-Dataset-Release-Questlon-Palrs different random seeds iil: 2: 3; 4: 5g. Our ex-
http://www.cs.cornell.edu/people/ . . ..
pabo/movie-review-data/ periments are conducted in few-shot supervision
8https://mpga.cs.pitt.edu/ setting and few-shot semi-supervised setting. In
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Category Dataset #lLabels #Full Train  #Test Type Labels

sentence- MNLI 3 392,702 9,815 NLI entailment, neutral, contradiction
f RTE 2 2,490 277 NLI entailment, not_entailment
pair QQP 2 363,846 40,431 paraphrase equivalent, not_equivalent
single- SST—Z 2 6,920 872 serjtime_nt posjtive, nega}tive
sentence Subj 2 8,000 2,000 $u_bject|V|ty_ sub;gctlve, objgctlve
MPQA 2 8,606 2,000 opinion polarity positive, negative

Table 6: Dataset summary and task descriptions. For each task, we $apl&0; 20; 30g labeled examples to
form ve different splits with different random seeds from the original training set, and add the remaining to the
unlabeled set while ignoring their labels.

Task  Prompt Label words

SST-2 <S;>Itwas[MASK] .  positive: great, negative: terrible
MR <S;> Itwas[MASK] .  positive: great, negative: terrible
Subj <S;>Thisis[MASK] . subjective: subjective, objective: objective

MNLI  <S;> ?[MASK] , <S,> entailment: Yes, netural: Maybe, contradiction: No
RTE <S;> ?[MASK] ,<S;> entailment: Yes, not_entailment: No
QQP <S1>[MASK] , <Sy> equivalent: Yes, not_equivalent: No

Table 7: Task prompt and label words summar$; > and<S,> indicate input sentences.

the following, we introduce the hyper-parametersexamples and datasets, the GPU hours of all ap-
for each setting respectively. proaches are different, ranging from 1 hour to 10
Few-shot supervision settingWe set learning rate hours per task.

as 5e-6, training epochs 480 and batch size as

4. The bottleneck dimensios of Adapter is set Models  #Params Avg Acc
to 128 The optimizer is AdamW (Loshchilov and BERT-base  110M 67.4
Hutter, 2017) with default settings besides learning BERT-large  336M 68.0
rate. We use variance for adapter as 0.002 and RoBERTa-base  125M 73.7
observe that the performance is not sensitive to RoBERTa-large 355M  77.6
variance values when the scale of variance values TS-small  60M 66.5
are equal or less than 0.002. Since experiments I;z?;: z2oM 3

are run with different number of labeled examples,
the GPU hours range from 5 minutes to 1 hour peifable 8: Average accuracy of prompt FN with different

task. encoders usiniKj = 30 labels on six tasks.
Few-shot semi-supervised setting.For initial  C.2 Few-shot Supervision with Varying
teacher ne-tuning, we adopt the same hyper- Model Sizes and Labels

parameter con guration as in few-shot supervisionTo better understand the role of different model
setting. To facilitate training on a large amountsfamilies in few-shot prompt-based FN, we eval-
of unlabeled data, the learning rate in self-traininguate the performance of representative state-of-
is set to 1e-4 following fully supervised adapterthe-art PLMs like BERT (Devlin et al., 2019b),
work (Pfeiffer et al., 2020). The batch size of un-RoBERTa (Liu et al., 2019b) and T5 (Raffel et al.,
labeled data for student adapter trainindtésand  2020) of different sizes (parameters) using varying
the size of minibatctD 2 5{”’“” for meta re- amounts of labeled data. We report macro-averaged
weighiting in Eq. 6 is4. For each self-training results over six tasks where each has ve different
session, we train student adapter Tor= 1000  splits for easy comparison.

