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Abstract
We investigate input-conditioned hypernet-
works for multi-tasking in NLP, generating
parameter-efficient adaptations for a decoder
using a hypernetwork conditioned on the out-
put of an encoder. This approach produces a
unique decoder adaptation for every input in-
stance, allowing the network a larger degree of
flexibility than prior work that only produces
one decoder adaptation per task. We apply
our method to sequence classification tasks, ex-
tractive QA, and summarisation and find that
it surpasses previous parameter efficient fine-
tuning methods and often outperforms fully
finetuning the underlying model. An analy-
sis of the embeddings used by our hypernet-
work shows that they are sensitive to output
label and type, suggesting that our approach
better maps from encoder representations to
output labels. Our code is publicly available at
https://github.com/allenai/hyperdecoders.

1 Introduction

Recent work in NLP has examined the performance
of large pretrained transformer-based models in
multi-task settings, where a single model is evalu-
ated on multiple tasks simultaneously, often with
tasks converted to a shared sequence-to-sequence
format (Raffel et al., 2020; Brown et al., 2020).
This greatly simplifies model training and deploy-
ment, requiring only one deployed model and for-
mat to handle multiple tasks. Additionally, training
across multiple tasks can result in greatly improved
performance for similar tasks (Phang et al., 2018),
as well as tasks not seen during training (Sanh et al.,
2022; Wei et al., 2022). However, not all tasks work
well together, and jointly training on certain task
pairs can reduce performance on both (‘negative
transfer’) (Aribandi et al., 2022).

In this paper, we propose a new method for
multi-task NLP using a hypernetwork to gener-
ate an instance-specific decoder from the output
of an encoder. We effectively explore if a model
can learn to adapt itself through learning how to
generate adapter layers. Our approach produces
significant gains over prior approaches for efficient
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Figure 1: An overview of our proposed approach, where
a hypernetwork generates the adapters for the decoder in
an encoder-decoder model. Given an input instance and
task name, an encoder produces an embedding which
is used to generate decoder adapter parameters using a
hypernetwork.

multi-task fine-tuning, often matching or exceeding
full fine-tuning the underlying model.

We build on parameter-efficient learning meth-
ods, where one trains a small set of parameters
within a much larger model. These parameters
may be newly introduced (Houlsby et al., 2019;
Li and Liang, 2021) or already exist within the
model (Zaken et al., 2021), and are kept as few
as possible. This means these methods often do
not contain the capacity to learn multiple tasks at
once, losing potential transfer benefits. One way
to remain parameter-efficient while still handling a
variety of tasks is to instead learn to generate these
parameters, making use of an auxiliary network
(‘hypernetwork’) to generate the weights used dur-
ing inference (Tay et al., 2021; Pilault et al., 2021;
Ye and Ren, 2021; Karimi Mahabadi et al., 2021).
This allows the model to benefit from positive trans-
fer between tasks through the shared hypernetwork
while reducing negative transfer by allowing the
generated parameters to be unique per task.
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However, hypernetwork-based approaches gen-
erally condition their parameters on a learnt task
embedding, meaning (a) the model is the same for
every example within a task, and (b) adapting to
new tasks requires further training to learn new
task embeddings. We increase the flexibility of
this approach by instead generating unique param-
eters for every input, allowing the model to make
use of similarities between samples across datasets
and avoid potential interference between samples
within the same dataset. This is achieved by using
a shared encoder across all tasks and then generat-
ing adapter layers for the decoder only by feeding
the encoded inputs into a hypernetwork. Further-
more, by conditioning on inputs rather than task
embeddings, our approach allows simple transfer
to out-of-domain data, as the shared hypernetwork
and encoder learn to map from text to parameters.
Figure 1 illustrates our approach.

We apply our approach to a diverse set of
tasks, including sequence classification, extractive
question answering, and summarisation, and find
that our approach outperforms existing parameter-
efficient approaches and matches or outperforms
full-finetuning. An analysis of our approach shows
that sharing parameters in the encoder, but generat-
ing them in the decoder is more effective than other
possible setups, suggesting that the encoder bene-
fits from multi-task training while the decoder does
not. Our results suggest that pretrained encoders
can be easily adapted and trained to produce adap-
tations that enhance multi-task transfer learning for
decoders, while producing useful adaptations for
encoders is much more difficult.

