
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 7339–7353
December 7-11, 2022 ©2022 Association for Computational Linguistics

Dependency Parsing via Sequence Generation

Boda Lin1‡, Zijun Yao2,3‡, Jiaxin Shi4, Shulin Cao2,3

Binghao Tang1, Si Li1∗, Yong Luo5, Juanzi Li2,3, Lei Hou2,3

1School of Artificial Intelligence, Beijing University of Posts and Telecommunications
2Department of Computer Science and Technology, BNRist;

3KIRC, Institute for Artificial Intelligence Tsinghua University, Beijing 100084, China
4Huawei Cloud Computing Technologies 5School of Computer Science, Wuhan University

{linboda, lisi}@bupt.edu.cn
{yaozj20@mails., houlei@}tsinghua.edu.cn

Abstract

Dependency parsing aims to extract syntactic
dependency structure or semantic dependency
structure for sentences. Existing methods for
dependency parsing include transition-based
method, graph-based method and sequence-to-
sequence method. These methods obtain ex-
cellent performance and we notice them be-
long to labeling method. Therefore, it may
be very valuable and interesting to explore the
possibility of using generative method to im-
plement dependency parsing. In this paper,
we propose to achieve Dependency Parsing
(DP) via Sequence Generation (SG) by utiliz-
ing only the pre-trained language model with-
out any auxiliary structures. We first explore
different serialization designing strategies for
converting parsing structures into sequences.
Then we design dependency units and concate-
nate these units into the sequence for DPSG.
We verify the DPSG is capable of parsing on
widely used DP benchmarks, i.e., PTB, UD2.2,
SDP15 and SemEval16. In addition, we also
investigate the astonishing low-resource appli-
cability of DPSG, which includes unsupervised
cross-domain conducted on CODT and few-
shot cross-task conducted on SDP15. Our re-
search demonstrates that sequence generation is
one of the effective methods to achieve depen-
dency parsing. Our codes are available now.1.

1 Introduction

Dependency Parsing (DP), which aims to extract
the structural information beneath sentences, is fun-
damental in understanding natural languages. It
benefits a wide range of Natural Language Pro-
cessing (NLP) applications, such as machine trans-
lation (Bugliarello and Okazaki, 2020), question

1https://github.com/TimeLessLing/DPSG-code/tree/main
‡Boda Lin and Zijun Yao make equal contribution
∗Corresponding author

Sentence Ms. Haag plays Elianti .

Syntactic Dependency Semantic Dependency

Ms.

plays

Haag Elianti .

nn

nsubj dobj punct
Ms. plays

Haag Elianti

.

ARG1 ARG2compound

Syntactic Dependency Structure in Sequence

Semantic Dependency Structure in Sequence

1 2 3 4 5

2Ms. Haag plays Elianti . 3 3 3 3

Haag Haag plays Elianti . 1 3 3 3 n

[nn] [nsubj] [root] [dobj] [punct]

[compound] [ARG1] [root] [ARG2] [rel-no]

Figure 1: Parsing “Ms. Haag plays Elianti .” according
to the Stanford syntactic dependency structure (Man-
ning et al., 2014) and the DM semantic dependency
structure (Oepen et al., 2014). They are further con-
verted into unified serialized representations. We use
the position ID to replace the head word in flattened
sequence.

answering (Teney et al., 2017), and information re-
trieval (Chandurkar and Bansal, 2017). As shown
in Figure 1, dependency parsing predicts for each
word the existence and dependency relation with
other words according to a pre-defined formation.
Such dependency structure is represented in tree or
directed acyclic graph, which can be converted into
flattened sequence, as presented in this paper.

Previous models for dependency parsing mostly
predict the labeling of each node in the parsing
tree and parsing graph, which include graph-based
methods (Dozat and Manning, 2017), transition-
based methods (Ma et al., 2018), and sequence-
to-sequence methods (Li et al., 2018). While
prospering with these methods, dependency pars-
ing shows three trends now. 1) New Represen-
tation. Recent works extend dependency pars-
ing from syntactic DP (SyDP) to semantic DP
(SeDP) with many new representations (Oepen

7339

et al., 2014; Che et al., 2012). 2) Low-resource.
Corpora from different domains facilitate the re-
search on cross-domain dependency parsing (Peng
et al., 2019; Li et al., 2019). 3) PLM. With the de-
velopment of pre-trained language models (PLMs),
researchers manage to enable PLMs on dependency
task and achieve the new state-of-the-art (SOTA) re-
sults (Fernández-González and Gómez-Rodríguez,
2020; Gan et al., 2021). However, PLMs used in
most previous research are encoder-only PLM such
as BERT (Devlin et al., 2019). Recently, more and
more research demonstrates the power of genera-
tive encoder-decoder PLM (Du et al., 2021), which
inspires us to think about an interesting question:
can dependency parsing be implemented in a gener-
ative sequence-to-sequence method? If this method
works, can it be used well for new representations
and low-resource scenarios?

In order to verify the feasibility of generative-
parsing and explore suitable design solutions,
we propose Dependency Parsing via Sequence
Generation (DPSG). The core idea is to find a
unified unambiguous serialized representation for
both syntactic and semantic dependency structures.
Then an encoder-decoder PLM is learned to gen-
erate the parsing results following the serialized
representation, without the need for an additional
decoder. That is, our parser can achieve its function
using one original PLM (without any modification).

In particular, DPSG consists of three key compo-
nents. The Serializer is responsible for converting
between the dependency structure and the serial-
ized representation. The Positional Prompt pattern
provides supplementary word position information
in the input sentence to facilitate the sequence gen-
eration process. The encoder-decoder PLM with
added special tokens performs the parsing task via
sequence generation.

We conduct experiments on 5 popular DP bench-
marks: PTB, UD2.2, CODT, SDP15, and Se-
mEval16. DPSG performs generally well on dif-
ferent DP tasks. It significantly outperforms the
baselines on cross-domain (CODT) and Chinese
SeDP (SemEval16) corpora, and achieves com-
parable results on the other three benchmarks.
In addition, the few-shot cross-task experiments
also demonstrate the applicability of DPSG . We
also design a series of pilot experiments to ex-
plore the rationality of the designing of the DPSG.
Our research shows that generative sequence-to-
sequence method has the potential to be an ef-

fective sequence-to-sequence approach for depen-
dency parsing.

2 Preliminaries

We formally introduce the dependency parsing task
and the encoder-decoder PLM, and the correspond-
ing notations. This paper uses bold lower case let-
ters, blackboard letters, and bold upper case letters
to denote sequences, sets, and functions, respec-
tively. Elements in the sequence and the sets are
enclosed in parentheses and braces, respectively.

2.1 Dependency Parsing
A pre-defined dependency representation is a set
of relations R. Dependency parsing takes a sen-
tence x = (w1, w2, ..., wn) as input, where wi is
the ith word in the sentence. It outputs the set
of dependency pairs y = (p1, p2, ..., pn), where
pi =

{(
rji , h

j
i

)}
denotes the dependency pair of

the ith word wi. We use hji and rji to denote the
jth head word of wi and their relation. PID(w) de-
notes the position of the specific word w in the
input sentence.

Syntactic Dependency Parsing (SyDP) anal-
yses the grammatical dependency relations. The
parsing result of SyDP is a tree structure called
the syntactic parsing tree. In the SyDP, each non-
root word has exactly one head word, which means
|pi| = 1 if wi is the not root word.