steps and further ne-tung0 epochs on given la- Effect of model choices.Table 8 shows the perfor-
beled data. The student KD warmup ratio is setnance comparison of three representative PLMs
to 60%, i.e., Twarm = 600 steps, without extra with different parameters using prompt-based FN
hyper-parameter tuning. We repeat all the stepen 30 labeled samples. We observe that average
in self-training trainingM = 6 times. Since ex- performance increases with increase in model size
periments are run with different number of labeledwithin each model family. Overall, we observe
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RoBERTa models to perform much better tharvarying shots of labeled data. We can observe that
BERT, and marginally outperform T5 models of Feedforward-output performs best in average while
much bigger size. Accordingly, we use ROBERTaAttention module achieves best performance on
large as the base encoder for bbtBT and other some tasks. The conclusion is consistent across
baseline methods. different shots of labeled data. Such observations
Effect of varying the number of labelsjKj. From  motivate us to insert Adapter inteeedforward Out-
Figure 5, we observe prompt-based FN to consigut andAttentionmodules to handle diverse tasks.
tently outperform classic-tuning under all labeledTask performance of lightweight model tuning
data settings when using the same encoder. With igtrategies. We show the average accuracy of
crease in the amount of labeled examples, prompserveral lightweight strategies wifK j = 30 la-
based FN and classic-tuning both improve in perdeled examples on six tasks in Table 4. In Table 12,
formance, although with reduced performance gapve show average accuracy with standard deviation
This demonstrates prompt-based FN to be the mosif lightweight tuning strategies on each task with
impactful for low-resource settings with few train-jK j = 30 labeled examples. We can observe that
ing labels.LiST improves over both classic and LIST Adapter outperforms all the lightweight tun-
prompt-based FN in all settings with massive reing strategies for all six tasks, demonstrating the

duction in number of tunable parameters. effective design in adapter placement and parame-
ter initialization.
C.3 Experimental result details Comparisons over different PLMs. Table 13,

) ) ) ] ) 14 and 15 show the performance comparison of
Fine-tuning strategies with varying number Of_ two representative PLMs with different parameters
shots.Table 9 shows_the performan_ce compar_lsorhsing prompt-based FN on 10, 20 and 30 labeled
of RoBERTa-large with two ne-tuning strategies ¢, pies. We observe that average performance
and varying number of labeled samples including, -reases with increase in model size within each
zero-shot supervision, few-shot supervision fromy, e family. Overall, we observe RoBERTa mod-
10 to 30 and full supervision. Prompt ne-tuning s 14 perform much better than BERT. This obser-
shows competitive performance in zero-shot lear;ayion, is consistent with the observation in Table 8.
ing, outperforming classic ne-tuning stratggy with More ablation Analysis. Tables 16, 17 and 18
30 labeled examples on several tasks like MNI_-lshow the performance of LiST (14 MM parameters)
and SST-2. As the size of labeled examples ing, yomoving different components as well as LiST
creases, the average perfprmance o_f c!assm al%thout (w/o) adapter (355 MM parameters). It
prompt ne-tuning strategy improves signi cantly o, e gbserved that the trend is consistent over
and prompt ne-tuning strategy consistently im-jitrerant shots. “w/o re-init* leads to performance
proves classic ne-tuning with a big gap in the .o, consistently in various shots and different data
few-shot setting. With full supervision, Prompt qes aAdapter with 4% tunable parameters obtains

ne-tuning strategy and classic ne-tuning strat- ginijar nerformance to full model tuning for shots
egy achieve similar performance, demonstratlng)f 10. 20 and 30 as shown in Table 8.

that Prompt ne-tuning is most impactful for low- Adapters w/ different number of training

resource settings with few training labels. labels. We compare the performance of LiST
Task performance of varying number of shots Adapter (14 MM parameters) against full model
and models. We show performance changes reyning (355 MM parameters) where we obtain 96%
garding varying number of shots and varying modekynanle parameter reduction with almost match-

sults including average accuracy over 5 runs angl|e 20.

corresponding standard deviation on MNLI and
RTE in Table 10.

Task performance of different modules with
varying number of shots. We show the average
accuracy on tuning different modules of ROBERTa-
large withjK j = 30 on six tasks in Table 3. In
Table 11, we show average accuracy with standard
deviation of RoOBERTa-large on each task using
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Labels Models Avg  MNLI (m/mm) RTE QQP SST-2 Subj MPQA
(acc) (acc) (acc) (acc) (acc) (acc)