To summarise, our core contributions are:

1. We propose a new method for parameter-
efficient multi-tasking, generating unique de-
coder layers for every input into a model.

2. We show that our approach performs strongly
against other parameter-efficient baselines and
fully finetuning the underlying model across
a diverse set of NLP tasks.

3. We show the embeddings learnt by our hy-
pernetwork are sensitive to both dataset and
output label, suggesting the hypernetwork is
effectively controlling the decoder.

2 Encoder-conditioned Decoders

We make use of T5 as the underlying model
in our experiments, which is a popular encoder-
decoder model for sequence-to-sequence multi-

tasking (Raffel et al., 2020) and a common starting
point for previous hypernetwork-based approaches
(Karimi Mahabadi et al., 2021; Tay et al., 2021).
However, our overall approach can be applied to
generic encoder-decoder transformer models.

2.1 Adapter Layers
We augment our underlying model with adapter
layers (Houlsby et al., 2019). These are small bot-
tleneck networks with the following form:

Adapter(x) = Wu(f(Wdx+ bd)) + bu (1)

Where f is the ReLU activation function. We
insert these layers in parallel with the feedforward
module of each layer of a larger pretrained model,
following He et al. (2022a):

y = FF(LayerNorm(x)) + Adapter(x) (2)

Where y is the output for the layer, FF is the
feedforward module, and x is the output from the
attention module(s). We find using LayerNorm(x)
as input to the adapter less effective than directly
using x (see section 5.2). During training, the un-
derlying network is frozen and only Wu, Wd, bu,
and bd are updated.

2.2 Adapter-generating Hypernetworks
A hypernetwork is a network that produces the pa-
rameters used for another network (Ha et al., 2017;
Schmidhuber, 1991). We use a simple two-layer
network to produce adapter parameters Wd, Wu,
bd, bu. Given some input x to the hypernetwork,
we generate these parameters as follows:

h = ReLU(W0x+ b0) (3)

Wu = W1h+ b1 (4)

Wd = W2h+ b2 (5)

bu = W3h+ b3 (6)

bd = W4h+ b4 (7)

We re-use this hypernetwork to generate the
adapters for every layer by (partially) condition-
ing the input on layer embeddings, greatly improv-
ing the parameter efficiency of this approach. The
hypernetwork parameters are initialised using the
method proposed in Chang et al. (2020).

2.3 Encoder-conditioned Decoders
The core idea of our approach is to condition a hy-
pernetwork on the output of the encoder to generate
the adapters used for the decoder in an encoder-
decoder model. We place regular (non-generated)
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adapter layers in the encoder to allow it to adapt to
tasks in a parameter-efficient way. We then feed
the encoder output to a hypernetwork to generate
custom decoder adapters for every input to the en-
coder. This allows our approach to flexibly dif-
ferentiate between samples within a task, rather
than remaining static per task. This potentially al-
lows more flexible transfer learning both between
samples within datasets and with samples across
datasets. We explore other potential configurations
in section 5.2 and find ours works best overall. We
name this approach ‘hyperdecoder’ in the follow-
ing experiments.

Concretely, given some input, we first pass it
through the T5 encoder to construct a hidden rep-
resentation h. The T5 encoder is equipped with
adapter layers, which are trained during fine-tuning
while the rest of the encoder is kept frozen. We
mean-pool this representation and pass it through a
two-layer network with a ReLU activation to con-
struct a vector embedding of the input:

e = MLP(mean(h)) (8)

We then generate the parameters for an adapter
in each layer i of the decoder by concatenating a
learnt layer embedding li to the embedding and
passing it through the hypernetwork described in
section 2.2.

Adapteri = Hypernetwork([e; li]) (9)

All parameters in the decoder are frozen and
the hypernetwork is trained along with the encoder
adapters during fine-tuning. This approach is sum-
marised in Figure 1.