Semantic Dependency Parsing (SeDP) focuses
on representing the deep-semantic relation between
words. Each word in SeDP is allowed to have
multiple (even no) head words. This leads to the
result of SeDP being a directed acyclic graph called
Semantic Dependency Graph. Figure 1 shows the
difference between SyDP and SeDP, where SyDP
produces a tree while SeDP produces a graph.

2.2 Pre-trained Language Model
PLMs are usually stacks of attention blocks of
Transformer (Vaswani et al., 2017). Some PLMs
that consist of encoder blocks only (e.g., BERT (De-
vlin et al., 2019)) are not capable of sequence gener-
ation. This paper focuses on PLMs having both en-
coder blocks and decoder blocks, such as T5 (Raf-
fel et al., 2020) and BART (Lewis et al., 2020).

An encoder-decoder PLM takes a sequence
s = (s1, ..., sn) as input, and outputs a sequence
PLM(s) = o = (o1, ..., om). Each PLM has an
associated vocabulary V, which is a set of tokens
that can be directly accepted and embedded by the

7340

HaagMs. plays Elianti .

Input Sentence

Pre-train Language Model 𝐏𝐋𝐌

Ms. [NNP] 1 [SPT] Haag [NNP] 2 [SPT] plays [VBZ] 3 [SPT] Elianti [NNP] 4 [SPT] . [.] 5 [SPT]

Legends

Special Token

Position Number

Words

Dependency Relation

Ms. [root] 1 [SPT] Haag [RSTR] 1 [SPT] plays [root] 3 [SPT]Haag [ACT-arg] 3 [SPT] Elianti [PAT-arg] 3 [SPT] . [NO] [SPT]no

Dependency
Structure of
Input Sentence Haag

Ms. plays

Elianti

.

compound ARG1 ARG2
Serializer 𝐒

one dependency unitone dependency unitone dependency unitone dependency unitone dependency unitone dependency unit

Serialized Representation

Position Prompt 𝐏𝐏

C
on

st
ru

ct

Se
ria

liz
ed

 R
ep

re
se

nt
at

io
n

G
en

er
at

e
Se

ria
liz

ed
 R

ep
re

se
nt

at
io

n

Figure 2: This figure shows the overall framework of DPSG. The DM semantic dependency structure of “Ms. Haag
plays Elianti .” is converted into the serialized representation by the Serializer. The Positional Prompt module
injects positional information into the input sentence, and the PLM is responsible for generating the results.

PLM. The PLM first splits the input sequence into
tokens in the vocabulary with a subword tokeniza-
tion algorithm, such as SentencePieces (Kudo and
Richardson, 2018). Then, the tokens are mapped
into vectors by looking up the embedding table.
The attention blocks digest the embedded sequence
and generate the output sequence.

3 Method

DPSG leverages a PLM to parse the dependency re-
lation of a sentence by sequence generation. There-
fore, the Serializer converts the dependency struc-
ture into a serialized representation that meets the
output format of the PLM (Section 3.1). The Po-
sitional Prompt injects word position and part-of-
speech tagging into the input sentence so as to
avoid numerical reasoning (Section 3.2). The PLM
is modified by adding special tokens introduced
by the Serializer and the Positional Prompt (Sec-
tion 3.3). Figure 2 illustrates the overall frame-
work.

3.1 Serializer for Dependency Structure

The Serializer S : (x,y) 7→ t is a function that
maps sentence x and its corresponding dependency
pairs y into a serialized representation t, which
servers as the target output to fine-tune the language
model. The Inverse Serializer S−1 : (x,o) 7→ y
converts the output o of the PLM into dependency
pairs to meet the output requirement of the DP task.

Specifically, the Serializer S decomposes depen-
dency pairs,

{(
hji , r

j
i

)}
∈ y, into smaller de-

pendency units by scattering the dependent word
wi into each of its head word, which forms the

following triplets set:
{
(wi, r

j
i , h

j
i)
}

. Then, it

replaces each relation rji with a special token2
[
REL

(
rji

)]
∈ R, where R is a set of special to-

kens for all different relations. The head word hji
is substituted by its position in the input sentence
x, denoted as PID

(
hji

)
. The target serialized rep-

resentation t = S(x) concatenates all the depen-
dency units with split token [SPT] as the following:
(
...
[
SPT

]
wi

[
REL

(
rji

)]
PID

(
hji

)

︸ ︷︷ ︸
one dependency unit

[
SPT

]
...
)

The Inverse Serializer S−1 restores the dependency
structure from the serialized representation by sub-
stituting the special token

[
REL

(
rji

)]
with the

original relation and indexing the head with its
position PID

(
hji

)
in the input sentence x.

There are two issues in the Serializer designing:
Word Ambiguity. It is highly possible for words,
especially function words, to appear multiple times
in one sentence, e.g., there are more than 72% sen-
tences in Penn Treebank (Marcus et al., 1993) with
repeated words. We take two measures for word
disambiguation in a dependency unit: (1) To dis-
ambiguate head word, the Serializer represents the
head word by its position, rather than the word
itself; (2) To disambiguate dependent word, the Se-
rializer arranges dependency units by order of the
dependent word in the input sentence x, rather than
topological ordering or depth/breadth first search
ordering of the dependency graph. The Inverse Se-

2Brackets indicate special tokens out of vocabulary V.

7341

rializer scans x and o simultaneously so as to refer
the corresponding dependent word to x.
Isolated Words. There are dependency representa-
tions allowing for isolated words which have nei-
ther head words nor dependency relations with
other words, e.g., the period mark in the SeDP
results shown in Figure 1. Note that the isolated
words are different from the root word, as the root
word is the head word of itself. We use special
token [NO] to denote such isolation relation and
word no to represent the position of the virtual
head word.

3.2 Positional Prompt for Input Sentence

As Section 3.1 mentions, representing the head
words by their positions is an important scheme
for head word disambiguation. However, PLMs
are less skilled at numerical reasoning (Geva et al.,
2020). We also empirically find it difficult for the
PLM to learn the positional information of each
word from scratch. Thus, we inject Positional
Prompt (PP) for each word, which converts the
positional encoding problem into generating the
position number in the input, rather than counting
for each word.

In particular, given the input sentence x, the
positional prompt is the position number of each
word wi wrapped with two kinds of special tokens
[POSi] and [SPT]. [POSi] marks the part-of-speech
tagging (POS tagging) of wi and prevents the tok-
enization algorithms from falsely taking the posi-
tional prompt as part of the previous word. [SPT]
separates the position number from the next word.
They also provide word segmentation information
for some languages, such as Chinese. After the
conversion, we have the input sequence in the fol-
lowing form:

s = w1 [POS1] 1 [SPT] w2 [POS2] 2 [SPT] · · ·

For brevity, we denote the above process as a func-
tion PP : x 7→ s that maps input sentence into
sequence with positional prompt.

3.3 PLM for Sequence Generation

Both Serializer and Positional Prompt introduce
special tokens that are out of the original vocab-
ulary V, including the relation tokens in R, the
separation tokens [PID], [SPT], and the special rela-
tion token [NO]. Before training, these tokens are
added to the vocabulary, and their corresponding
embeddings are randomly initialized from the same

distribution as other tokens. As we should notice,
these special tokens are expected to undertake dif-
ferent semantic information. PLM thus treats them
as trainable variables and learns their semantic in-
formation during training.