K| =0 Classic - - - - - - -
- Prompt 58.4 51.7/52.4 51.3 38.6 83.6 51.4 67.6
K| = 10 Classic 50.0 34.93/35.207 50.3¢c1 61.135 51.89 71.2a75 52.4@32)
- Prompt 69.3 54.87/55.646 60.044) 58746 89.517 845686 67.8(9)
K| = 20 Classic 55.2 35.8.0/36.815 51.048 61.3900 57.277 84.800 55.941)
B Prompt 75.4 60.20)/61.67 64324 67.842 90.6s 88322 80.6(75
K| = 30 Classic 59.7 38.a4.77/39.031 51437 64.381 65.0015 90.2¢2 56.1623)
- Prompt 77.6 62.86/64.133 66.122 71.1as5 91.5a0 91.005 82.73s)
" Classic 90.7 89.6/89.5 83.0 91.8 95.2 97.2 88.8
Full supervision 5ot 918 89.3/88.8 88.4 92.1 95.9 97.1 89.3

Table 9: Average performance and standard deviation of RoOBERTa-large with Classic and Prompt-tuning strategies
with varying training label§K] .
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Labels Models MNLI (m/mm) RTE
(acc) (acc)

K| = 10 BERT-base-Classic 32d2/32.4a2 49.3@26)
RoBERTa-base-Classic  35:2)/35.3a.1) 50.6(3.3)
RoBERTa-large-Classic  34(@3)/ 35.20.7) 50.3(2.1)
BERT-base-Prompt 4301/ 44.221) 50.63.2)
RoOBERTa-base-Prompt  49%9)/ 50.53.1) 56.52.3)
RoBERTa-large-Prompt 5487/ 55.6(46) 59.1@3.8)

LiST 62.6(5.7)/63.16.7) 62.1@4.1)

K| = 20 BERT-base-Classic 339/ 33.40) 49.55.4)
RoBERTa-base-Classic  361l)/ 36.5(1.4) 51.9@.5)
RoBERTa-large-Classic  35¢(B0)/ 36.8(1.5) 51.0(.8)
BERT-base-Prompt 4281/ 445028 50.5@3E.1)
RoBERTa-base-Prompt  51%)/52.83.1) 57.5@34)
RoBERTa-large-Prompt  6030)/ 61.62.7) 63.0(2.9)

LiST 70.3(4.0)/ 71.94.4) 68.2(36)

K| = 30 BERT-base-Classic 3430/ 34.51.99 51.6(3.8)
RoBERTa-base-Classic  381)/38.622) 53.112.4)
RoBERTa-large-Classic  38¢07)/39.031) 51.4@37)
BERT-base-Prompt 4474 45.724 52.6(4.0)
RoBERTa-base-Prompt 5361/ 55.0¢0) 61.0@4.7)
RoOBERTa-large-Prompt  62®B6)/ 64.13.3) 66.1(22)

LiST 73.5¢28/75.037 71.0@2.9

K| = 100 BERT-base-Classic 41®s5)/ 42.8(33) 54.03.49)
RoBERTa-base-Classic  4503)/ 46.8(0.8) 55.6(.0)
RoOBERTa-large-Classic  49¢@e)/ 51.56.77 56.84.9)
BERT-base-Prompt 4779/ 49.817y 52.03.3)
RoBERTa-base-Prompt  59df3)/ 61.31.4) 64.3(22)
RoBERTa-large-Prompt  69¢b7/70.90.0 72.3(29)

LiST 78.6(24)/79.9a6 74.3122)

K| = 500 BERT-base-Classic 52@47/53.936 59.212.3)
RoBERTa-base-Classic  6123)/ 63.4a8 62.7@75)
RoBERTa-large-Classic  73(8s)/ 75.6(1.5) 66.84.9)
BERT-base-Prompt 548s8)/57.6(1.1) 57.0@s)
RoOBERTa-base-Prompt  69d%)/ 70.3005) 69.5@2.1)
RoBERTa-large-Prompt  78@&s)/ 80.00.6) 78.2(0.5)

LiST 81.9006)/ 82.8006) 81.911.1

K| = 1000 BERT-base-Classic _ 57ds6)/ 59.322) 60.4332)
RoBERTa-base-Classic  68d®)/ 70.2(0.8) 66.8(2.9)
RoBERTa-large-Classic  79¢9)/ 80.2(0.8) 77.0(1.7)
BERT-base-Prompt 58®@0)/61.2a.00 60.517)
RoBERTa-base-Prompt  73d»)/ 74.4.1) 73.9@1.1)
RoBERTa-large-Prompt  81(60)/ 82.6(0.5) 78.5(1.8)

LiST 83.9(08)/84.6(005 82.915)