2.4 Multi-tasking
We focus on a multi-task setup, where a model is
trained on multiple tasks simultaneously. The un-
derlying model parameters θ are kept unchanged
during training and only the adapter and hypernet-
work parameters θ′ are updated. All parameters are
shared between all tasks, and the model is trained
in a seq2seq setting with cross-entropy loss, follow-
ing Raffel et al. (2020).

3 Experiments

This section details our experimental setup and
baselines. Results are given in Section 4.

3.1 Datasets
We evaluate our approach in three settings: GLUE
(Wang et al., 2018), the 2019 MRQA shared task

(Fisch et al., 2019), and a set of summarisation
and NLI datasets. For each setting, we sample
from sub-tasks proportionally to their size, as ini-
tial experiments showed more complex sampling
techniques provided little to no benefit. All tasks
are in English.

3.1.1 GLUE
GLUE (Wang et al., 2018) is a set of sequence
classification tasks including paraphrase detection
(QQP and MRPC; Dolan and Brockett, 2005), se-
mantic similarity (STS-B; Agirre et al., 2007), nat-
ural language inference (MNLI; Williams et al.,
2018), (QNLI; Rajpurkar et al., 2016), (RTE; Da-
gan et al., 2006; Bar Haim et al., 2006; Giampic-
colo et al., 2007; Bentivogli et al., 2009), linguis-
tic acceptibility (CoLA; Warstadt et al., 2018),
and sentiment classification (SST-2; Socher et al.,
2013). Following Karimi Mahabadi et al. (2021),
for datasets with small training sets (RTE, MRPC,
STS-B, CoLA), we split the validation set in half
into test and validation sets, for other larger datasets
we split out 1000 examples to use as the validation
set and use the original validation set as a test set,
and for MNLI we use the mismatched validation
set as the test set. Following prior work we do
not evaluate on WNLI. We preprocess the GLUE
inputs to follow the format used by Raffel et al.
(2020) (including task prefix).

3.1.2 MRQA
The MRQA 2019 shared task dataset (Fisch et al.,
2019) is a collection of 12 QA datasets, all modified
to the same format of extractive QA. 6 datasets are
used for training and evaluation: HotpotQA (Yang
et al., 2018), Natural Questions (Kwiatkowski et al.,
2019), NewsQA (Trischler et al., 2017), SQuAD
(Rajpurkar et al., 2016), SearchQA (Dunn et al.,
2017), and TriviaQA (Joshi et al., 2017). Another
6 are used for out-of-domain evaluation: BioASQ
(Tsatsaronis et al., 2015), DROP (Dua et al., 2019),
DuoRC (Saha et al., 2018), RACE (Lai et al.,
2017), RelationExtraction (Levy et al., 2017), and
TextbookQA (Kembhavi et al., 2017). This effec-
tively tests a model’s ability to generalise to out-of-
domain data. We evaluate on the validation split
of all 12 datasets after all training steps are com-
plete. We preprocess all MRQA data to follow
the SQuAD template used by Raffel et al. (2020)1.
Notably, this prompt does not provide any indi-
cation as to which dataset a given input belongs.

1‘question: <question> context: <context>’.
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Model
% Trainable

Param.
CoLA SST-2 STS-B MRPC QQP MNLI QNLI RTE Avg

Full Finetuning 100% 63.6 94.8 92.0 / 91.6 88.7 / 91.8 92.2 / 89.5 88.6 93.3 77.5 86.3
Hyperformer 8.8% 19.2 87.3 86.2 / 85.8 73.4 / 81.3 87.0 / 82.8 77.7 84.2 55.1 71.5
Hyperformer++ 4.6% 35.5 88.3 87.9 / 87.6 78.8 / 85.2 86.4 / 82.3 88.3 84.8 64.5 76.9
Task Hypernet 2.7% 0.0 82.1 16.4 / 16.4 70.4 / 81.4 89.8 / 86.5 56.6 64.8 50.7 54.3
Modular Hypernet 4.8% 51.2 96.2 91.9 / 92.0 90.1 / 93.0 89.4 / 86.1 89.5 93.5 74.6 84.5
Adapter 2.9% 58.53.1 95.70.3 90.11.8 / 90.31.9 89.41.5 / 92.21.0 91.41.9 / 88.60.3 89.80.1 94.10.2 80.71.8 86.20.6
Hyperdecoder (ours) 2.9% 58.72.3 95.90.4* 91.80.7 / 92.00.4* 89.21.5 / 92.00.9 91.10.2 / 88.30.4 90.00.2* 94.20.4 80.82.2 86.50.5†