With all the three components of DPSG, input
sentence is first converted into sequence with po-
sitional prompt: s = PP(x). The sequence is
further fed into the PLM and get the sequence out-
put with the maximum probability: o = PLM(s).
The final predicted dependency structure is recov-
ered via the Inverse Serializer: y′ = S−1(o).

The training objective aims to maximize the like-
lihood of the ground truth dependency structure.
To do so, we take the serialized dependency struc-
ture as the target and minimize the auto-regressive
language model loss.

4 Experiments

4.1 Evaluation Setups

4.1.1 Datasets
We evaluate DPSG on the following 5 widely used
benchmarks for both SyDP and SeDP. We show
more details about datasets in Appendix A.

• Penn Treebank (PTB) (Marcus et al., 1993) is
the most well-known benchmark for SyDP. We
follow Ma et al. (2018) to use the Stanford basic
Dependencies representation (de Marneffe et al.,
2006) of PTB convert by Stanford parser3.

• Universal Dependency Treebanks (UD) (Nivre
et al., 2016) is the most popular multi-lingual
dataset for SyDP. We follow previous works (Gan
et al., 2021; Ma et al., 2018) to process 12 lan-
guages from 2.2 version of UD (UD2.2). They
are: Bulgarian (bg), Catalan (ca), Czech (cs),
German (de), English (en), Spanish (es), French
(fr), Italian (it), Dutch (nl), Norwegian (no), Ro-
manian (ro), and Russian (ru).

• Chinese Open Dependency Treebank (CODT)
(Li et al., 2019) aims to evaluate the cross-domain
SyDP capacity of the parser. It includes a bal-
anced corpus (BC) for training, and three other
corpora gathering from different domains for test-
ing: product blogs (PB), popular novel “Zhu
Xian” (ZX), and product comments (PC).

• BroadCoverage Semantic Dependency Pars-
ing dataset (SDP15) (Oepen et al., 2014) anno-
tates English SeDP sentences with three different

3http://nlp.stanford.edu/software/lex-parser.html

7342

representations, named as DM, PAS, and PSD. It
provides both in-domain (ID) and out-of-domain
(OOD) evaluation datasets. The representation
of SDP15 allows for isolated words.

• Chinese semantic Dependency Parsing dataset
(SDP16) (Che et al., 2012) is a Chinese SeDP
benchmark. The sentences are gathered from
News (NEWS) and textbook (TEXT). The repre-
sentation of SemEval16 allows for multiple head
words but does not have isolated words.

4.1.2 Evaluation Metrics
Following the conventions, we use unlabeled at-
tachment score (UAS) and labeled attachment score
(LAS) for SyDP. We use labeled attachment F1
Score (LF) on SDP15 of SeDP. For SeDP on Se-
mEval16, we use unlabeled attachment F1 (UF)
and labeled attachment F1 (LF). All the results are
presented in percentages (%).

4.1.3 Implementations
We use T5-base (Raffel et al., 2020) and mT5-
base (Xue et al., 2021) as the backbone PLM for
datasets in English and datasets in other languages,
respectively. In particular, we use V1.1 check-
points, which are only pre-trained on unlabeled
sentences, so as to keep the PLM unbiased.

The PLM is implemented with Huggingface
Transformers (Wolf et al., 2020). The learning
rate is 5× e−5, weight decay is 1× e−5. The op-
timizer is AdamW (Loshchilov and Hutter, 2019).
The other details are shown in Appendix B.

4.2 Baselines

We divide baselines into three main categories
based on their domain of expertise. We supple-
ment more details about baselines in Appendix C.

In-domain and Multi-lingual SyDP. Bi-
affine (Dozat and Manning, 2017), StackPTR (Ma
et al., 2018), and CRF2O (Zhang et al., 2020) in-
troduce specially designed parsing modules with-
out PLM. CVT (Clark et al., 2018), MP2O (Wang
and Tu, 2020), RNGTr (Mohammadshahi and Hen-
derson, 2021) and MRC (Gan et al., 2021) are re-
cently proposed PLM-based dependency parser. Se-
qNMT (Li et al., 2018), SeqViable (Strzyz et al.,
2019), and PaT (Vacareanu et al., 2020) cast depen-
dency parsing as sequence labeling task, which is
closely related to our sequence generation method.
Apart from these methods, HPSG (Zhou and Zhao,
2019) and HPSG+LA (Mrini et al., 2020) combine

Param Method (PLM) UAS LAS

- CRF2O 96.14 94.49
- Biaffine 95.74 94.08
- StackPTR 95.87 94.19

340M †MP2O (BERT-large) 96.91 95.34
335M †MRC (RoBERTa-large) 97.24 95.49

- †CVT (CVT) 96.60 95.00
110M †RNGTr (BERT-base) 96.66 95.01

340M ∗‡HPSG (BERT-large) 97.20 95.72
340M ∗‡HPSG+LA (XLNet-large) 97.42 96.26

- ‡SeqNMT 92.08 94.11
- ‡SeqViable 93.67 91.72

110M †‡PaT (BERT-base) 95.87 94.66

220M †‡DPSG (T5-base) 96.64 95.82
60M †‡DPSG (T5-small) 96.13 95.18

Table 1: Results on PTB for SyDP. Param means the
number of parameters of the used PLM. The value ‘-’
in this column means this is a method without PLM.
‡ means this method belongs to sequence-tp-sequence
methods. † means this method use PLM. ∗ means this
method utilize additional constituency parsing informa-
tion and is not comparable to other methods.

with information of constituency parsing thus out-
perform all parsing baselines.

Unsupervised Cross-domain SyDP. Peng et al.
(2019) and Li et al. (2019) modify the Biaffine for
the unsupervised cross-domain DP. SSADP (Lin
et al., 2021) relies on extra domain adaptation steps.
In the PLM era, Li et al. (2019) propose ELMo-
Biaffine with IFT on unlabeled target domain data.

SeDP. Dozat and Manning (2018) modify Bi-
affine for SeDP. BS-IT (Wang et al., 2018) is a
transition-based semantic dependency parser with
incremental Tree-LSTM. HIT-SCIR (Che et al.,
2019) solves the SeDP with a BERT based pipeline.
BERT+Flair4 (He and D. Choi, 2020) augments
the Biaffine model with BERT and Flair (Akbik
et al., 2018) embedding. MFVI (Wang et al., 2019)
and Pointer (Fernández-González and Gómez-
Rodríguez, 2020) are the recently proposed ex-
cellent graph-based method and transition-based
method for SeDP.

4.3 Main Results

We first validate the capacity of DPSG on both
SyDP and SeDP in different languages and differ-
ent domains, then we show that DPSG is trans-
ferable in low-resource scenarios including unsu-

4They use different pre-processing scripts on SDP15, thus
are not comparable with DPSG and other baselines on SDP15.

