Sparse Mixers: Combining MoE and Mixing to build a more efficient
BERT

James Lee-Thorp and Joshua Ainslie
Google Research

{jamesleethorp,

Abstract

We combine the capacity of sparsely gated
Mixture-of-Experts (MoE) with the speed
and stability of linear, mixing transforma-
tions to design the Sparse Mixer encoder
model. Sparse Mixer slightly outperforms
BERT on GLUE and SuperGLUE, but more
importantly trains 65% faster and runs infer-
ence 61% faster. We also present a faster
variant, prosaically named Fast Sparse Mixer,
that marginally underperforms BERT on Su-
perGLUE, but trains and runs nearly twice as
fast. We justify the design of these two models
by carefully ablating through various mixing
mechanisms, MoE configurations, and hyper-
parameters. Sparse Mixer overcomes many of
the latency and stability concerns of MoE mod-
els and offers the prospect of serving sparse
student models, without resorting to distilling
them to dense variants.'

1 Introduction

Sparsely gated Mixture-of-Experts (MoE) mod-
els have seen a surge of interest in recent years
(Shazeer et al., 2017; Lepikhin et al., 2021; Fedus
et al., 2022; Riquelme et al., 2021; Du et al., 2021;
Artetxe et al., 2021; Clark et al., 2022; Mustafa
et al., 2022). MoE models offer the promise of sub-
linear compute costs with respect to the number of
model parameters. By training "experts" that can
independently process different slices of input data,
MOoE layers increase model capacity with limited
increases in FLOPS.

Perhaps because of the favorable capacity-to-
compute trade-off, most recent MoE studies, in-
cluding the aforementioned, have focused on using
MOoE to scale up large models. Using MoE layers to
scale to larger models offers quality and total train
efficiency gains over dense models, but not train or
inference step latency benefits. Indeed, the task of

'Source code available at https://github.com/

google-research/google-research/tree/
master/sparse_mixers.

58

jainslie}@google.com

serving these models in practice is either ignored or
relegated to distilling the sparse teacher model to
a dense student model (Hinton et al., 2015), often
with a significant quality loss relative to the sparse
teacher model. For example, Fedus et al. (2022)
are only able to distill roughly 30% of the Switch
Transformer’s quality gains to a dense model.

Orthogonal to MoE, efficient mixing models
(Tolstikhin et al., 2021; Liu et al., 2021; Lee-Thorp
et al., 2021) replace attention in Transformer-like
models with simpler linear transformations or MLP
blocks that "mix" input representations. Linear
transformations are particularly attractive because
they are faster than the combined projection and
dot product operations in an attention layer.

In this work, we pull on both MoE and mixing
threads to build low latency, sparse encoder models
that we hope can used in production settings. We
focus on encoder models, and BERT-like models
in particular, because they are widely used in prac-
tice — for example, in dual encoders for retrieval
(Bromley et al., 1993; Karpukhin et al., 2020).

Relative to the vanilla Transformer model
(Vaswani et al., 2017), we speed up our model
in two ways. (1) We use the increased capacity
from MOoE sublayers to offset parameter reduc-
tions in other parts of the model. (2) We use mix-
ing transformations to replace a large fraction of
self-attention sublayers with faster, linear transfor-
mations. The resulting model, which we name
Sparse Mixer, slightly (< 1%) outperforms BERT
on GLUE (Wang et al., 2018) and SuperGLUE
(Wang et al., 2019), but most importantly trains
65% faster and runs inference 61% faster. We also
introduce a simple variant of Sparse Mixer, pro-
saically named Fast Sparse Mixer, that marginally
(< 0.2%) under-performs BERT on SuperGLUE,
but runs nearly twice as fast: training 89% faster
and running inference 98% faster.

An interesting finding of our work is a training
stability synergy between the sparse and mixing

Findings of the Association for Computational Linguistics: EMNLP 2022, pages 58-75
December 7-11, 2022 ©2022 Association for Computational Linguistics


https://github.com/google-research/google-research/tree/master/sparse_mixers
https://github.com/google-research/google-research/tree/master/sparse_mixers
https://github.com/google-research/google-research/tree/master/sparse_mixers

model components. As a point of comparison, we
find that simply replacing dense feed-forward sub-
layers in BERT with MoE variants yields highly
unstable models; see Section 5. However, these
instabilities dissipate as we replace self-attention
sublayers with mixing sublayers. We hypothesize
that the (token-dependent) relevance weighted self-
attention basis is the source of the instability, and
hence that replacing the majority of self-attention
sublayers with mixing sublayers renders sparse
mixer models highly stable.
In summary, we introduce two models:

* Sparse Mixer, which matches BERT on GLUE
and SuperGLUE but runs 61-65% faster.

* Fast Sparse Mixer, which slightly underper-
forms BERT (<0.2%) but is nearly 2x faster.

We justify the design of these models by ablating
through model mixing, MoE, and hyperparameter
configurations. With Sparse Mixers, we demon-
strate that the speed and stability regressions of
MoE models may be overcome using mixing mech-
anisms. This offers the promise of directly serving
sparse models, rather than resorting to distilling
them to dense variants.

2 Related work

Sparsely gated Mixture-of-Experts. Mixture-of-
Experts (MoE) models were introduced by Jacobs
etal. (1991); Jordan and Jacobs (1994) and more re-
cently popularized by Shazeer et al. (2017). Recent
work, such as (Zoph et al., 2022), has played out
the promise of MoE models by achieving state of
the art results on a number of NLP benchmarks. As
with contemporary MoE studies (Du et al., 2021;
Lepikhin et al., 2021), these models are large and
primarily focus on model quality. When efficiency
is studied, it is typically at the level of a total train
time efficiency metric. For example, although the
per training step speed of the Switch Transformer
(Fedus et al., 2022) is slower than the vanilla Trans-
former, because the Switch Transformer surpasses
the vanilla model’s top accuracy in a fraction of
the steps, the Switch Transformer can be correctly
described as a more efficient model. However, the
slower step speed is an Achilles heel for serving
such models; one generally cannot ask a user to
wait longer for a more accurate model response.
A notable exception is Jaszczur et al. (2021),
who sparsify multiple components of the Trans-
former, primarily by replacing softmaxes with

59

argmaxes, to achieve an over 2x speed-up in un-
batched inference speed on CPUs for Base/Large
model sizes In contrast to our work, their speed-
ups to not carry over to accelerator hardware or to
training.

Memory mechanisms are another popular sparse
technique for adding capacity to models with lim-
ited increases in compute; see, for example, (We-
ston et al., 2015; Sukhbaatar et al., 2015; Lample
et al., 2019). While intuitively appealing and em-
pirically promising, suboptimal implementations
(look-ups in particular) for accelerator hardware of-
ten yield memory models that have favorable theo-
retical compute properties, but are slow in practice.

Mixing. Several recent works have explored
mixing mechanisms, such as matrix multiplica-
tions (Tay et al., 2020; Lee-Thorp et al., 2021),
MLP blocks (Tolstikhin et al., 2021; Liu et al.,
2021), and spectral transforms (Lee-Thorp et al.,
2021), as an efficient replacement of attention in
Transformer-like models. You et al. (2020); Ra-
ganato et al. (2020); Lee-Thorp et al. (2021) find
that hybrid attention-mixing models, wherein par-
tial or a limited number of attention sublayers are
retained, were faster than Transformers with only
very limited accuracy degradation. Building off
these works, we use sparse MLP sublayers to com-
pensate for the remaining accuracy gap.

Model parameter configuration. Scaling up
models has proven to be a successful program for
increasing model quality (Kaplan et al., 2020; Raf-
fel et al., 2020; Brown et al., 2020). The relation-
ship between the number of model parameters and
model quality can be roughly modelled through a
power law (Kaplan et al., 2020; Clark et al., 2022;
Hoffmann et al., 2022). However, the configuration
of these parameters within the model also plays an
important role in model quality and efficiency. Con-
sistent with Tay et al. (2021b), we find that making
the model thinner (smaller model dimensions) but
deeper (more layers) is generally an efficient way
to distribute parameters throughout the model.

Distillation. Knowledge distillation (Hinton
et al., 2015) is a powerful technique that has been
successfully deployed to train efficient "student"
BERT models from larger "teacher”" models (Sanh
et al., 2019; Jiao et al., 2020; Sun et al., 2019; Xu
et al., 2020). Although we suspect that Sparse
Mixer will offer a promising distillation architec-
ture, we view the distillation techniques themselves
as orthogonal to our architecture optimization goal.



4

e I
Dense MLP
I
Self-Attention

7y

T

Dense MLP

Linear Mixing
A

¥

Sparse MLP

4 x
Linear Mixing
A

Dense MLP

Linear Mixing
. A

Figure 1: Sparse Mixer encoder blocks for the Base
configuration. Layer norms, residual connections, em-
bedding layers and output layers are not shown. The
top K = 4 blocks contain self-attention and dense
MLPs; the middle M = 4 blocks contain mixing and
sparse MLPs; and the remaining L = 1 and P = 5
blocks contain mixing and dense MLPs.

Indeed, we show, in Figure 2, that speed-ups and
quality gains from Sparse Mixer carry over to both
larger (teacher) and smaller (student) sizes.