Table 1: Performance of models using T5large v1.1 + LM as the base model on GLUE test splits described in section
3.1.1. Trainable parameters is % of parameters trained in the model compared to fully finetuning T5. We report
mean and standard deviation over 25 runs for Adapter and Hyperdecoder. * indicates value is statistically significant
(p < 0.05). † Hyperdecoder is statistically significantly better when CoLA is removed from average.

We split contexts into chunks of length 512 tokens
with an overlap of 128 tokens. We pair chunks
with answers with the answer found in the chunk,
and chunks without answers with empty strings.
At evaluation time, we produce an answer for all
chunks and take the most likely non-empty string
as the final answer.

3.1.3 Summarisation and NLI
To investigate transfer learning with difficult tasks,
we evaluate on summarisation and NLI tasks that
are known to cause negative interference (Aribandi
et al., 2022) and are difficult for current parameter-
efficient techniques (He et al., 2022a). For sum-
marisation, we use Xsum (Narayan et al., 2018),
CNN/Daily Mail (Hermann et al., 2015), and the
English WikiLingua split from Gehrmann et al.
(2021). For NLI, we use MNLI (Williams et al.,
2018), abductive NLI (Bhagavatula et al., 2020),
and adversarial NLI (Nie et al., 2020). We jointly
train and evaluate on all tasks. We preprocess all
datasets following the templates used in Raffel et al.
(2020)2. We evaluate on the provided test splits for
all datasets except abductive NLI and MNLI. For
abductive NLI, we split 1000 samples from the val-
idation set and use the existing validation set as the
test set. We treat MNLI as detailed in section 3.1.1.

3.2 Experimental Details
We build on the Hyperformer codebase
(Karimi Mahabadi et al., 2021), making use
of the transformers implementation of T5 (Wolf
et al., 2020). We finetune all models using
AdamW (Loshchilov and Hutter, 2019), with a
learning rate of 3e-4 with linear decay and 500
warmup steps. For GLUE tasks, we train for
65k steps with an effective batch size of 128,
evaluate every 1000 steps on the development

2This means that the NLI tasks have their dataset name
prepended onto the prompt, while summarisation tasks do not.

set, and test on the overall best performing
checkpoint. For MRQA, we train for 4 epochs and
evaluate on the final model (initial experiments
showed that taking checkpoints always resulted
in evaluating on the final model regardless). For
summarisation and NLI tasks, we train for 100k
steps with a batch size of 64, evaluate every 5000
steps on the development set, and test using the
single overall best-performing checkpoint. All
non-hypernetwork and non-adapter parameters are
frozen throughout training. All experiments start
from the T5 v1.1+LM checkpoints (Lester et al.,
2021) unless otherwise stated. Further details can
be found in Appendix B.

3.3 Baselines
We primarily compare against three strong base-
lines: fully-finetuning the underlying model, train-
ing only adapter layers placed in parallel with all
feedforward modules (‘adapter’) and using task-
conditioned hypernetworks to generate adapter lay-
ers in the encoder and decoder (‘task hypernet’),
similar to the Hyperformer (Karimi Mahabadi et al.,
2021). Apart from full finetuning, we keep the num-
ber of trainable parameters roughly equal across
methods. More details are provided in Appendix
A.