7343

Model bg ca cs de en es fr it nl no ro ru AVG

CRF2O 90.77 91.29 91.54 80.46 87.32 90.86 87.96 91.91 88.62 91.02 86.90 93.33 89.33
MP2O 91.30 93.60 92.09 82.00 90.75 92.62 89.32 93.66 91.21 91.74 86.40 92.61 90.61

PaT 89.56 91.56 90.14 83.80 90.25 90.80 89.87 92.31 89.51 92.95 83.71 92.22 89.72
MRC 93.76 94.38 93.81 85.23 91.95 92.62 91.76 94.79 92.97 94.50 88.67 95.00 92.45

DPSG 93.92 93.75 92.97 84.84 91.49 92.37 90.73 94.59 92.03 95.30 88.76 95.25 92.17

Table 2: Results on 12 languages of UD2.2 in terms of LAS. All these baselines utilize PLM except CRF2O. The
scales of used PLM are same with corresponding model in Table 1.

Method
NEWS TEXT

UF LF UF LF

BS-IT 81.14 63.30 85.71 72.92
BERT+Flair 82.92 67.27 91.10 80.41

DPSG 84.31 70.82 90.97 82.36

Table 3: Experimental results on SemEval16.

Method (ID/OOD) DM PAS PSD

BS-IT 90.3/84.9 91.7/87.6 78.6/75.9
†HIT-SCIR (BERT-base) 92.9/89.2 94.4/92.4 81.6/81.0
MFVI 94.0/89.7 94.1/91.3 81.4/79.6
†Pointer (BERT-base) 94.4/91.0 95.1/93.4 82.6/82.0

DPSG (T5-base) 94.3/90.8 95.1/93.2 83.1/82.0

Table 4: Experimental results on SDP15 in terms of LF
(including ID and OOD results). † means the model
utilizing PLM.

pervised cross-domain DP and few-shot cross-task
DP. Especially the few-shot cross-task experiments
show that DPSG provides a principled way to
explore the intrinsic connection among different
structure parsing tasks.

4.3.1 DPSG is capable of DP

Single-lingual DP results are shown in Table 1 and
Table 4. DPSG achieves the first-tier on PTB in Ta-
ble 1 and SDP15 in Table 4. For SyDP, DPSG out-
performs MRC, the SOTA model for DP, by 0.33%
in LAS. For SeDP, DPSG obtain the comparable
performance with Pointer.

In order to verify that the effectiveness of the
proposed serialization scheme does not depend too
much on the size of the PLM, we also use T5-small
as the backbone for PTB. The result shows that
the T5-small with only 60M parameters obtains
performance comparable to other larger PLMs.

Multi-lingual DP results are shown in Table 2
and Table 3. DPSG obtain comparable perfor-
mance to the SOTA baselines on UD2.2, and espe-

cially get the SOTA in bg, no, ro, and ru. For Chi-
nese SeDP in Table 3, DPSG also obtain the SOTA
performance. DPSG outperforms BERT+Flair to
a large margin, achieves 3.55% performances gain
on NEWS and 1.95% performances on TEXT with
regard to LF.

4.3.2 Low-resource ability of DPSG
Unsupervised cross-domain is one of the com-
mon low-resource scenarios. Table 5 demonstrates
the outstanding cross-domain transfer ability of
DPSG. We enhance the unsupervised cross-domain
capacity of DPSG with intermediate fine-tuning
(IFT) (Pruksachatkun et al., 2020). Before train-
ing on the dependency parsing, the intermediate
fine-tuning uses the unlabeled sentences in the tar-
get domain and continues to train the PLM in the
source domain. We implement DPSG with and
without IFT on the target domain. DPSG with IFT
achieves the new SOTA, with a boosting of 5.06%,
7.21% and 10.49% in terms of LAS on PB, ZX,
and PC, compared to ELMo with IFT.

Few-shot cross-task experiments are conducted
on SyDP (PTB)−→SeDP (SDP15). We randomly
extract the 0.1%, 1% and 10% samples from the
original SDP train sets to simulate the few-shot set-
ting. The results are shown in Figure 3. Comparing
with the vanilla T5, the DPSG with Tuning achieve
higher performance in all few-shot settings. Espe-
cially in the low-resource scenario, the DPSG with
Tuning only uses 35 training samples to achieve
the 64.73% performance comparing with the origi-
nal DPSG. Even in the OOD test, DPSG also get
65.63% performance. These results also demon-
strate the intrinsic relationship between SeDP and
SyDP. We supplement more detailed statistics in
Appendix D.

5 Analysis

This section studies whether there is better imple-
mentation for DPSG. We are particularly interested

7344

Category Model
BC→ PB BC→ ZX BC→ PC Average

UAS LAS UAS LAS UAS LAS UAS LAS

w/o PLM
Biaffine 67.75 60.95 69.41 61.55 39.95 26.96 59.04 49.82
SSADP 68.55 61.59 70.82 63.61 41.10 27.67 60.16 50.96

w/ PLM
ELMo-Biaffine w/ IFT 77.15 71.54 74.68 67.51 53.04 39.48 68.29 59.51

DPSG w/o IFT 78.86 73.28 75.74 69.42 54.00 41.98 69.53 61.56
DPSG w/ IFT 81.74 76.60 80.73 74.77 62.44 49.97 74.97 67.11

Table 5: Results on CODT for unsupervised cross-domain SyDP.

Figure 3: Compare curves of the DPSG with tuning
on PTB and the DPSG without tuning on PTB. The
training set sizes corresponding to 0.1%, 1%, 10% and
100% are 35, 356, 3565 and 35656, respectively.

in: 1) the designing of the Serializer, 2) the effect
of the introduced special tokens, and 3) the choice
of the PLM model. We use PTB as the benchmark
and compare DPSG introduced in Section 3 with
many other possible choices. The results of these
exploratory experiments are shown in Table 6.

5.1 Serializer Designing
Tree, as the well-studied data structure for syntac-
tic dependency parsing, has several other serializa-
tion methods to be converted into serialized repre-
sentations. We explore the serializer designing of
the tree structure in DPSG with two other widely
used serialized representation—Prufer sequence
and Bracket Tree, which are shown in Figure 4.
Note that both Prufer sequence and Bracket Tree
face the same word ambiguity issues; we associate
each word with a unique position number as well.

Prufer Sequence is a unique sequence associ-
ated with the labeled tree in combinatorial mathe-
matics.

Bracket Tree is one of the most commonly used

Prufer Sequence

Bracket Tree Sequence

Syntactic Dependency Tree

Ms.

plays

Haag Elianti .

nn

nsubj dobj punct

plays [root] (Haag [nsubj] (Ms. [nn]) Elianti [dobj] . [punct])3 12 4 5

2Ms. [nn] Haag [nsubj] Elianti [dobj] . [punct]3 3 3

1

2

3

4 5

virtual 6

Figure 4: Prufer sequence and Bracket Tree sequence
of the same sentence “Ms. Haag plays Elianti .”.

Metric DPSG Prufer Bracket DPSG-pos

UAS 96.64 88.62↓7.98 95.37↓1.27 96.48↓0.16
LAS 95.82 86.77↓11.32 93.76↓2.06 95.04↓0.78

Metric DPSG-pid DPSG-pid-pos DPSG-rel DPSGBART

UAS 95.20↓1.42 93.12↓3.52 96.45↓0.19 86.35↓10.13
LAS 93.17↓2.65 92.30↓3.52 95.54↓0.28 79.45↓15.59

Table 6: Results on PTB for exploratory experiment

serialization methods to represent the tree struc-
ture (Vinyals et al., 2015; Cross and Huang, 2016).
More details about the Prufer sequence and the
bracket tree are shown in Appendix E.