3 Model

3.1 Architecture

Our design space for the Sparse Mixer builds off of
the stacked encoder blocks of BERT (Devlin et al.,
2019), which we use as our canonical Transformer
encoder (Vaswani et al., 2017). Each encoder block
contains a mixing or self-attention sublayer and
a (dense or MoE) MLP sublayer, connected with
residual connections and layer norms. We keep the
standard BERT input embedding and output projec-
tion layers (Devlin et al., 2019); see also Appendix
A.1. We arrive at the Sparse Mixer encoder block
stack, shown in Figure 1, by carefully ablating
through mixing mechanisms, MoE configurations,
and model hyperparameters in Section 4.

3.2 MoE

In an MoE layer, we initialize multiple, different
instances ("experts") of the layer and perform par-
allel computations with each instance over separate
data shards. The sparsely activated MoE layers
therefore have greater capacity than dense layers.

60

As we increase the number of experts, we typically
decrease the expert capacity — the number of tokens
processed by an individual expert. More specifi-
cally, with F denoting the number of experts and
n the number of tokens, we set

expert capacity = c¢f x n/FE,

where cf is the scalar capacity factor. For cf =~ 1,
this allows us to increase model parameter count
with minimal increases in FLOPS.?

Routing. We use a router or gating function to
carefully direct data shards between experts. This
follows the intuition that expert A may become
specialized at processing inputs in one part of the
embedding space, while experts B, C, ...are spe-
cialized to other parts of the embedding space. It is
the router that ensures sparsity by assigning only a
subset of tokens to each expert, thereby ensuring
that only a subset of parameters are activated for
each token.

Router design is an active research area (Lewis
et al., 2021; Roller et al., 2021; Zhou et al., 2022;
Clark et al., 2022). We limit ourselves to two router
types: traditional "Tokens Choose" and "Experts
Choose". We follow the standard practice of rout-
ing at the token level — the router assigns each token
to a subset of experts. Both assignment algorithms
first generate router logits by projecting token rep-
resentations from the embedding dimension, d,,,
to the expert dimension, E. We apply a softmax
to normalize the logits to a probability distribution.
Finally, tokens are assigned to experts using one of
the assignment algorithms.

Tokens Choose routing. For Tokens Choose
routing (Shazeer et al., 2017), each token is as-
signed to its top-k experts. We focus on top-1
("Switch") routing (Fedus et al., 2022). Because
expert capacities are limited, there is no guarantee
that a given token can be routed to its top expert,
although any token that fails to reach an expert will
still propagate into the next encoder block through
the residual connection. There is also no guaran-
tee that a given expert receives at least one token.
So, to ensure that compute is efficiently distributed
among experts, we include a load balancing loss as
in (Shazeer et al., 2017; Fedus et al., 2022).

We can increase expert capacity by increasing
the capacity factor, cf. This will increase the prob-
ability that a given token is routed to its desired

*Modulo the typically relatively small increase in FLOPS
from the token router.



experts. Decreasing cf will further sparsify the
model and speed up the MoE sublayer.> We use
Batch Prioritized Routing (Riquelme et al., 2021)
to prioritize routing tokens with the highest router
probability, rather than simply routing tokens in the
left-to-right ordering in the batch.

Experts Choose routing. For the Experts
Choose assignment algorithm (Zhou et al., 2022),
experts choose their top tokens, rather than tokens
choosing experts. This effectively amounts to a
transpose of the router probabilities prior to the
top-k operation. Each expert performs its top-k
operation with k = expert capacity. An individual
token may be processed by multiple experts or none
at all. Because experts have their choice of tokens
and always fill their buffer, increasing the capacity
factor, cf, will increase both the number of tokens
that an expert processes and also the number of
experts to which a given token is routed. Because
each expert always fills its capacity, no auxiliary
loading balancing loss is required.

Token group size. Tokens are subdivided into
groups and expert assignment is performed on a
per-group basis. A larger group size will result in
slower but more accurate top-k and sorting com-
putations, whereas a smaller group size will result
in faster but more approximate routing choices. In
practice, we find that imperfect routing choices are
tolerable and default to a group size of 4096 tokens.

Parallelization strategies. In this work, we fo-
cus on faster, servable architectures using expert
and data parallelism. We use data parallelism to
shard data across devices, and expert parallelism
to partition experts across devices; for example,
placing experts 1 and 2 on device 1, experts 3 and
4 on device 2, and so on. Model parallelism is a
third axis to shard model weights (matrices) across
devices; for example, expert 1 is split across de-
vices 1 and 2, expert 2 is split across devices 3 and
4, and so on. Model parallelism is typically most
beneficial for scaling to larger model sizes.

3.3 Mixing

We use simple linear, mixing transformations as
drop-in replacements for a subset of the self-
attention sublayers. Mixing transformations offer
speed for reduced capacity and flexibility. Indeed,
the attention mechanism contains four parameter-
ized projections and two dot product operations

3We can introduce separate train and evaluation capac-
ity factors. Setting cfeval > Cfirain may improve inference
quality without slowing training, but will hurt inference speed.

61

("QK" and "V"), allowing self-attention sublay-
ers to construct representations in a highly expres-
sive, token-dependent basis. On the other hand,
the mixing transformations that we investigate are
implemented through two, token-independent pro-
jections, one along each of the sequence and model
dimensions. Fixing the mixing basis, relative to dif-
ferent data inputs, turns out to stabilize the model.

Spectral transformations. We experiment with
the Fourier and Hartley transforms (Lee-Thorp
et al., 2021). We integrate these transforms through
a Fourier sublayer. The Fourier sublayer applies
a 1D Discrete Fourier Transform (DFT) along the
sequence dimension, Feq, and a 1D DFT along the
hidden dimension, JF:

y="=x (Fseq (‘Fh(x))) > (H

where R denotes the real part.

The Hartley sublayer uses Equation (1) with the
DFT replaced with the Discrete Hartley Transform,
H.* We compute the Fourier and Hartley trans-
forms using the Fast Fourier Transform (FFT) (Coo-
ley and Tukey, 1965; Frigo and Johnson, 2005).

In Equation (1), we transform along both the
sequence and hidden dimensions. Although the pri-
mary purpose of a mixing sublayer is to combine
inputs along the sequence dimension, Lee-Thorp
et al. (2021) found that also mixing along the hid-
den dimension improved model quality.

Structured matrix projections. We explore
structured matrices under the hypothesis that
adding structure to the mixing basis may improve
the distribution of output representations. We
consider two parameterized, structured matrices:
Toeplitz and circulant. A Toeplitz matrix is a ma-
trix in which each diagonal is constant. A circulant
matrix is a particular kind of Toeplitz matrix, in
which all rows are composed of the same elements
but rotated one element to the right relative to the
preceding row. For both matrices, the weights are
learned. The corresponding mixing sublayer mixes
along the sequence and hidden dimension. For
example, for the Toeplitz case, we perform:

y:ﬁeqﬂliva ()

where Tgeq and T, denote Toeplitz matrices.’

*The Hartley Transform, which transforms real input to
real output, can be described in terms of the Fourier Transform:
H =R{F} — S{F}. In the case of the Hartley Transform,
we may omit the 3 from Equation (1).

SMatrix multiplications involving circulant matrices can



Vanilla matrix projections. We also consider
"unstructured", fully dense parameterized matrix
projections. Following (Lee-Thorp et al., 2021), we
call the mixing sublayer arising from this case, the
"Linear" sublayer. The Linear sublayer performs
the same FLOPS as the structured matrix sublayers
(provided the FFT is not used), but is more flexible
due to the increased number of matrix weights.

3.4 Implementation

We train and optimize our model on 8 V100 GPUs.
We believe that our results are reasonably robust to
differing accelerators (e.g. TPU) as almost all of
our modifications boil down to accelerator friendly
matrix multiplications. In Section 5, we scale our
model sizes up and down on TPUs and find that the
same favorable efficiency trade-offs persist. We use
JAX (Bradbury et al., 2018) in the Flax framework
(Heek et al., 2020).°

4 Coordinate Descent

We train in a typical transfer learning setting (De-
vlin et al., 2019): Masked Language Modelling
(MLM) and Next Sentence Prediction (NSP) pre-
training, followed by fine-tuning on GLUE (Wang
etal., 2018) and SuperGLUE (Wang et al., 2019).
When comparing models, we always use the ex-
act same setup for all models and baselines. In
particular, we follow the pre-training setup in (De-
vlin et al., 2019) with a few updates: (1) we pre-
train on the much larger C4 dataset (Raffel et al.,
2020); (2) we use a 32000 SentencePiece vocabu-
lary model (Kudo and Richardson, 2018) trained on
a 100 million sentence subset of C4; and (3) we use
a smaller batch size of 64 (Devlin et al. (2019) uses
256). We use a sequence length of 512 throughout
pre-training. Experiments are run on 8 V100 GPU
chips, except for the scaling experiments (Section
5) which are run on 32 TPU v3 chips.

In this section, we follow a "coordinate descent"
through our model configurations until we arrive
at the final Sparse Mixer design. Given the large
number of model hyperparameters to explore, we
be computed using the FFT (Davis, 1970). This requires
three operations: one FFT to diagonalize the computation,
one to apply the diagonalized matrix multiplcation and one
iFFT to transform back to real space. A Toeplitz matrix may
be embedded in a circulant matrix to take advantage of the
same FFT computation. In practice, we find that for standard
sequence lengths (512), using the FFT is slower than direct
matrix multiplications on both GPU and TPU.