We additionally compare against relevant prior
work. For GLUE, we compare against the Hyper-
former and Hyperformer++ models proposed in
Karimi Mahabadi et al. (2021) with an increased
number of trainable parameters3, and the modu-
lar task hypernetwork (Ponti et al., 2022). For
MRQA, we compare against CA-MTL (Pilault
et al., 2021), which modifies a BERT model with
several task-conditional modules and uses a novel

3We increased the number of trainable parameters for Hy-
performer as a best-faith effort to provide a strong baseline as
the default settings tended to result in worse performance in
initial experiments.
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Model
% Trainable

Param.
CoLA SST-2 STS-B MRPC QQP MNLI QNLI RTE Avg

Hyperformer* ∼4% 58.9 95.7 91.6 / 91.5 92.7 / 90.0 87.7 / 90.7 89.8 94.5 87.0 87.3
HyperPrompt* ∼4% 57.5 96.7 91.9 / 92.0 93.6 / 91.2 87.0 / 90.1 90.3 95.0 87.7 87.5
Hyperdecoder (ours) 4.2% 58.2 96.4 91.5 / 91.6 93.8 / 91.4 89.3 / 91.9 90.7 94.8 88.4 87.9

Table 2: Performance of models using T5large v1.1 + LM as the base model on GLUE dev set splits, picking the
best task performance across all checkpoints. Trainable parameters is % of the trainable parameters used compared
to fully finetuning T5. * Results from He et al. (2022b).

Model
% Trainable

Param.
CoLA SST-2 STS-B MRPC QQP MNLI QNLI RTE Avg

Full Finetuning* 100% 54.9 92.5 88.8 / 88.5 90.2 / 93.0 91.1 / 88.1 85.7 92.0 75.4 83.8
Hyperformer* 54% 61.3 93.8 89.6 / 89.0 90.6 / 93.3 87.2 / 90.1 86.3 92.8 78.3 85.3
Hyperformer++* 2% 63.7 94.0 90.0 / 89.7 89.7 / 92.6 87.2 / 90.3 85.7 93.0 75.4 85.2
Hyperdecoder (ours) 7.4% 54.8 93.8 90.3 / 90.2 86.2 / 90.5 90.5 / 87.3 85.8 93.4 71.0 83.3

Table 3: Performance of models using T5base vanilla as the base model on GLUE test splits described in section
3.1.1. * Results reported by Karimi Mahabadi et al. (2021).

sampling technique. We also compare to Uni-
fiedQA (Khashabi et al., 2020) results reported by
Friedman et al. (2021) to show out-of-domain split
performance from alternate T5-based QA model.

4 Results

This section details our main experimental results.
Ablations and analysis follow in Section 5.

4.1 GLUE
We report our results on the GLUE benchmark in
Tables 1 and 3. Our approach improves greatly
over the Hyperformer and full finetuning when us-
ing T5 v1.1 + LM as the underlying model. Notable
improvements are made in SST-2 and RTE tasks,
the latter of which is known to benefit from trans-
fer learning (Phang et al., 2018). This suggests
our approach enhances positive transfer benefits
over adapter-only and full finetuning approaches.
The worst performing approach is the ‘task hy-
pernet’ method, which follows the Hyperformer
approach but with our adapter placement. This sug-
gests that the adapter placement difference between
our method and the Hyperformer is not the reason
for our improved performance, but rather the use
of an encoder-conditioned decoder. Additionally,
our approach remains parameter efficient, training
0.03× fewer parameters than full finetuning. Our
approach also outperforms HyperPrompt (He et al.,
2022b) when using a matching evaluation setup4,
as seen in 2.

4He et al. (2022b) do not release their code, so we are
limited to comparing against the numbers they report.

However, we note that in table 3 our approach
underperforms when using the original T5 model
as the underlying model. As T5 was originally pre-
trained with a mix of self-supervised span-infilling
and supervised tasks (including GLUE), this sug-
gests the Hyperformer is able to effectively adapt
the model to tasks seen or similar to those seen dur-
ing pretraining. However, when we remove these
tasks from the pretraining mixture (as was done for
T5 v1.1+LM), the Hyperformer struggles to adapt
the model, as seen in Table 1. Overall, this suggests
being exposed to the underlying task in pretraining
can make a large difference in the evaluation of
parameter-efficient methods. As we wish to eval-
uate how well our approach can adapt models to
completely unseen tasks, we restrict our underlying
model to T5 v1.1+LM.