We denote the experimental results of Prufer
sequence and bracket tree as Prufer and Bracket,
respectively, in Table 6. Both Prufer sequence
and bracket tree undermine the performance of
DPSG to a large margin, which indicates that our
proposed Serializer provides a better serialized rep-
resentation for the PLM to generate. This is be-
cause our Serializer guarantees the dependency
units in the output have the same order of the words
in the input sentences, while Prufer sequence and
bracket tree do not preserve the order. Thus, our

7345

proposed DPSG expands the input sentence to gen-
erate the output sequence, while Prufer sequence
and bracket tree based DPSG reconstruct the syn-
tax dependency structure. As expansion strategy
has smaller generation space than reconstruction,
the serialization representation proposed in Sec-
tion 3.1 eases the learning complexity of the PLM,
and further brings better performance.

5.2 Special Tokens Designing
We further investigate whether the additionally in-
troduced special tokens are useful.

Relation Tokens. There are two different ways
to represent the dependency relations in the seri-
alized representation: adding a special token for
each dependency relation, or let the PLM directly
generate the original relation. The later is denoted
as DPSG-rel in Table 6. DPSG-rel is inferior than
DPSG, which indicates that the special tokens for
relations are useful. The reason is that adding the
special token for dependency relation enables the
PLM to learn embedding for the whole relation.

Positional Prompt. We are also particularly
interested in the effectiveness of the positional
prompts. We conduct experiments where the posi-
tion and POS tagging are removed respectively and
the experiment of removing both of them. The
results are denoted as DPSG-pid, DPSG-pos and
DPSG-pid-pos in Table 6. DPSG-pid undermines the
performance of DPSG because it requires the PLM
to perform numerical reasoning, that is, to count for
the position of each head word. DPSG-pos under-
mines the performance of DPSG because it leaks
the POS tagging information.

5.3 Model Choosing
Both BART and T5 are widely used encoder-
decoder PLMs. We try BART-base as the backbone
PLM in DPSG. Table 6 shows that BART under-
mines the performance. In addition, BART has a
significant performance drop after achieving the
best performance, as shown in Appendix G.

5.4 Legality
There are two different legalities in DPSG. Forma-
tion Legality focus on whether the sequence has the
correct formation (see Section 3.1) and Structural
Legality focus on the legality of the correspond-
ing parsing structure. The statistics on PTB show
that the formation legality of DPSG is 100%, and
the structure legality of DPSG is 99.7%, which is
acceptable in practical usage.

Besides, the constraint decoding techniques can
be incorporated to force the model to output legal
output. During the beam search process, the con-
straint decoding exam the legality of current pred-
icated sequence for all propoble head tokens and
remove all head tokens which make the sequence
become illegal.

6 Related Work

6.1 Syntactic Dependency Parsing

In-domain SyDP. Transition-based methods
and graph-based methods are widely used in
SyDP. Dozat and Manning (2017) introduce bi-
affine attention into the graph-based methods. Ma
et al. (2018) adopt pointer network to alleviate
the drawback of local information in transition-
based methods. Fernández-González and Gómez-
Rodríguez (2021) develop a bottom-up-oriented Hi-
erarchical Pointer Network for the left-to-right de-
pendency parser. As for the sequence-to-sequence
methods, Strzyz et al. (2019) improve Li et al.
(2018)’s method and explore more representation
of predicated labeling sequence of dependency
parsing. Vacareanu et al. (2020) use BERT to aug-
ment the sequence labeling methods.

Unsupervised Cross-domain SyDP. The label-
ing of parsing data requires a wealth of linguis-
tics knowledge and this limitation facilitates the
research of unsupervised cross-domain DP. Yu
et al. (2015) introduce pseudo-labeling unsuper-
vised cross-domain SyDP via self-training. Li et al.
(2019) propose a cross-domain datasets CODT for
SyDP and build baselines for unsupervised cross-
domain SyDP.

6.2 Semantic Dependency Parsing

Buys and Blunsom (2017) accomplish the first
transition-based parser for Minimal Recursion Se-
mantics (MRS). Zhang et al. (2016) present two
novel transition-systems to generate arbitrary di-
rected graphs in an incremental manner. Wang et al.
(2019) consider the secord-order information for
SeDP. Fernández-González and Gómez-Rodríguez
(2020) improve the pointer network with transition-
based method.

6.3 Comparing with Point Network

Although DPSG is the first parser to achieve
parsing completely rely on PLM via sequence
generation, its mechanism has some similari-
ties with some previous transition-based methods.

7346

Fernández-González and Gómez-Rodríguez (2019)
and Fernández-González and Gómez-Rodríguez
(2020) both use the left-to-right point network to
achieve parsing by auto-regressive "generation",
which imply some idea of serialization. Compar-
ing with these methods, DPSG remove the pointer
network within stack and buffers, which makes the
architecture more simple. However, due to the ex-
istence of specially designed pointer networks and
action sequences, such methods have the possibil-
ity of further improving the network structure to
improve the parsing performance. On the contrary,
DPSG relies more on the design of the serializa-
tion scheme to improve the performance, and it
is relatively difficult to improve the performance
via improving the PLM structure. In addition, the
inference speed of pointer network is faster than
that of DPSG based on PLM for inference.

7 Conclusion

This paper proposes DPSG, a generative sequence-
to-sequence dependency parsing method. By seri-
alizing the parsing structure to a flattened sequence,
PLM can directly generate the parsing results in
serialized representation. DPSG not only achieves
good results in different parsing representations,
but also performs surprisingly well on unsuper-
vised cross-domain DP. The few-shot transfer ex-
periments also suggest that DPSG is capable of
investigating the inner connection between SeDP
and SyDP. The exploratory experiments and analy-
ses demonstrate the rationality of the designing of
DPSG. Considering the unity, indirectness, and ef-
fectiveness of DPSG, we believe the sequence gen-
erative is one of the effective sequence-to-sequence
methods for dependency parsing.

8 Limitations

Considering the powerful learning ability of pre-
trained language model (PLM) and the simplicity
of the overall process, we do not add constraint de-
coding or post-processing to DPSG, which makes
the output of the model possibly illegal. In section
5.4, we have introduce some statistics of legality.
Although the statistics show that only a small per-
centage of outputs is illegal, considering the com-
plexity of the data in practical applications, we still
consider that legality problem is a limitation of our
work.

In the future research, we consider adding the
constrained decoding in the generation process of

DPSG.

Acknowledgements

This work is supported by the National Natural Sci-
ence Foundation of China (61702047, 62276195),
Natural Science Foundation of China Youth Project
(62006136) and a grant from the Institute for Guo
Qiang, Tsinghua University (2019GQB0003).

References
Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018.

Contextual string embeddings for sequence label-
ing. In Proceedings of the 27th International Con-
ference on Computational Linguistics, pages 1638–
1649, Santa Fe, New Mexico, USA. Association for
Computational Linguistics.

Emanuele Bugliarello and Naoaki Okazaki. 2020. En-
hancing machine translation with dependency-aware
self-attention. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1618–1627, Online. Association for
Computational Linguistics.

Jan Buys and Phil Blunsom. 2017. Robust incremen-
tal neural semantic graph parsing. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1215–1226, Vancouver, Canada. Association
for Computational Linguistics.