8Sparse Mixers code is available at https: //github.

com/google-research/google-research/
tree/master/sparse_mixers.

62

Table 1: Average accuracy metrics and median pre-
training step speeds for mixing models. The "Fourier"
model is identical to FNet (Lee-Thorp et al., 2021).
Speed-ups relative to BERT (see Table 8) are shown
in parentheses. The best metrics are highlighted in
boldface, while the second best metrics are underlined.
Stars indicate the selected configurations.

Accuracy (%) Speed
Model GLUE MLM NSP | (ms/batch)
Fourier 78.4 55.7 75.4 | 173 (1.75%)
Hartley x | 78.0 58.5 749 | 172 (1.77x)
Circulant | 75.1 58.3 75.6 | 200 (1.52x)
Toeplitz 76.5 57.7 76.5 | 200 (1.52x)
Linear % 77.7 57.6 77.4 | 200 (1.52x)

perform multiple parameter searches in parallel.
For example, the model shape and MoE configura-
tions are explored independently and then the most
promising configurations from each program are
combined.

For our coordinate descent study, we only pre-
train for 500k steps, which we found to be rea-
sonably indicative of model performance. Mod-
els are fine-tuned with the same batch size (64)
on the Validation split of each respective GLUE
task for 5 epochs and the best result for each
task is selected from across three default base
learning rates, adapted from Devlin et al. (2019):
{107°,5 - 107°,10~*}. Our final model is pre-
trained for longer and is evaluated on both GLUE
and SuperGLUE for a broader set of training con-
figurations in Section 5.

We prioritize efficiency — speed and accuracy.
We use pre-training step speed as a proxy for model
latency. We rely on downstream average GLUE
scores as our primary accuracy metric, but fall-
back to upstream MLM and NSP accuracies when
GLUE scores between model variants are similar.
Additional coordinate descent experiments are sum-
marized in Appendix A.2, and full GLUE results
for all coordinate descent experiments are provided
in Appendix A.3.

4.1 Mixing

Mixing mechanisms. We compare the mixing
mechanisms discussed in Section 2. For each mix-
ing model, we first replace all self-attention sublay-
ers with the corresponding mixing sublayer. The
results are shown in Table 1. The spectral models
(Fourier and Hartley) perform the best on GLUE.
The Linear model slightly under-performs the spec-


https://github.com/google-research/google-research/tree/master/sparse_mixers
https://github.com/google-research/google-research/tree/master/sparse_mixers
https://github.com/google-research/google-research/tree/master/sparse_mixers

Table 2: Metrics for hybrid attention-mixing models.
Hartley-£ denotes a model with & self-attention sublay-
ers and 12 — k Hartley sublayers.

Accuracy (%) Speed
Model GLUE MLM NSP | (ms/batch)
Hartley-0 | 78.0 585 74.9|172 (1.76x)
Hartley-1 | 78.0 519 75.3 183 (1.66x)
Hartley-2 | 81.1 61.3 79.8 | 193 (1.57x)
Hartley-3 | 77.9 503 76 |204 (1.49x)
Hartley-4 | 82.7 62.6 81 |216(1.41x)
Hartley-6 | 82.9 63.5 81.2 234 (1.30x)
Linear-0 7777  57.6 77.4|200 (1.51x)
Linear-1 78.1  62.5 78.3|208 (1.46x)
Linear-2 82.8 62.8 81 |218(1.40x)
Linear-3 82.8 63.3 81.6|226 (1.35x)
Linear-4 x| 83.4 63.6 81.7 |235(1.29x)
Linear 6 83.6 64 81.7 | 251 (1.21x)

tral models, while the structured mixing models
(Circulant and Toeplitz) perform worst on GLUE.
The spectral methods, efficiently implemented us-
ing FFTs, are the fastest.”

Hybrid mixing-attention. We choose two
strong representative candidates from Table 1,
namely the Hartley and Linear models, and replace
a subset of the topmost mixing sublayers with self-
attention. The results are summarized in Table 2.

Once we include self-attention, we see that the
hybrid Linear model offers larger quality gains than
the hybrid Hartley model. Even though the hybrid
Hartley models are faster, an iso-speed comparison
still suggests that the hybrid Linear models are
more efficient. For example, Hartley-6 and Linear-
4 having roughly the same speed, but the Linear-4
model is more accurate. Hence, we opt to use
the Linear-4 model. In Appendix A.2 (Table 11),
we show that we get best accuracy when the self-
attention sublayers at placed in the topmost layers.

4.2 Model shape

All model shape experiments are run in parallel and
start from the Linear-4 configuration.

Model dimensions. In seeking a more efficient
model, we attempt to slim our model down both
by decreasing the model dimension (Table 3) and
the intermediate MLP activation dimension (Table
12 in Appendix A.2). For each coordinate, we find
that there are cutoffs (d sy = 2048 and d,,, = 512)

"There is some noise in the speed measurement, SO we
don’t read too much into the small speed differences between
the Fourier and Hartley models.

63

Table 3: Varying the model dimension, d,,,. As in the
Transformer, we set the model and embedding dimen-
sion to be equal. For the self-attention sublayers, we fix
the number of self-attention heads to d,, /64.

Accuracy (%) Speed
dm GLUE MLM NSP | (ms/batch)
768 83.4 63.6 81.7 | 235 (1.29x)
512+ | 83.0 62.5 80.9 | 161 (1.89x)
256 80.7 58.9 784 | 91 (3.34x)
128 71.6 54 73.8 | 58 (5.29x)

Table 4: Accuracy and speed metrics for Top-1 Tokens
Choose (TC) and Experts Choose (EC) routing.

Accuracy (%) Speed
Router | GLUE MLM NSP | (ms/batch)
TC 83.4 64 80.8 | 280 (1.09x)
EC x 83.5 64.6 81.2 | 283 (1.08x)

below which model quality drops drastically. We
select these cutoffs as our optimal model shape val-
ues. It is in decreasing these two hyperparameters
that we obtain the biggest speed-up in our model.
However, there is a material degradation in quality
that must be compensated by the increased capacity
from the MoE sublayers in Section 4.3.

Number of layers. We vary the number of lay-
ers in Table 13 in Appendix A.2. We opt for 14
layers, beyond which we do not see quality gains.

43 MoE

Our starting configuration for our MoE ablations is
the Linear-4 configuration with every other dense
MLP sublayer replaced by an MoE sublayer (6
MOoE sublayers) and 16 experts in each MoE sub-
layer. We performed the MoE experiments in par-
allel to the model shape optimizations, so all MoE
ablations are performed on a default Base sized
model with 12 layers, dyy = 3072 and d,,, = 768.

As in (Zoph et al., 2022), we find that we must
adjust the fine-tuning learning protocol to better
transfer any MoE MLM pre-training gains down-
stream. In particular, our MoE encoder models
benefit from larger base learning rates ({1074, 5 -
1074, 10_3}) and larger dropout rates (0.2) for ex-
perts; see Appendix A.4 for a comparison of learn-
ing rates and expert dropout rates. For our final
model comparison with BERT in Section 5, we
consider a wide range of base learning rates for all
models.®

8Consistent with (Zoph et al., 2022), we find that the larger



Table 5: Varying the number and layout of MoE sub-
layers. Layout definition: 6-BOTTOM (first 6 layers),
6-MIDDLE (middle 6 layers) or 6-MIXED (every odd
layer), 6-MIXED-odd (every even layer), and 6-TOP
(final 6 layers). The number of experts and the expert
capacity — the number of tokens processed by each ex-
pert —is fixed. Each MoE layer adds some compute and
device communication overhead, slowing the model.

Accuracy (%) Speed
Config GLUE MLM NSP| (ms/batch)
2-MIXED 83.6 63.6 81.3|246 (1.23x)
4-MIXED % 83.6 639 81.3|264 (1.15x)
6-MIXED 83.5 64.6 81.2]283 (1.08x)
12-MIXED 83.1 649 81.4(352 (0.86x)
6-BOTTOM 83.2 627 81.4]289 (1.05x)
6-MIDDLE ~ | 83.9 64 81.7|284 (1.08x)
6-MIXED 83.5 64.6 81.2]283 (1.08x)
6-MIXED-odd| 83.2 64.8 81.6(292 (1.04x)
6-TOP 83.4 654 81.2(287 (1.06x)

Routers. Routing mechanisms are compared in
Table 4. We select Experts Choose routing as it
obtains slightly higher accuracy results and does
not require configuring a load balancing loss.

MOokE layers. In Table 5, we vary the number of
MOoE sublayers and the layout of those layers within
the model. As we increase the number of MoE
layers, MLM accuracy improves, but these pre-
training gains do not always lead to better GLUE
performance. This was a general trend that we
observed; see also Appendix A.2 and (Zoph et al.,
2022). We opt for 4 MoE layers, which performs
well on GLUE and better than the 2 MoE sublayer
model on the MLM task.

The results of MoE layout experiments are
clearer — we opt to use the MIDDLE layout, plac-
ing all MoE sublayers in the middle layers of the
model. Nevertheless, it is interesting to note that
the TOP layout gives a big boost to MLM accuracy,
but does not improve downstream GLUE accuracy.