Table 10: Average performance and standard deviation of different encoders with Classic and Prompt-tuning
strategies with various training labgl§ .
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Labels  Tuning #Params Avg  MNLI (m/mm) RTE QQP SST-2 Subj MPQA
(acc) (acc) (acc) (acc) (acc) (acc)
Full 355M 69.3 54.837)/55.6(46) 60.044) 58.746 89.517 84586 67.8(6.9)

K| = 10 " Embedding = = =~ 53M T 62.3 53@1/53.702 56.135 50964 84.4@6 70.360 58.8(7.0)
Attention 101M 68.0 55.130)/55.8(400 57.939 57.87r0) 90.315 82.066 64.3(.6)
FF-output 102M 69.0 55.83)/56.440 60.443 59.157 90.2as5 82.2(71 66.2@.1)
FF-intermediate 102M 67.1 55@®s)/55.737 57.735 57.072 89.321 80.761 62.7(6.9
Full 355M 75.4 60.320)/61.627 64.324 67.842 90.6(1s8 88.3122 80.6(75

K| = 20 " Embedding = 53M 65.6 53@23/53.1a5 58.109 55.762 86.007 78.0r0 62.7362
Attention 101M 74.6 59.27/60.2¢4 61.4¢2 66.82s 91.7a1 88.615 79.355)
FF-output 102M 75.7 60.28/61.4026) 65.205 67.734 91404 88.513 80.352
FF-intermediate  102M 735 58B6)/59.300 60.8023 66.232 90.513 87.403 77.45s9)
Full 355M 77.6 62.826)/64.133 66.122 71.1as 91.5w0 91.005 82.73s)

K| = 30 " Embedding” = 53M 67.0 54d1/54.0a2 59.0¢7 56.745 85.809 82226 64.21)
Attention 101M 77.0 61.¢2/62.709 65.832 70.122 91.709 90.407 82.1@25)
FF-output 102M 776 62.381/63.530 67.326 70.8a7 91.80s8 90.2a3 82.5@34)
FF-intermediate  102M 75.9 609/ 61.425 64.039 69.027 91.0a2 90.0a3 80.727)

Table 11: Average performance and standard deviation on tuning different modules of RoBERTa-large with varying
amount of training labelgj .

Tuning #Params MNLI (m/mm) RTE QQP SST-2 Subj MPQA
Head-only 1M 54 111/ 54.113 58.8@26 56.745 85.6a.0 82.1@s5 64.121)
Bias-only 1M 54.413)/54.415 59.8@35 58.6(44) 87.3a1 83.923 65.818)
Prompt-only 1M 47.302)/ 47. 701 53.006 39.907 75.7a7 51.514 70.9224
LiST Adapter (2) 1M 56.338)/57.147 63.7(49 68.2(24 89.209 90.2008 68.4(3.0)
Houlsby Adapter 14M 35.4.1/36.2¢0 51.060 62.830 57.062 83.2354 57.2@35)
LiST Adapter (128) 14M 62.417)/63.725 66.639 71.2e6 91.7@a0 90.913 82.6(20)
Full tuning 355M 62.826)/64.133 66.122 71.1as 91.5@0 91.005 82.7@3s)

Table 12: Average performance and standard deviation of several lightweight parameter-ef cient prompt-tuning
strategies withKj = 30 training labels. The best performance is showbatd along with the number() of
adapter parameters of total encoder parameters.

Table 13: Average performance over various backbones with with training iébpets 30 (with unlabeled data).

Backbone Approach  Average Acc
BERT-base Prompt FN 66.0
BERT-base MetaST 60.2
BERT-base PromptST 66.1
BERT-base LiST 68.6
BERT-large Prompt FN 67.0
BERT-large MetaST 60.1
BERT-large PromptST 67.6
BERT-large LiST 70.6
RoBERTa-base  Prompt FN 73.0
RoBERTa-base  MetaST 62.9
RoBERTa-base  PromptST 73.1
RoBERTa-base  LiST 76.4
RoBERTa-large Prompt FN 77.6
RoBERTa-large MetaST 62.6
RoBERTa-large  PromptST 77.2
RoBERTa-large  LiST 82.0

MetaST, PromptST and LiST are semi-supervised approaches.
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Backbone Approach  Average Acc
BERT-base Prompt FN 64.4
BERT-base MetaST 57.7
BERT-base PromptST 64.9
BERT-base LiST 66.5
BERT-large Prompt FN 64.8
BERT-large MetaST 57.7
BERT-large PromptST 65.6
BERT-large LiST 68.5
RoBERTa-base  Prompt FN 71.2
RoBERTa-base MetaST 59.8
RoBERTa-base  PromptST 715
RoBERTa-base  LiST 75.1
RoBERTa-large  Prompt FN 75.4
RoBERTa-large MetaST 58.9
RoBERTa-large  PromptST 74.8
RoBERTa-large  LiST 79.5

Table 14: Average performance over various backbones with with training ligbpts 20 (with unlabeled data).
MetaST, PromptST and LiST are semi-supervised approaches.