Avani Chandurkar and Ajay Bansal. 2017. Information
retrieval from a structured knowledgebase. In 11th
IEEE International Conference on Semantic Comput-
ing, ICSC 2017, San Diego, CA, USA, January 30 -
February 1, 2017, pages 407–412. IEEE Computer
Society.

Wanxiang Che, Longxu Dou, Yang Xu, Yuxuan Wang,
Yijia Liu, and Ting Liu. 2019. HIT-SCIR at MRP
2019: A unified pipeline for meaning representa-
tion parsing via efficient training and effective en-
coding. In Proceedings of the Shared Task on Cross-
Framework Meaning Representation Parsing at the
2019 Conference on Natural Language Learning,
pages 76–85, Hong Kong. Association for Computa-
tional Linguistics.

Wanxiang Che, Meishan Zhang, Yanqiu Shao, and Ting
Liu. 2012. SemEval-2012 task 5: Chinese semantic
dependency parsing. In *SEM 2012: The First Joint
Conference on Lexical and Computational Seman-
tics – Volume 1: Proceedings of the main conference
and the shared task, and Volume 2: Proceedings of
the Sixth International Workshop on Semantic Eval-
uation (SemEval 2012), pages 378–384, Montréal,
Canada. Association for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Christopher D. Man-
ning, and Quoc Le. 2018. Semi-supervised sequence
modeling with cross-view training. In Proceedings

7347

https://aclanthology.org/C18-1139
https://aclanthology.org/C18-1139
https://doi.org/10.18653/v1/2020.acl-main.147
https://doi.org/10.18653/v1/2020.acl-main.147
https://doi.org/10.18653/v1/2020.acl-main.147
https://doi.org/10.18653/v1/P17-1112
https://doi.org/10.18653/v1/P17-1112
https://ieeexplore.ieee.org/abstract/document/7889571
https://ieeexplore.ieee.org/abstract/document/7889571
https://doi.org/10.18653/v1/K19-2007
https://doi.org/10.18653/v1/K19-2007
https://doi.org/10.18653/v1/K19-2007
https://doi.org/10.18653/v1/K19-2007
https://aclanthology.org/S12-1050
https://aclanthology.org/S12-1050
https://doi.org/10.18653/v1/D18-1217
https://doi.org/10.18653/v1/D18-1217

of the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1914–1925, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

James Cross and Liang Huang. 2016. Span-based con-
stituency parsing with a structure-label system and
provably optimal dynamic oracles. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1–11, Austin, Texas.
Association for Computational Linguistics.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
Proceedings of the Fifth International Conference
on Language Resources and Evaluation (LREC’06),
Genoa, Italy. European Language Resources Associ-
ation (ELRA).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but more accurate semantic dependency pars-
ing. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 484–490, Melbourne,
Australia. Association for Computational Linguistics.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2021. All
nlp tasks are generation tasks: A general pretraining
framework. ArXiv preprint, abs/2103.10360.

Daniel Fernández-González and Carlos Gómez-
Rodríguez. 2019. Left-to-right dependency parsing
with pointer networks. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 710–716. Association for Computa-
tional Linguistics.

Daniel Fernández-González and Carlos Gómez-
Rodríguez. 2020. Transition-based semantic depen-
dency parsing with pointer networks. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7035–7046, On-
line. Association for Computational Linguistics.

Daniel Fernández-González and Carlos Gómez-
Rodríguez. 2021. Dependency parsing with bottom-
up hierarchical pointer networks. ArXiv preprint,
abs/2105.09611.

Leilei Gan, Yuxing Meng, Kun Kuang, Xiaofei Sun,
Chun Fan, Fei Wu, and Jiwei Li. 2021. Dependency
parsing as mrc-based span-span prediction. ArXiv
preprint, abs/2105.07654.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–6,
Melbourne, Australia. Association for Computational
Linguistics.

Mor Geva, Ankit Gupta, and Jonathan Berant. 2020.
Injecting numerical reasoning skills into language
models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 946–958, Online. Association for Computa-
tional Linguistics.

Han He and Jinho D. Choi. 2020. Establishing strong
baselines for the new decade: Sequence tagging, syn-
tactic and semantic parsing with BERT. In Proceed-
ings of the Thirty-Third International Florida Artifi-
cial Intelligence Research Society Conference, Origi-
nally to be held in North Miami Beach, Florida, USA,
May 17-20, 2020, pages 228–233. AAAI Press.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Zhenghua Li, Xue Peng, Min Zhang, Rui Wang, and
Luo Si. 2019. Semi-supervised domain adaptation
for dependency parsing. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2386–2395, Florence, Italy. Asso-
ciation for Computational Linguistics.

Zuchao Li, Jiaxun Cai, Shexia He, and Hai Zhao. 2018.
Seq2seq dependency parsing. In Proceedings of the
27th International Conference on Computational Lin-
guistics, pages 3203–3214, Santa Fe, New Mexico,
USA. Association for Computational Linguistics.

7348

https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/D16-1001
http://www.lrec-conf.org/proceedings/lrec2006/pdf/440_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/440_pdf.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.18653/v1/P18-2077
https://arxiv.org/abs/2103.10360
https://arxiv.org/abs/2103.10360
https://arxiv.org/abs/2103.10360
https://doi.org/10.18653/v1/N19-1076
https://doi.org/10.18653/v1/N19-1076
https://doi.org/10.18653/v1/2020.acl-main.629
https://doi.org/10.18653/v1/2020.acl-main.629
https://arxiv.org/abs/2105.09611
https://arxiv.org/abs/2105.09611
https://arxiv.org/abs/2105.07654
https://arxiv.org/abs/2105.07654
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/2020.acl-main.89
https://doi.org/10.18653/v1/2020.acl-main.89
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS20/paper/view/18438
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS20/paper/view/18438
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS20/paper/view/18438
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/P19-1229
https://doi.org/10.18653/v1/P19-1229
https://aclanthology.org/C18-1271

Boda Lin, Mingzheng Li, Si Li, and Yong Luo.
2021. Unsupervised domain adaptation method with
semantic-structural alignment for dependency pars-
ing. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 2158–2167,
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv preprint, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard Hovy. 2018. Stack-
pointer networks for dependency parsing. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1403–1414, Melbourne, Australia. As-
sociation for Computational Linguistics.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics: System Demonstrations, pages 55–60, Balti-
more, Maryland. Association for Computational Lin-
guistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Alireza Mohammadshahi and James Henderson. 2021.
Recursive non-autoregressive graph-to-graph trans-
former for dependency parsing with iterative refine-
ment. Transactions of the Association for Computa-
tional Linguistics, 9:120–138.

Khalil Mrini, Franck Dernoncourt, Quan Hung Tran,
Trung Bui, Walter Chang, and Ndapa Nakashole.
2020. Rethinking self-attention: Towards inter-
pretability in neural parsing. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2020, pages 731–742, Online. Association for Com-
putational Linguistics.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC’16), pages 1659–1666, Portorož,
Slovenia. European Language Resources Association
(ELRA).

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajič, Angelina
Ivanova, and Yi Zhang. 2014. SemEval 2014 task
8: Broad-coverage semantic dependency parsing. In
Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), pages 63–72,
Dublin, Ireland. Association for Computational Lin-
guistics.