Number of experts. We can increase the num-
ber of experts to increase the capacity of the model.
For a large number of experts, the computational
cost of the routing assignment is more significant,
while the training signal to an individual expert
becomes too weak to facilitate effective training
as each expert processes too small a slice of data.
Seeking a compromise between quality and speed,
we ultimately opt to use 16 experts. Results are
summarized in Table 14 in Appendix A.2.

base learning rates are not beneficial for the dense models.

64

Expert size. We can control the number of pa-
rameters in each expert by varying its d 7. In Table
15 (Appendix A.2), we find that: (1) using smaller
experts yields a small accuracy drop, but limited
speed benefits; and (2) increasing expert size in-
creases MLM accuracy, but not GLUE. So, for
simplicity, we opt to keep the expert d sy the same
size as the dense d .

4.4 Sparse Mixer

Putting the preceding results together, we arrive at

the Sparse Mixer model in Figure 1:

Shape: 14 layers, 512 d,y,, 2056 dy;

Sparse: 4 MIDDLE MoE, 16 experts, 2056 dy,
EC routing, 1.0 cf;

Mixer: Linear, 4 TOP Attention layers.

S5 Evaluating Sparse Mixer

Full training comparison with BERT. When
comparing Sparse Mixer and BERT, both models
are pre-trained on C4 for the full 1M steps, with
batch size 64, and then evaluated on both GLUE
and SuperGLUE for a larger range of fine-tuning
batch sizes (16, 32, and 64) and base learning rates
({1075,5-107°,1074,5-107%,1073}). The best
results across all learning rates (for each task) and
batch sizes (for all tasks) are shown in Tables 6 and
7; see Appendix A.3 for results for all batch sizes.”

BERT and Sparse Mixer’s GLUE scores are very
similar, although they diverge a little more on Su-
perGLUE, where Sparse Mixer performs particu-
larly well on the CB task, but underperforms BERT
on the multi-label MultiRC and ReCoRD tasks.

Scaling the Sparse Mixer. Tables 6-8 indicate
that the Sparse Mixer is more efficient than BERT
in the Base configuration. In Figure 2, we com-
pare BERT and Sparse Mixer across a selection of
model sizes. We use MLM accuracy as a proxy
for model accuracy and pre-training step speed
as a proxy for overall model speed. Pre-training
step speed is a good proxy for inference speed
(see Table 8). MLM accuracy is only indicative
of downstream accuracy. We construct an analo-
gous speed-accuracy figure for NSP accuracy in
Figure 4 in Appendix A.5. These caveats aside,
Figure 2 suggests that Sparse Mixer’s favorable
speed and accuracy extends to other model sizes,
as it defines the efficiency frontier across all model
sizes considered.

9Following Devlin et al. (2019), we omit the WNLI task.



Table 6: GLUE results on the Validation split. We report Fl/accuracy scores for QQP and MRPC, Spearman
correlations for STS-B and accuracy scores for all other tasks. The MNLI accuracy metrics are reported by the

match/mismatch splits.

Model MNLI QQP QNLI SST-2 CoLA STS-B  MRPC  RTE | Avg.
BERT 81.3/81.8 86.7/90.3 889 911 776 87.3 90.5/86.8 69.7| 84.7
Sparse Mixer | 80.7/81 87.1/90.5 89.1 909 79 88.1 904/863 722 | 85.0

Table 7: SuperGLUE Validation results. We report macro-F1 scores for CB, micro-F1/exact match scores for
MultiRC, Fl/exact match scores for ReCoRD, and accuracy scores for all other tasks.

Model ‘ BoolQ CB COPA  MultiRC ReCoRD RTE WiC | Avg.
BERT 74.6  86.4/85.7 58 74.1/26.2 68.6/522 65 657 | 657
Sparse Mixer | 744  93.3/92.9 62 7247225 659/492 646 66.5 | 66.4

Table 8: Model computational characteristics for
BERT, Sparse Mixer (SM) and Fast Sparse Mixer
(FSM), which is introduced in Section 5. "Size" is the
number of model parameters. Run speeds are measured
by inference speed per example and pre-training step
speed per example.

GFLOPS Size| Inference  Training
Model| (/ex) (M)| (ms/ex) (ms/ex)
BERT| 102 112 1.34 4.75
SM 73 180{0.84 (1.61x) 2.87 (1.65x)
FSM 60 180{0.68 (1.98x) 2.51 (1.89x)

Table 9: Fast Sparse Mixer (FSM). The default Sparse
Mixer (SM) uses a capacity factor (cf) of 1 and a rout-
ing group size (g) of 4096. Several less favorable con-
figurations are omitted.

Accuracy (%) Speed
Model GLUE SuperGLUE| (ms/batch)
BERT 84.7 65.7 304
SM 85.0 66.4 184 (1.65x)
FSM (c¢f=0.5) | 84.7 65.6 161 (1.89x)
g=2048 84.5 65.1 173 (1.75x)
cf=0.75,g=2048| 84.3 65.2 165 (1.84x)

Table 10: Stability of BERT, sparse BERTs and Sparse
Mixer (SM). BERT-£ denotes a BERT model with &
MoE layers. The "unstable" runs experience gradient
blow-up and fail to converge to an optimal loss (or con-
verge at all). We use batch sizes of 64 and 256. Accu-
racy and speed metrics are reported for 64 batch runs.

Stable | Accuracy (%) Speed
Model |64 256|GLUE S.GLUE| (ms/batch)
BERT |3/4 4/4| 847  65.7 304
SM 4/4 4/4| 85.0 66.4 |184 (1.65x)
BERT-4 (0/4 0/4| - - -
BERT-12|1/4 0/4| 84.1  60.9 [426 (0.71x)

65

Trading accuracy for more speed. We design
an even sparser model by decreasing the expert ca-
pacity factor. This decreases the number of tokens
that each expert processes and yields significant
speed-ups for a limited quality degradation: for a
minor (0.2%) accuracy drop on SuperGLUE rela-
tive to BERT, a Sparse Mixer with capacity factor
of 0.5 trains 89% faster and runs inference 98%
faster; see Table 8. We name this variant of the
model Fast Sparse Mixer.'® We also experiment
with decreasing the token routing group size, but
this leads to larger quality drops.

Stability. Table 10 compares the stability of
Sparse Mixer, BERT and "sparse BERTs" — MoE
variants of BERT. Sparse Mixer is very stable, even
relative to (dense) BERT. The sparse BERTSs are
highly unstable, with only one stable run that ulti-
mately yields a slow model that significantly under-
performs BERT.!! We hypothesize that the Sparse
Mixer’s improved stability is due to replacing most
of the self-attention sublayers with mixing, which
constrains the model to a less variable mixing ba-
sis.

6 Conclusions

Mixing transformations and MoE play well to-
gether. Utilizing MoE for capacity and mixing
for speed and stability, we introduced the Sparse
Mixer — a model that slightly outperforms BERT
on GLUE and SuperGLUE, but more importantly

'9The minimal accuracy drop from decreasing the capacity
factor, cf, could potentially be mitigated by training with the
default cf=1, and then using the smaller cf during inference,
although the mismatch may yield unexpected results.

"t may be possible to improve the stability of the sparse
BERTS by adjusting the MoE configurations, such as the num-
ber of experts or the router z-loss. That said, as detailed in
Section 4.3, Sparse Mixer was robust under all such changes.



70 T

___________ ettt St St e
————— )
< "., ____________
2\/ 60 T ,I” { ]
) @
o /)
© .
3 - @
850 1 =
2 e ® BERT = Sparse Mixer
40 | | | I
80.0 100.0 200.0 400.0

Training step speed (ms/step)

Figure 2: Pre-training Speed-accuracy trade-offs for Sparse Mixer and BERT. The corresponding model configura-
tions are shown in Table 20 in Appendix A.5. The dashed line shows the Pareto efficiency frontier, indicating the
best trade-offs. All models are trained on 32 TPU v3 chips. To better utilize the increased number of devices, we
use a larger batch size of 256 but train for fewer (250k) steps.

trains 65% faster and runs inference 61% faster. We
also presented a faster variant, Fast Sparse Mixer,
that marginally under-performs BERT on Super-
GLUE, but trains and runs nearly twice as fast: 89%
faster training and 98% faster inference. Sparse
Mixer overcomes many of the speed and stability
concerns of MoE models and offers the prospect of
serving sparse student models.

Limitations

Encoder only model. We have focused our work
on BERT-like models as they are extremely wide
used.'? However, this limits our focus to encoders,
which are not suitable for generative tasks. Sparse
mixer encoder-decoder and decoder-only models
are, in principle, straightforward extensions: Linear
decoders can be designed by “causally” masking
the Linear matrix and encoder-decoder mixing can
also be designed with careful masking. However,
we suspect that parts of the coordinate descent pro-
gram will need to be repeated. For example, evi-
dence suggests that cross-attention may be crucial
to performance of encoder-decoder models (You
etal., 2020). Nevertheless, we hope that the current
Sparse Mixer recipe acts as a starting point and a
roadmap for generalizing to other architectures.
More diverse tasks and learning frameworks.
We only evaluated Sparse Mixer on GLUE and Su-
perGLUE. It would be good to look at broader set
of tasks, including Q&A. We also stuck to the orig-
inal BERT training setup (Devlin et al., 2019), but
there are potential training regime improvements

12See, for example, https://huggingface.co/
models.