Backbone Approach  Average Acc
BERT-base Prompt FN 58.2
BERT-base MetaST 52.4
BERT-base PromptST 59.6
BERT-base LiST 60.9
BERT-large Prompt FN 59.4
BERT-large MetaST 53.8
BERT-large PromptST 59.6
BERT-large LiST 62.1
RoBERTa-base  Prompt FN 66.8
RoBERTa-base MetaST 54.1
RoBERTa-base  PromptST 66.5
RoBERTa-base  LiST 69.4
RoBERTa-large Prompt FN 69.3
RoBERTa-large MetaST 53.8
RoBERTa-large  PromptST 68.2
RoBERTa-large  LiST 72.8

Table 15: Average performance over various backbones with with training ligbpts 10 (with unlabeled data).
MetaST, PromptST and LiST are semi-supervised approaches.
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MNLI RTE

LIST 73.5(2.8) / 75.0(3.7) 71.0(2.4)
w/o re-init 66.7(2.8) / 68.3(4.3) 69.0(4.9)
w/o re-weighting 72.9(3.4) / 74.2(4.5) 69.7(4.1)
w/o warmup 67.9(12.9)/69.0(13.1) 69.2(4.5)
w/ hard pseudo-labels 71.7(3.8)/ 73.0(5.4) 69.5(4.2)

w/o Adapter (Full Model)  73.6(2.7)/ 74.8(2.7) 71.2(2.3)

Table 16: Ablation analysis of LiST with # of training data = 30.

MNLI RTE
LiST 71.8(2.3)/ 73.0(3.1) 69.0(3.5)
w/o re-init 65.6(2.6) / 66.9(3.4)  66.5(3.7)
w/o re-weighitng 70.7(4.1) / 71.8(4.6) 67.1 (5.6)
w/o warmup 66.9(5.4) / 68.3(5.7) 67.4(5.1)
w/ hard pseudo labels 69.9(3.6) / 71.4(3.7) 67.7(3.5)

w/o Adapter (Full Model)  66.6 (3.2)/68.1 (3.6) 69.69 (5.29)

Table 17: Ablation analysis of LiST with # of training data = 20.

MNLI RTE
LiST 65.0(4.5)/66.3(4.9)  64.2(2.8)
w/o re-init 58.7(4.4) 1 59.4(5.5) 58.8(4.0)
w/o re-weighting 63.8(5.8) / 64.5(6.6) 61.7(2.6)
w/o warmup 62.7(5.2) 1 63.3(6.2) 61.7(4.8)
w/ hard pseudo labels 60.8(6.6) / 61.8 (6.8) 60.8(3.1)

w/o Adapter (Full model) 60.0 (3.7)/61.1(4.8) 62.4(6.79)

Table 18: Ablation analysis of LiST with # of training data = 10.

Labels Models Avg  #Tunable MNLI (m/mm) RTE QQP SST-2 Subj MPQA
Params (acc) (acc) (acc) (acc) (acc) (acc)
K| =30 Classic FN 60.9 355M 38.@7/39.061 51.4@7 64.3@61 65.0015 90.222 56.153)

|K| = 30 +Unlabeled Data LISTw/ Classic FN 66.7 14M 39.966)/41.776) 54.904) 67.400 73.6009) 92.3a1 71.447)

Table 19: Performance comparison of classic FN with RoOBERTa-large as the encoder with standard deviation in
parantheses. The best performance is shoviioid.

# of Training data  Approach Average Acc (Six Tasks)
30 Full tuning 77.6
30 LiST Adapter 77.7
20 Full tuning 75.4
20 LiST Adapter 75.2
10 Full tuning 69.3
10 LiST Adapter 68.9

Table 20: Average Accuracy of Adapter w/ various number of training labels (No Semi-supervised Setting).
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