Xue Peng, Zhenghua Li, Min Zhang, Wang Rui, Yue
Zhang, and Luo Si. 2019. Overview of the nlpcc
2019 shared task: Cross-domain dependency parsing.
In Natural Language Processing and Chinese Com-
puting - 8th CCF International Conference, NLPCC
2019, Dunhuang, China, October 9-14, 2019, Pro-
ceedings, Part II, volume 11839, pages 760–771.
Springer.

Yada Pruksachatkun, Jason Phang, Haokun Liu,
Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe Pang,
Clara Vania, Katharina Kann, and Samuel R. Bow-
man. 2020. Intermediate-task transfer learning with
pretrained language models: When and why does it
work? In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
5231–5247, Online. Association for Computational
Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Michalina Strzyz, David Vilares, and Carlos Gómez-
Rodríguez. 2019. Viable dependency parsing as se-
quence labeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 717–723, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Damien Teney, Lingqiao Liu, and Anton van den Hen-
gel. 2017. Graph-structured representations for vi-
sual question answering. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017, pages
3233–3241. IEEE Computer Society.

Robert Vacareanu, George Caique Gouveia Barbosa,
Marco A. Valenzuela-Escárcega, and Mihai Sur-
deanu. 2020. Parsing as tagging. In Proceedings of
the 12th Language Resources and Evaluation Confer-
ence, pages 5225–5231, Marseille, France. European
Language Resources Association.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

7349

https://doi.org/10.18653/v1/2021.findings-emnlp.186
https://doi.org/10.18653/v1/2021.findings-emnlp.186
https://doi.org/10.18653/v1/2021.findings-emnlp.186
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://doi.org/10.1162/tacl_a_00358
https://doi.org/10.1162/tacl_a_00358
https://doi.org/10.1162/tacl_a_00358
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://aclanthology.org/L16-1262
https://aclanthology.org/L16-1262
https://doi.org/10.3115/v1/S14-2008
https://doi.org/10.3115/v1/S14-2008
https://link.springer.com/chapter/10.1007/978-3-030-32236-6_69
https://link.springer.com/chapter/10.1007/978-3-030-32236-6_69
https://doi.org/10.18653/v1/2020.acl-main.467
https://doi.org/10.18653/v1/2020.acl-main.467
https://doi.org/10.18653/v1/2020.acl-main.467
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/N19-1077
https://doi.org/10.18653/v1/N19-1077
https://doi.org/10.1109/CVPR.2017.344
https://doi.org/10.1109/CVPR.2017.344
https://aclanthology.org/2020.lrec-1.643
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey E. Hinton. 2015. Gram-
mar as a foreign language. In Advances in Neural
Information Processing Systems 28: Annual Confer-
ence on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada,
pages 2773–2781.

Xinyu Wang, Jingxian Huang, and Kewei Tu. 2019.
Second-order semantic dependency parsing with end-
to-end neural networks. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 4609–4618, Florence, Italy. Asso-
ciation for Computational Linguistics.

Xinyu Wang and Kewei Tu. 2020. Second-order neu-
ral dependency parsing with message passing and
end-to-end training. In Proceedings of the 1st Con-
ference of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 10th Interna-
tional Joint Conference on Natural Language Pro-
cessing, pages 93–99, Suzhou, China. Association
for Computational Linguistics.

Yuxuan Wang, Wanxiang Che, Jiang Guo, and Ting Liu.
2018. A neural transition-based approach for seman-
tic dependency graph parsing. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelli-
gence, (AAAI-18), the 30th innovative Applications
of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial In-
telligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 5561–5568. AAAI Press.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

Juntao Yu, Mohab Elkaref, and Bernd Bohnet. 2015.
Domain adaptation for dependency parsing via self-
trainging. In Proceedings of the 14th International
Conference on Parsing Technologies, pages 1–10,
Bilbao, Spain. Association for Computational Lin-
guistics.

Xun Zhang, Yantao Du, Weiwei Sun, and Xiaojun Wan.
2016. Transition-based parsing for deep dependency

structures. Computational Linguistics, 42(3):353–
389.

Yu Zhang, Zhenghua Li, and Min Zhang. 2020. Effi-
cient second-order TreeCRF for neural dependency
parsing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3295–3305, Online. Association for Computa-
tional Linguistics.

Junru Zhou and Hai Zhao. 2019. Head-Driven Phrase
Structure Grammar parsing on Penn Treebank. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2396–
2408, Florence, Italy. Association for Computational
Linguistics.

7350

https://proceedings.neurips.cc/paper/2015/hash/277281aada22045c03945dcb2ca6f2ec-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/277281aada22045c03945dcb2ca6f2ec-Abstract.html
https://doi.org/10.18653/v1/P19-1454
https://doi.org/10.18653/v1/P19-1454
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16549
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16549
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://aclanthology.org/W15-2201/
https://aclanthology.org/W15-2201/
https://doi.org/10.1162/COLI_a_00252
https://doi.org/10.1162/COLI_a_00252
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230

Set Section Sentences Words

Train [2-21] 39, 832 95, 0028
Dev [22] 1, 700 40, 117
Test [23] 2, 416 56, 684

Table 7: Data statistics of PTB.

Domain Train Set Dev Set Test Set Unlabeled Set

BC 16.3K 1K 2K –
PB 5.1K 1.3K 2.6K 291K
PC 6.6K 1.3K 2.6K 349K
ZX 1.6K 0.5K 1.1K 33K

Table 8: Data statistics of CODT.

A Dataset Statistics

The details about the statistics of datasets used in
this paper are shown on Table 7, Table 8, Table 9
and Table 10.

B More Details on Implementations

We conduct all the experiments on Tesla V100.
The majority of our experiments on DPSG con-
sume about 22GiB GPU memory. Generally speak-
ing, it takes about one and a half day for DPSG to
reach the best performance in Tesla V100. But the
datasets with larger dev sets and test sets need more
time for implementation, such as cs in the UD2.2.

C More Details on Baseline

Baselines for in-domain SyDP.

- 5 Biaffine: Dozat and Manning (2017) adopt bi-
affine attention mechanism into the graph-based
method of dependency parsing.

- StackPTR: Ma et al. (2018) introduce the pointer
network into the transition-based methods of de-
pendency parsing.

- CRF: Zhang et al. (2020) improve the CRF to
capture more high-order information in depen-
dency parsing.

• 6SeqNMT: Li et al. (2018) use an Encoder-
Decoder architecture to achieve the Seq2Seq
dependency parsing by sequence tagging. The
BPE segmentation from Neural Machine Trans-
lation (NMT) and character embedding from Al-
lenNLP (Gardner et al., 2018) are applied to ar-
gument their model.

5- means model without PLM
6• means sequence-based methods

Schema Train Set ID Test Set OOD Test Set

DM 35, 656 1, 410 1, 849
PAS 35, 656 1, 410 1, 849
PSD 35, 656 1, 410 1, 849

Table 9: Data statistics of SDP15.

Domain Train Set Dev Set Test Set

NEWS 8, 301 534 1, 233
TEXT 128, 095 1, 546 3, 096

Table 10: Data statistics of SemEval16.

• SeqViable: Strzyz et al. (2019) explore four en-
codings of dependency trees and improve the
performance comparing with Li et al. (2018).