66

that could be introduced, such as training for much
longer as for RoOBERTa (Liu et al., 2019b) or us-
ing the ELECTRA generator-discriminator training
setup (Clark et al., 2020).

""Manual ML'"'. In designing the Sparse Mixer
architecture, we have optimized the model config-
uration one hyperparameter coordinate at a time.
So while our manual gradient descent offers inter-
pretability and pedagogical insight, it is potentially
sub-optimal. It would be exciting to see future work
expand both the coordinate space and jointly op-
timize multiple coordinates using Automated Ma-
chine Learning (AutoML) (Thornton et al., 2013;
Liu et al., 2019a; Peng et al., 2020).

Long input sequences. Because of the presence
of attention layers, Sparse Mixer will not scale as
well as efficient Transformers to long sequence in-
puts. This could be compensated by dropping in
efficient approximations of the attention mecha-
nism (Tay et al., 2021a).

Acknowledgements

We would like to give a big thanks to Parker Schuh
for critical help with the Mixture-of-Experts imple-
mentation. We also thank Santiago Ontafién for
many helpful brainstorming sessions around the
design and evaluation of the Sparse Mixer model.

References

Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor
Mihaylov, Myle Ott, Sam Shleifer, Xi Victoria Lin,
Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru,
Giri Anantharaman, Xian Li, Shuohui Chen, Halil
Akin, Mandeep Baines, Louis Martin, Xing Zhou,


https://huggingface.co/models
https://huggingface.co/models

Punit Singh Koura, Brian O’Horo, Jeff Wang, Luke
Zettlemoyer, Mona T. Diab, Zornitsa Kozareva, and
Ves Stoyanov. 2021.  Efficient large scale lan-
guage modeling with mixtures of experts. CoRR,
abs/2112.10684.

James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake
VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. 2018. JAX: composable transformations of
Python+NumPy programs.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard
Sackinger, and Roopak Shah. 1993. Signature veri-
fication using a" siamese" time delay neural network.
Advances in neural information processing systems,
6.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Aidan Clark, Diego de Las Casas, Aurelia Guy,
Arthur Mensch, Michela Paganini, Jordan Hoff-
mann, Bogdan Damoc, Blake A. Hechtman, Trevor
Cai, Sebastian Borgeaud, George van den Driessche,
Eliza Rutherford, Tom Hennigan, Matthew Johnson,
Katie Millican, Albin Cassirer, Chris Jones, Elena
Buchatskaya, David Budden, Laurent Sifre, Simon
Osindero, Oriol Vinyals, Jack W. Rae, Erich Elsen,
Koray Kavukcuoglu, and Karen Simonyan. 2022.
Unified scaling laws for routed language models.
CoRR, abs/2202.01169.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

James W Cooley and John W Tukey. 1965. An algo-
rithm for the machine calculation of complex fourier
series. Mathematics of computation, 19(90):297-
301.

Philip J Davis. 1970. Circulant matrices. Wiley, New
York.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference

67

of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Nan Du, Yanping Huang, Andrew M. Dai, Simon
Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat,
Barret Zoph, Liam Fedus, Maarten Bosma, Zong-
wei Zhou, Tao Wang, Yu Emma Wang, Kellie Web-
ster, Marie Pellat, Kevin Robinson, Kathy Meier-
Hellstern, Toju Duke, Lucas Dixon, Kun Zhang,
Quoc V. Le, Yonghui Wu, Zhifeng Chen, and Claire
Cui. 2021. Glam: Efficient scaling of language mod-
els with mixture-of-experts. CoRR, abs/2112.06905.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal
of Machine Learning Research, 23(120):1-39.

Matteo Frigo and Steven G Johnson. 2005. The de-
sign and implementation of fftw3. Proceedings of
the IEEFE, 93(2):216-231.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Mar-
vin Ritter, Bertrand Rondepierre, Andreas Steiner,
and Marc van Zee. 2020. Flax: A neural network
library and ecosystem for JAX.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan,
and Geoffrey E Hinton. 1991. Adaptive mixtures of
local experts. Neural computation, 3(1):79-87.

Sebastian Jaszczur, Aakanksha Chowdhery, Afroz Mo-
hiuddin, Lukasz Kaiser, Wojciech Gajewski, Henryk
Michalewski, and Jonni Kanerva. 2021. Sparse is
enough in scaling transformers. In Advances in Neu-
ral Information Processing Systems 34: Annual Con-
ference on Neural Information Processing Systems
2021, NeurIPS 2021, December 6-14, 2021, virtual,
pages 9895-9907.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. TinyBERT: Distilling BERT for natural lan-
guage understanding. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
4163—4174. Association for Computational Linguis-
tics.

Michael I Jordan and Robert A Jacobs. 1994. Hier-
archical mixtures of experts and the em algorithm.
Neural computation, 6(2):181-214.


http://arxiv.org/abs/2112.10684
http://arxiv.org/abs/2112.10684
http://github.com/google/jax
http://github.com/google/jax
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/2202.01169
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2112.06905
http://arxiv.org/abs/2112.06905
http://jmlr.org/papers/v23/21-0998.html
http://jmlr.org/papers/v23/21-0998.html
http://github.com/google/flax
http://github.com/google/flax
http://arxiv.org/abs/1503.02531
https://proceedings.neurips.cc/paper/2021/hash/51f15efdd170e6043fa02a74882f0470-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/51f15efdd170e6043fa02a74882f0470-Abstract.html
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372

Jared Kaplan, Sam McCandlish, Tom Henighan,
Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei.
2020. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Dangi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 6671, Brussels, Belgium.
Association for Computational Linguistics.

Guillaume  Lample,
Marc’Aurelio Ranzato,

Alexandre  Sablayrolles,

Ludovic Denoyer, and
Hervé Jégou. 2019. Large memory layers with
product keys. Advances in Neural Information
Processing Systems, 32.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and
Santiago Ontanon. 2021. Fnet: Mixing to-
kens with fourier transforms. arXiv preprint
arXiv:2105.03824.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2021.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. In 9th Inter-
national Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman
Goyal, and Luke Zettlemoyer. 2021. BASE layers:
Simplifying training of large, sparse models. In Pro-
ceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021,
Virtual Event, volume 139 of Proceedings of Ma-
chine Learning Research, pages 6265-6274. PMLR.

Hanxiao Liu, Zihang Dai, David So, and Quoc Le.
2021. Pay attention to mlps. Advances in Neural
Information Processing Systems, 34.

Hanxiao Liu, Karen Simonyan, and Yiming Yang.
2019a. DARTS: differentiable architecture search.
In 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Basil Mustafa, Carlos Riquelme, Joan Puigcerver,
Rodolphe Jenatton, and Neil Houlsby. 2022. Mul-
timodal contrastive learning with limoe: the

68

language-image mixture of experts. arXiv preprint
arXiv:2206.02770.

Sharan Narang, Hyung Won Chung, Yi Tay, Liam
Fedus, Thibault Fevry, Michael Matena, Karishma
Malkan, Noah Fiedel, Noam Shazeer, Zhenzhong
Lan, Yanqi Zhou, Wei Li, Nan Ding, Jake Mar-
cus, Adam Roberts, and Colin Raffel. 2021. Do
transformer modifications transfer across implemen-
tations and applications?  In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 5758-5773. Associa-
tion for Computational Linguistics.

Daiyi Peng, Xuanyi Dong, Esteban Real, Mingx-
ing Tan, Yifeng Lu, Gabriel Bender, Hanxiao Liu,
Adam Kraft, Chen Liang, and Quoc Le. 2020. Py-
glove: Symbolic programming for automated ma-
chine learning. Advances in Neural Information Pro-
cessing Systems, 33:96—108.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21:1-67.

Alessandro Raganato, Yves Scherrer, and Jorg Tiede-
mann. 2020. Fixed encoder self-attention patterns
in transformer-based machine translation. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2020, pages 556-568. Association for
Computational Linguistics.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa,
Maxim Neumann, Rodolphe Jenatton, André Su-
sano Pinto, Daniel Keysers, and Neil Houlsby. 2021.
Scaling vision with sparse mixture of experts. Ad-
vances in Neural Information Processing Systems,
34.

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam,
and Jason Weston. 2021. Hash layers for large
sparse models. In Advances in Neural Information
Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurlPS
2021, December 6-14, 2021, virtual, pages 17555—
17566.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Noam Shazeer. 2020. Glu variants improve trans-
former. arXiv preprint arXiv:2002.05202.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and
Jeff Dean. 2017. Outrageously large neural net-
works: The sparsely-gated mixture-of-experts layer.
In 5th International Conference on Learning Rep-
resentations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings. OpenRe-
view.net.


https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
http://proceedings.mlr.press/v139/lewis21a.html
http://proceedings.mlr.press/v139/lewis21a.html
https://openreview.net/forum?id=S1eYHoC5FX
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2021.emnlp-main.465
https://doi.org/10.18653/v1/2021.emnlp-main.465
https://doi.org/10.18653/v1/2021.emnlp-main.465
https://doi.org/10.18653/v1/2020.findings-emnlp.49
https://doi.org/10.18653/v1/2020.findings-emnlp.49
https://proceedings.neurips.cc/paper/2021/hash/92bf5e6240737e0326ea59846a83e076-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/92bf5e6240737e0326ea59846a83e076-Abstract.html
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. Advances in
neural information processing systems, 28.

Siqgi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for bert model com-
pression. arXiv preprint arXiv:1908.09355.

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan,
Zhe Zhao, and Che Zheng. 2020. Synthesizer: Re-
thinking self-attention in transformer models. arXiv
preprint arXiv:2005.00743.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang
Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu
Yang, Sebastian Ruder, and Donald Metzler. 2021a.
Long range arena : A benchmark for efficient trans-
formers. In 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Aus-
tria, May 3-7, 2021.

Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fe-
dus, Samira Abnar, Hyung Won Chung, Sharan
Narang, Dani Yogatama, Ashish Vaswani, and Don-
ald Metzler. 2021b. Scale efficiently: Insights from
pre-training and fine-tuning transformers. arXiv
preprint arXiv:2109.10686.

Chris Thornton, Frank Hutter, Holger H Hoos, and
Kevin Leyton-Brown. 2013. Auto-weka: Combined
selection and hyperparameter optimization of clas-
sification algorithms. In Proceedings of the 19th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 847-855.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov,
Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner,
Jessica Yung, Andreas Steiner, Daniel Keysers,
Jakob Uszkoreit, et al. 2021. Mlp-mixer: An all-mlp
architecture for vision. Advances in Neural Informa-
tion Processing Systems, 34.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information process-
ing systems, 30.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. 2019. Superglue: A
stickier benchmark for general-purpose language un-
derstanding systems. Advances in neural informa-
tion processing systems, 32.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353-355, Brussels, Belgium.
Association for Computational Linguistics.

69

Jason Weston, Sumit Chopra, and Antoine Bordes.
2015. Memory networks. In 3rd International Con-
ference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei,
and Ming Zhou. 2020. Bert-of-theseus: Compress-
ing bert by progressive module replacing. arXiv
preprint arXiv:2002.02925.

Weiqiu You, Simeng Sun, and Mohit Iyyer. 2020.
Hard-coded Gaussian attention for neural machine
translation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 7689-7700. Association for Computa-
tional Linguistics.

Yanqgi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping
Huang, Vincent Y. Zhao, Andrew M. Dai, Zhifeng
Chen, Quoc Le, and James Laudon. 2022. Mixture-
of-experts with expert choice routing.  CoRR,
abs/2202.09368.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du,
Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. 2022. Designing effective sparse ex-
pert models. arXiv preprint arXiv:2202.08906.


https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
http://arxiv.org/abs/1410.3916
https://doi.org/10.18653/v1/2020.acl-main.687
https://doi.org/10.18653/v1/2020.acl-main.687
http://arxiv.org/abs/2202.09368
http://arxiv.org/abs/2202.09368

Output
t
[ Output Projection ]
f
[ Dense ]
- i a
Add & Normalize ]
I
[ MLP ]
N x T
—’[ Add & Normalize ]
I
[ Mixing ]

f J
f—| N\
Embeddings
[ Word ] [ Position ] [ Type ]

(& J

Input

Figure 3: Block based encoder architecture. The model
has N encoder blocks, each containing mixing and
MLP sublayers. Each MLP sublayer may be sparse or
dense. Each mixing sublayer may use self-attention or
a mixing transformation.

A Appendices

A.1 Base architecture

Our design space for the Sparse Mixer builds off of
the stacked encoder blocks of BERT (Devlin et al.,
2019) in Figure 3. Each encoder block contains a
mixing sublayer and an MLP sublayer, connected
with residual connections and layer norms. We
keep the standard BERT input embedding and out-
put projection layers (Devlin et al., 2019).

A.2 Exploring more coordinates

Attention sublayer layout. Where should the 4 at-
tention sublayers be placed within the model? We
check whether it best to place the 4 self-attention
sublayers at the TOP (final 4 layers), BOTTOM
(first 4 layers), MIDDLE (middle 4 layers) or
MIXED (every third layer). Table 11 shows that
the TOP layout is best.

Mixing dead ends. We tested two other mixing
modifications that yielded no quality (or latency)
gains: (1) adding a bias term to the mixing transfor-
mations, and (2) adding dropout during fine-tuning
to the mixing sublayers.

Intermediate activation dimension. Below

70

Table 11: Average accuracy metrics and median pre-
training step speeds for varying where the self-attention
sublayer are placed within the Linear-4 model. Speed-
ups relative to BERT (see Table 8) are shown in paren-
theses. The best metrics are highlighted in boldface.
The star indicate the selected configuration.

Accuracy (%) Speed
Layout GLUE MLM NSP | (ms/batch)
BOTTOM | 82 62.6 81 |236(1.29x)
MIDDLE | 824 63.2 80.7 | 236 (1.29x)
MIXED 82.7 63.6 81.1]|235(1.29x)
TOP % 834 63.6 81.7|235(1.29x)

Table 12: Metrics for various intermediate MLP activa-
tion dimensions, dy .

Accuracy (%) Speed
dyy GLUE MLM NSP | (ms/batch)
3072 83.4 63.6 81.7 | 235 (1.29x)
2560 83.2 62.2  81.1 | 208 (1.46x)
2048 x | 83.5 62 81 | 189 (1.61x)
1024 82.9 60.7  80.6 | 146 (2.09x)
768 82.8 60.4  80.7 | 135 (2.24x)

d sy = 2048, the model quality drops significantly.
We select this cutoff as our optimal model MLP
dimension.

Number of layers. We do not see quality gains
beyond 14 layers. Because we plan to thin out our
model (decrease d ¢ and d,,), we opt for slightly
increasing the number of layers to 14.

Number of experts. In Table 14, we increase
the number of experts to increase the capacity of
the model. As discussed in Section 3.2, we simulta-
neously decrease each expert’s capacity (the num-
ber of tokens it processes) to prevent FLOPS from
growing. We suspect that, for a large number of
experts, the training signal to an individual expert
becomes too weak to facilitate effective training

Table 13: Varying the number of model layers. The re-
sults are for post-layer normalization, as in BERT. We
obtained similar results for pre-layer normalization.

Accuracy (%) Speed
Layers | GLUE MLM NSP | (ms/batch)
6 82.3 62.4 80.9 | 142 (2.14x)
10 83.6 634 81.4 | 201 (1.51x)
12 83.4 63.6 81.7 | 235 (1.29x)
14 % 83.8 64 81.6 | 260 (1.17x)
18 83.8 63.9 81.5 | 320 (0.95x)




[e2)
(8}
|
1

_______________ L ahEECECEL " St i R
---------- NSRS .
&= _—
< 80 T -
@) )
o )
5 5
0 ’
2 75 + d
o L
o |® ® BERT = Sparse Mixer
70 | | | }
800 1000 200.0 400.0

Training step speed (ms/step)

Figure 4: NSP pre-training Speed-accuracy trade-offs for Sparse Mixer and BERT. The dashed line shows the

Pareto efficiency frontier, indicating the best trade-offs.

Table 14: Increasing the number of experts. These ex-
periments were run in parallel to those of Table 5 and
therefore use the default 6-MIXED setup. Speed-ups
relative to BERT (see Table 8) are shown in parenthe-
ses. Based on the speed slowdown for 64 experts and
the relatively weak performance of 32 experts, we did
not evaluate 64 experts on GLUE.

Accuracy (%) Speed
Experts | GLUE MLM NSP | (ms/batch)
8 833 64.1 81.2 277 (1.10x)
16 % 83.5 64.6 81.2 | 283 (1.08x)
32 833 65.1 81.3 292 (1.04x)
64 - 65.4 80.9 | 327 (0.93x)

as each expert processes too small a slice of data.
This is particularly apparent on downstream tasks
where there are fewer training examples. Further-
more, for a large number of experts (> 64), the
computational cost of the routing assignment starts
to become significant. Seeking a compromise be-
tween quality and speed, we ultimately opt to use
16 experts. '

Expert size. The number of parameters in each
expert can be controlled by varying its intermedi-
ate activation dimension, dy ;. If we can maintain
accuracy while decreasing the size of each expert,
that will speed up our model. On the other hand, if
we can achieve large accuracy gains by increasing
the size of experts, we can potentially use that to
offset shrinking the rest of the model; for example,
by constructing a "thin", fast model with only a few
"heavy", high capacity MoE layers. In Table 15, we
see that neither of these scenarios plays out cleanly:
(1) Using smaller experts (d sy = 1536) yields only

3The optimal experts will vary based on hardware and the
training dataset size.

71

Table 15: Varying the size of experts by varying each
expert’s intermediate activation dimension, d¢¢. These
experiments were run in parallel to those of Table 5 and
therefore use the default 6-MIXED setup.

Accuracy (%) Speed
dyy GLUE MLM NSP | (ms/batch)
1536 83.4 64 81.1 | 274 (1.11x)
3072 % | 83.5 64.6  81.2 | 283 (1.08x)
6144 83.3 65.3  81.5 | 305 (1.00x)
12288 83.1 659 81.7 | 350 (0.87x)

a small accuracy drop, but little speed benefit. (2)
As was the case for increasing the number of MoE
sublayers and the number of experts, increasing ex-
pert size increases MLM accuracy, but the results
do not translate downstream to GLUE. For simplic-
ity, we opt to keep the expert ds; the same size as
the dense d s, which is optimized in Section 4.2.