• PaT: Vacareanu et al. (2020) use a simple tagging
structure over BERT-base to achieve sequence
labeling of dependency parsing.

+ 7 CVT: Clark et al. (2018) propose another pre-
train method named cross-view training, which
can be used in many sequence constructing task
including SyDP. The best results of CVT is
achieved by the multi-task pre-training of SyDP
and part-of-speech tagging.

+ MP2O: Wang and Tu (2020) use message pass-
ing GNN based on BERT to capture second-order
information in SyDP.

+ MRC: Gan et al. (2021) use span-based method
to construct the edges at the subtree level. The
Machine Reading Comprehension (MRC) is ap-
plied to link the different span. RoBERTa-
large (Liu et al., 2019) is applied to enhance the
representation of parser.

* 8 HPSG: Zhou and Zhao (2019) view Head-
driven Phrase Structure Grammar (HPSG) as
the combination of dependency parsing and con-
stituency parsing and achieve both the state-of-
the-art performance in dependency parsing and
constituency parsing.

* HPSG-LA: Mrini et al. (2020) propose Label
Attention Layer and utilize the training procedure
of HPSG parser to obtain the best performance
for dependency parsing until now.

Baselines for cross-domain SyDP.

* Biaffine: Peng et al. (2019); Li et al. (2019) use
Biaffine trained on source domain and test on

7+ means model utilizing PLM
8* means model utilizing HPSG information

7351

Syntactic Dependency Tree

Ms.

plays

Haag Elianti .

nn

nsubj dobj punct

1

2

3

4 5

virtual 6

Syntactic Dependency Tree

plays

Haag Elianti .

nsubj dobj punct

2

3

4 5

virtual 6

Syntactic Dependency Tree

plays

Elianti .

dobj punct
3

4 5

virtual 6

Syntactic Dependency Tree

plays

.

punct
3

5

virtual 6

Syntactic Dependency Tree

plays 3

virtual 6

Syntactic Dependency Tree

Ms.

plays

Haag Elianti .

nn

nsubj dobj punct

1

2

3

4 5

Ms. [nn] 2

Ms. [nn] Haag [nsubj] Elianti [dobj] . [punct]3 3 32Ms. [nn] Haag [nsubj] Elianti [dobj] 3 32Ms. [nn] Haag [nsubj] 32

a b c

d e f

Figure 5: The Prufer Sequence of sentence “Ms. Haag plays Elianti .” is constructed from a to f .

Syntactic Dependency Tree

Ms.

plays

Haag Elianti .

nn

nsubj dobj punct

1

2

3

4 5

a

b d e

c

plays[root] (Haag [nsubj] (Ms. [nn])Elianti [dobj]). [punct])3 2 1 4 5

Figure 6: The Bracket Tree Sequence of sentence “Ms.
Haag plays Elianti .” is constructed following the topo-
logical order from a to e.

target domain as the baseline of unsupervised
cross-domain SyDP.

* SSADP: Lin et al. (2021) use both semantic and
structural feature to achieve the domain adapta-
tion of unsupervised cross-domain parsing.

+ ELMo: Li et al. (2019) use ELMo with inter-
mediate fine-tuning in unlabeled text of target
domain to achieve the SOTA on unsupervised
cross-domain SyDP.

Baselines for SeDP.

* Biaffine: Dozat and Manning (2018) transfer the
Biaffine model from SyDP to SeDP.

* BS-IT: Wang et al. (2018) use graph-based
method for SeDP.

• HIT-SCIR: Che et al. (2019) propose a BERT-
based pipeline model for SeDP.

• BERT+Flair: He and D. Choi (2020) use BERT
and flair embedding (Akbik et al., 2018) to argu-
ment their modificated Biaffine.

• MFVI: Wang et al. (2019) consider the interac-
tions between pairs of edges in semantic graph,
which apply mead field variational inference and
loopy belief propagation into neural network.

• Pointer: Fernández-González and Gómez-
Rodríguez (2020) improve the transition-based
method with pointer network for semantic depen-
dency parsing.

D Few-shot Transfer

The details of the statistics about the cross-task few-
shot transfer experiments on SDP15 are shown on
Table 11.

E Construction of Prufer Sequence

E.1 Prufer Sequence

The prufer algorithm which converts labeled tree
into Prufer sequence does not preserve the root
node, while in dependency parsing, the root is a

7352

Shot / Ratio Method (ID) DM PAS PSD Avg(%)

(35656 / 100%) DPSG 94.3 95.1 83.1 100%
(3565 / 10%) with Tuning / without Tuning 91.1/89.1 94.8/92.2 80.3/78.6 97.64%/95.34%

(356 / 1%) with Tuning / without Tuning 80.0/68.8 88.3/75.0 71.5/63.0 87.91%/75.81%
(35 / 0.1%) with Tuning / without Tuning 57.3/22.4 62.0/0.3 56.7/0.1 64.73%/8.05%

Shot / Ratio Method (OOD) DM PAS PSD Avg(%)

(35656 / 100%) DPSG 90.8 93.2 82.0 100%
(3565 / 10%) with Tuning / without Tuning 86.6/84.1 90.4/89.1 78.6/76.9 96.07%/94.00%

(356 / 1%) with Tuning / without Tuning 76.0/63.6 83.8/69.6 69.8/59.8 86.24%/72.55%
(35 / 0.1%) with Tuning / without Tuning 57.4/20.0 61.4/0.8 55.6/0.1 65.63%/7.66%

Table 11: Few-shot transfer (PTB −→ SDP15) experimental results in terms of LF.

0 5 10 15 20 25 30
Epoch

70

75

80

85

90

95

100

LA
S

Metric Comparison between T5 and BART

BART-base
T5-base

Figure 7: The LAS curves on dev sets of PTB between
of T5-base and BART-base.

unique word. To bridge this inconsistency, we in-
troduce an additionally added virtual node to the
dependency tree to mark the root word.

The principle of construction is deleting the leaf
node with minimum index and adding the index
of its farther node into the prufer sequence. This
process is repeated more times until there are only
two nodes left in the tree.

E.2 Prufer for Parsing Tree

The arc in parsing tree is directed and thus is a
rooted tree. When all the son nodes with smaller
index are deleted, the root node will be treated as a
leaf node then deleted in the next step. To address
this problem, we add a virtual node with the maxi-
mum index and build a arc from virtual node to the
real root. This virtual root force the root node al-
ways being a leaf node in the whole construction of
prufer sequence. The overall construction process
as shown on Figure 5 (a)~(f).

F Construction of Bracket Tree

The Bracket Tree uses Bracket to indicate levels of
nodes. By recursively putting the sub-tree nodes in
a pair of brackets from left-to-right, bracket tree can
build a bijection between parsing tree and bracket
tree. All the nodes belonging to the same level are
wrapped in the same pair of brackets. The process
of construction is shown on Figure 6.

G Comparison between T5 and BART

Figure 7 shows the LAS comparison on dev sets
of PTB between the T5 and BART in first 30
epochs. After the first two epochs, the performance
of T5 raise rapidly and can better maintain perfor-
mance in the later stages of training. Although
BART achieves a better performance in the first
two round, but there is not much room for perfor-
mance improvement. To make matters worse, it
can be clearly seen that after achieving the best
performance, BART is very unstable, and even a
significant performance drop has occurred.

7353