MOoE dead ends. (1) Changing the expert non-
linearity from GELU to RELU had little effect
on downstream performance. Changing the non-
linearity to GEGLU (GELU Gated Linear Units)
(Shazeer, 2020) only slowed down the model.!*
(2) Although the router z-loss had little effect on
model performance, we included it for potential
stability benefits. (3) Fedus et al. (2022) recom-
mend using a smaller scaled weight initialization
to provide stability to MoE encoder-decoder mod-
els, especially in larger configurations. However,
we obtained the best results, for our encoder-only
model, with BERT’s default kernel initialization.

14 A limitation of our GEGLU investigation is that we did
not simultaneously shrink the intermediate activation dimen-
sion to account for the extra activation function, as in (Shazeer,
2020; Narang et al., 2021).



Table 16: Full GLUE results (Validation split) for all coordinate descent experiments. See the corresponding
table for descriptions of each configuration. For dense models (Tables 1, 2, 11, 12, 3 and 13), we report the best
Scores across {10_5, 5-1079, 10_4} base learning rates, while for MoE models (Tables 4, 5, 14 and 15), we use
{107%,5-107%,1073}. We report F1/accuracy scores for QQP and MRPC, Spearman correlations for STS-B and
accuracy scores for all other tasks. The MNLI accuracy metrics are reported by the match/mismatch splits. The
top two average scores for each experiment set are boldfaced/underlined.

Table | Model [ MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE [ Avg.
Fourier 7457756 843/883 822 88.5 69.6 80.2  835/738 62.1 | 784
Hartley 75717577 84.4/88.1 826 87.7 69.4 80.9 822/72.1 599 | 78.0

1 Circulant 69.7/70.9 83.3/87.6 76 89.2 76.1 56.1 82.7/71.8 62.8 | 75.1
Toeplitz 732/735 842/883 78.1 88.6 73 66.1 82.6/71.6 62.8 | 76.5
Linear 73.4/743 843/882 80.2 89.6 74.6 68.2  83.5/752 635 | 71.7
Hartley-0 7517577 84.4/88.1 82.6 87.7 69.4 80.9 82.2/72.1 59.9 | 78.0
Hartley-1 72.7/73.6 839/87.8 82.1 86.8 71.1 79.5 82.8/75.7 62.1 | 78.0
Hartley-2 79.5/783  86/89.7 86.2 89.3 74 85.7 84.6/76.7 62.1 | 81.1
Hartley-3 742/75 83.5/879 819 88.8 70.4 78.3 83.1/733 61 779
Hartley-4 79/80.2  86.7/90.1 87.2 89.9 75.2 86.1 87.5/824 65 82.7

2 Hartley-6 80/ 81 86.7/90.2 88 90.7 75.3 86.5 87.3/81.9 64.6 | 829
Linear-0 73.4/743 843/882 80.2 89.6 74.6 682  83.5/752 635 | 71.7
Linear-1 744/749 849/88.8  81.8 91.4 78 69 83.4/73 599 | 78.1
Linear-2 80.1/80.5 87/90.3 87.6 90 78.2 86.7 853/78.2 66.8 | 82.8
Linear-3 80.2 /81 87/90.4 87.3 90.5 77.9 87.8 84.7/784 66.1 | 82.8
Linear-4 80.4/81.2 87.2/90.4 88 91.3 76.7 874 872/81.6 657 | 834
Linear-6 80.7/81.6 87.3/90.6 87.8 90.5 78.2 872  88.7/83.6 639 | 83.6
BOTTOM 79.1/79.6 86.8/90.3  86.2 90.7 73.2 85.5 87.5/82.1 61 82.0

11 MIDDLE 80/80.3 86.7/90.3  86.5 89.2 72.2 86.3 88.3/83.1 635 | 824
MIXED 79.5/80.3 87.1/90.5 87.6 90.7 75 85 87.1/82.1 64.6 | 82.7
TOP 80.4/81.2 87.2/90.4 88 91.3 76.7 874  87.2/81.6 657 | 834
dyr=3072 80.4/81.2 87.2/90.4 88 91.3 76.7 874  87.2/81.6 657 | 834
dy=2560 80.3/81.5 87.2/90.5 883 91.6 77.8 86.9 855/79.2 66.1 | 832

12 dyr=2048 80.4/81.1 87.1/90.5 87.7 91.3 76.6 87 87.8/82.4 66.8 | 83.5
dsr=1024 79.9/80.8  87/90.3 873 90 76.3 874  87.7/819 628 | 829
dy ;=768 80.1/81.1 86.7/90.2 87.4 89.7 75.7 86.6 87.7/82.6 628 | 82.8
dm=T768 80.4/81.2 87.2/90.4 88 91.3 76.7 874  87.2/81.6 657 | 834

3 dm=512 80.1/80.9 86.6/90.1 874 90.8 77 872  86.3/80.1 664 | 83.0
dm=256 779/78.5 844/88.1 852 89.8 73.9 83.8 84.5/76  66.1 | 80.7
dm=128 74971759 84.2/88.1 84 88 69.8 9.7 82.1/70.3 603 | 71.6
6 layers 79.9 /81 87/90.4 87.3 90 76 86.7 85.1/76.5 65 82.3
10 layers 80.7/81.6 87.1/904 875 87.5 76.5 872 90.2/863 643 | 83.6

13 12 layers 80.4/81.2 87.2/90.4 88 91.3 76.7 874  87.2/81.6 657 | 834
14 layers 80.5/81.7 87.2/90.6  88.1 90.4 78.4 87.8 87.2/81.4 682 | 83.8
18 layers 81.1/81.9 87.1/90.5 87.7 90.6 79.2 87.3 87/826 672 | 83.8

4 Tokens Choose | 80.2/81.2 86.7/90.2  87.8 90.1 774 87.3 87.6/82.4 664 | 834
Experts Choose | 80.4/81.1 86.8/90.2  87.5 90.6 75.9 84.9 88.7/83.6 68.6 | 83.5
2-MIXED 80.6/81.3 87.1/90.5 87.1 90.9 76.7 86.6 88/82.4 682 | 83.6
4-MIXED 80.7/80.8 86.7/90.2 873 90.8 76.8 87.5 88/824  68.2 | 83.6
6-MIXED 80.4/81.1 86.8/90.2 875 90.6 759 84.9 88.7/83.6 68.6 | 83.5
12-MIXED 80/80.2 86.7/90.1 86.3 90.7 75.5 87.5 87.7/82.1 66.8 | 83.1

5 6-BOTTOM 79.9/81 86.9/903 869 90.3 76.1 87.1 87.9/82.6 664 | 83.2
6-MIDDLE 80.3/80.9 90.6/872 87.6 90.7 77.6 86.9 89.7/853 664 | 83.9
6-MIXED 80.4/81.1 86.8/90.2 875 90.6 75.9 84.9 88.7/83.6 68.6 | 83.5
6-MIXEDx* 80.2/81.4 87/904 87.6 90.8 75.5 86.6  88.2/82.8 650 | 832
6-TOP 80.5/81.1  86.5/90 87.6 90.5 77.3 85.8 87.7/82.8 67.1 | 834
8 experts 80.4/81.4 86.2/89.8 88 90.9 75.7 86.7 88.3/83.1 65.7 | 833

14 16 experts 80.4/81.1 86.8/90.2 875 90.6 75.9 84.9 88.7/83.6 68.6 | 83.5
32 experts 80.4/81.4 86.8/90.2 874 91.1 78.3 86.7 87/81.4 653 | 833
dy5=1536 80.6/81.3 86.8/90.2 87.2 90.6 76.5 85.5 87.7/82.4 68.6 | 834

15 dry=3072 80.4/81.1 86.8/90.2 875 90.6 75.9 84.9 88.7/83.6 68.6 | 83.5
dy5=6144 80.3/81.4 87.1/904 87.8 90.6 76.4 87.3 87.3/80.9 67.1 | 833
dy;=12288 80.7/81.9 859/89.7 87.7 90.9 77.9 872  856/79.7 67.1 | 83.1

72



Table 17: GLUE results (Validation split) for final comparison of BERT, Sparse Mixer (SM), Fast Sparse Mixer
(FSM) and other variants for different batch sizes. See the corresponding table for descriptions of each configura-
tion. For each task, we select the best result across the base learning rates {10755 - 107°,1074,5 - 1074,1073}.
The highest average score for each model (across the three batch sizes) is highlighted in boldface.

Table | Model | Batch | MNLI QQP_ QNLI SST2 CoLA STS-B___MRPC _ RIE | Avg.
16 |813/818 86.7/903 889 OL.I 77.6 873 90.5/868 69.7 | 847

BERT 32 | 81.2/815 869/90.3 886 913 776 874 904/865 70 | 847

7 64 | 81.3/81.4 87.4/90.7 887 907 779 875 89.1/848 70 | 845
16 |80.8/81.4 869/90.2 893 915 792 877 90/858 69.7 | 84.8

SM 32 | 80.7/81.4 86.9/903 887 906 793 877  90.4/86 704 | 84.8

64 80.7/81 87.1/90.5 89.1 90.9 79 88.1 90.4/863 722 | 85.0
16 | 81.2/81.5 90.3/86.8 89.0 909 78.7 875 90.2/86.3 69.7 | 84.7
SM cf=0.5 32 | 80.8/81.1 90.4/869 89.0 904 78.6 879 90.8/86.8 68.6 | 84.7
(FSM) 64 | 80.6/81.2 90.5/873 885 909 78.8 88.7 89.6/85 69 | 84.6

16 |80.8/81.7 86.6/90.2 888 908 78.3 88 89.1/84.3 704 | 84.5
SM ¢=2048 32 | 80.5/81.6 86.6/90.3 885  90.5 71.7 87.9 89.4/85 693 | 843
9 64 | 81.2/81.7 87.1/904 886  90.5 78.2 88.7 88.8/84.1 68.6 | 84.4
16 | 80.1/80.7 86.8/90.2 883 91.7 76.4 869 88.4/833 68.6 | 83.8
SM g=1024 32 80.7/81 869/903 882  90.6 71.3 873 88.7/83.6 68.6 | 83.9
64 | 80.3/809 90.4/869 882 905 78.2 87.7 885/83.6 704 | 84.1
16 |80.1/81.1 86.8/904 884 909 76.4 877 88.6/83.8 67.9 | 83.8
SM ¢f=0.75, 32 | 80.6/80.9 87/904 882  90.8 76.6 88.5 883/83.6 68.6 | 84.0
g=2048 64 | 80.1/81.3 873/90.6 884 913 78 88.2 89/84.3 69 | 84.3

16 | 80.7/81.2 90.5/87 882  90.8 78.1 87 88.7/83.8 69 | 84.1
10 BERT-12 32 | 809/813 87.1/905 882 912 78.4 87.1 88/82.8 653 | 83.7
64 | 80.9/80.7 86.5/90.1 88.5 90.9 79.1 872 87.4/81.8 65.7 | 83.5

Table 18: SuperGLUE results (Validation split) for final comparison of BERT, Sparse Mixer (SM), Fast Sparse
Mixer (FSM) and other variants for different batch sizes. See the corresponding table for descriptions of each
configuration. We report macro-F1 scores for CB, micro-F1/exact match scores for MultiRC, F1/exact match
scores for ReCoRD, and accuracy scores for all other tasks. For each task, we select the best result across the base
learning rates {107°,5 - 107°,107%,5 - 10~%,10~3}. The highest average score for each model (across the three
batch sizes) is highlighted in boldface.

Table | Model [ Batch | BoolQ CB COPA  MultiRC ReCoRD  RTE  WiC | Avg.
16 74.6 86.4/85.7 58 74.1/26.2 68.6/52.2 65 65.7 | 65.7

BERT 32 72.9 85/85.7 61 73.7/25.6 70.4/544 585 679 | 655

7 64 71.3 75.2/80.4 66 71.7/21.3 69/52.7 62.5 679 | 63.8
16 74.4 93.3/92.9 62 7247225 659/49.2 646 665 | 66.4

SM 32 73.4 86.5/87.5 62 72.8/23.4 663/49.6 679 66 65.5

64 72.4 89.7/89.3 59 72.6/233 657/489 68.6 61.8 | 65.1
16 73.5 85.2/85.7 69 71.6/21.1 656/48.8 679 67.7 | 65.6

FSM 32 74.3 82.3/85.7 56 71.8/21.5 63.8/469 67.1 624 | 632

(SM w/ cf=0.5) 64 73.2 87.8/87.5 58 70.1/199 653/485 682 627 | 64.1

16 74.4 85.7/86.1 64 70.6/20 63.2/46.2 668 614 | 63.8

SM w/ g=2048 32 74.1 82.8/83.9 63 70.7/209 63.6/46.7 668 622 | 63.5

9 64 74.2 85.2/89.3 64 71.1/20.8 66.6/499 69 60.7 | 65.1

16 739  78.7/80.4 63 70/18.7  62.8/458 643 635 | 62.1
SM w/ g=1024 32 734  86.6/85.7 64 70.1/184 645/476 664 614 | 63.8
64 73.6  86.9/85.7 61 69.2/194 64.8/479 686 63 64.0
16 73.1 92/89.3 67 69.5/199 624/454 67.1 66.1 | 65.2
SM w/ ¢f=0.75, 32 73 87.7/89.3 60 69.6/199 639/469 664 64 | 64.1

g=2048 64 724 80.1/82.1 62 69/18.9 65/48.1 67.1 633 | 62.8
16 739  90.5/92.9 61 65.3/9.5 48.5/32  66.8 59.6 | 60.0
10 BERT-12 32 725 9237929 58 69.6/155 50/33.3 65 60.2 | 60.9
64 70.1 87.8/91.1 66 649/6.8 454/295 657 61 58.8

73



A.3 Full GLUE and SuperGLUE results

Table 16 contains the full GLUE results for all of
the coordinate descent experiments summarized in
Section 4. Tables 17 and 18 contain the full results
for GLUE and SuperGLUE, respectively, across all
fine-tuning batch sizes, for the final model results
tabulated in Sections 5.

A.4 Optimizing fine-tuning protocols for
MOoE models

In Table 19, we compare GLUE results for differ-
ent fine-tuning learning protocols. Consistent with
(Zoph et al., 2022), we find that fine-tuning results
are improved with an increased expert dropout (0.2)
and larger base learning rates. Increasing the capac-
ity factor, cf, yields quality gains but slows down
the model. We did not find benefits from freezing
different parts of the model during fine-tuning.

For MoE models in the main text, we always
use an expert dropout of 0.2 during fine-tuning.
Similarly, we use the larger base learning rates
during the coordinate descent program (Section
4). However, when comparing Sparse Mixer with
BERT (Section 5) we use a wider range of learning
rates for both models.

A.5 Speed-accuracy plots

Figure 4 shows the NSP-accuracy equivalent of the
MLM-accuracy based efficiency plot in Figure 2.

Table 20 gives the model configurations that
were used to construct Figure 2 (main text) and
Figure 4 (Appendix A.5). In configuring the Sparse
Mixer model configurations, we tried to roughly
hew to the proportions in the Base model.

74



Table 19: Optimizing fine-tuning learning protocols for MoE models. The "Default LR" range is {10755 -
107,107}, while the "Large LR" range is {1074,5 - 1074, 10~}. For "Fine-tune All", we fine-tune all layers;
for "Freeze MoE", we fine-tune all but the MoE layers; and for "Dense MLP", we only fine-tune the dense MLP
sublayers. The default model is repeated in several rows: "0.2 ex dropout”, "Default LR" (learning rate), "cf=1.",
and "Fine-tune All". The top average scores are highlighted in boldface.

Configuration MNLI QQP QNLI SST-2 CoLA STS-B MRPC  RTE ‘ Avg.

0.0 ex dropout | 80/80.8  87/90.4 88 89.9  75.7 87.1 86.1/79.9 66.1 | 82.8
0.1 ex dropout | 80.2/81.3 87.1/90.3 87.7 90 75.8 87 86.3/80.4 657|829
0.2 ex dropout | 80.7/81.3 86.9/90.3 879 90.6 76.8 86.8 86.1/79.7 66.8 | 83.1
0.3 ex dropout | 80.5/81.6 87/90.3 879 904 762 8677 86.1/80.1 66.1 | 83.0
0.4 ex dropout | 80.6/81.5 86.8/90.3 882  90.5 76 87.5 865/804 653 ] 83.1

Default LR 80.7/81.3 869/903 879 90.6 76.8 86.8 86.1/79.7 66.8 | 83.1

Large LR 80.4/81.1 86.8/90.2 875 90.6 759 849 88.7/83.6 68.6| 83.5
cf=1. 80.7/81.3 86.9/903 879 90.6 76.8 86.8 86.1/79.7 66.8 | 83.1
cf=2. 80.1/81.1 86.8/90.2 88 90.7 774 869 87/82.1 664 | 83.3

Fine-tune All | 80.7/81.3 86.9/90.3 879 90.6 76.8 86.8 86.1/79.7 66.8 | 83.1
Freeze MoE 80.4/80.9 869/90.2 882 909 753 86.6 859/789 67.1]| 82.8
Dense MLP 788779 899/864 873 903 692 844 73.5/832 6321805

Table 20: Model configurations. Following the Base convention for both BERT and Sparse Mixer, we set d¢f =
4d}, and the number of self-attention heads to dj, /64. Roughly following the Sparse Mixer Base design, we set the
number of MoE and attention layers to be roughly 25-33% of the larger models and no less than 2 for the smaller
models. We increase the number of experts for the larger models.

BERT Sparse Mixer

Name | Layers d,, dy; | Layers d,, dyy Attention MoE Experts

2 256 1024 2 256 1024 2 2 16

4 256 1024 4 256 1024 2 2 16

4 512 2048 4 512 2048 2 2 16

8 512 2048 8 512 2048 4 4 16
Base 12 768 3072 14 512 2048 4 4 16

18 768 3072 18 768 3072 6 6 32
Large 24 1024 4096 24 1024 4096 6 6 64

75