4.2 MRQA
We report our results on the MRQA dataset in Ta-
bles 4 and 5. We note that during experimenta-
tion, we found it beneficial to increase the encoder
adapter size and reduce the decoder adapter size,
keeping the overall parameter budget roughly the
same (full results detailed in Appendix G). Over-
all, our approach outperforms other parameter-
efficient approaches and full finetuning (69.4 vs
69.9 overall average F1 between our method and
full-finetuning). Gains are especially large in the
out-of-domain test sets, likely due to the fact that
freezing the underlying model preserves knowl-
edge useful to these new domains. We also note our
method performs especially well on long-context
out-of-domain datasets (DuoRC, TextbookQA),
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Model SQuAD HotpotQA TriviaQA NewsQA SearchQA Natural Qs Avg
BERT-base 86.7 76.6 71.6 66.8 76.7 77.4 62.6
BERT-large 88.4 79.0 74.7 66.3 79.0 79.8 77.9
CA-MTL (BERT-large)* - - - - - - 79.5
Full Finetuning 91.0 80.6 76.2 69.0 83.4 79.6 80.0
Adapter 90.8 79.5 75.0 68.6 82.9 78.6 79.2
Task Hypernet 88.9 77.4 70.6 66.0 81.0 75.0 76.5
Hyperdecoder (ours) 91.3 79.9 75.0 68.6 82.9 79.1 79.5

Table 4: F1 score of models on in-domain MRQA validation split. * results from Pilault et al. (2021), who do not
report performance on individual datasets and train on additional data. All non-BERT models use T5base v1.1 + LM.

Model BioASQ DROP DuoRC RACE Relation Ext. TextbookQA Avg
BERT-base 62.7 34.5 54.6 41.4 83.8 53.9 55.2
BERT-large 66.8 43.8 58.0 42.5 85.2 55.7 58.7
UnifiedQA* 59.7 45.7 30.4 51.4† 82.0 35.9 50.9
Full Finetuning 63.9 47.9 54.5 47.3 84.0 55.1 58.8
Single Adapter 66.0 48.2 55.6 47.7 84.0 57.5 59.8
Task Hypernet** 63.9 36.6 53.0 44.8 82.0 53.0 55.6
Hyperdecoder (ours) 65.8 47.0 58.1 46.3 84.3 59.5 60.2

Table 5: F1 score of models on out-of-domain MRQA validation split. All non-BERT models use T5base v1.1 + LM.
* results from Friedman et al. (2021). **Task Hypernet uses an average of the learnt in-domain task embeddings to
condition its adapters. † RACE was part of UnifiedQA’s training data.

Model Sum. Avg. NLI Avg. Overall Avg.
Full-finetuning 18.4 64.8 41.6
Adapter 17.0 66.3 41.7
Task Hypernet 14.0 62.0 38.0
Hyperdecoder (ours) 16.8 65.6 41.2

Table 6: Average performance across Summarisation
and NLI datasets using T5base v1.1 + LM. Summarisa-
tion performance is average of R2 scores, while NLI
is average of accuracy scores. Overall average is the
arithmetic mean of the two.

suggesting it is especially effective at identifying
when the question cannot be answered given a
subsection of context. This shows our approach
is still able to work well even when the underly-
ing datasets are not revealed to the model in the
prompt and that it can generalise well to out-of-
domain data. Additionally, our approach matches
CA-MTL, which uses an underlying model with
approximately 90 million extra parameters (BERT-
large vs T5base) and makes use of additional train-
ing data. Overall, this suggests our approach is
able to generalise well to out-of-domain data, even
when underlying datasets are not distinguished.

4.3 Summarisation & NLI
Finally, to explore a setting where strong negative
interference is present, we experiment on a combi-

nation of summarisation and NLI tasks following
Aribandi et al. (2022). As shown in Table 6, we
find that while no approach is able to match full-
finetuning in summarisation, both regular adapters
and our approach are able to perform well for NLI.
This suggests that while our approach is able to
avoid some of the negative interference that results
in lower NLI scores for the fully-finetuned model,
it still struggles to overcome it. We note that simi-
lar to MRQA, we found here that placing a larger
parameter budget into the encoder outperformed
evenly splitting the budget between encoder and
decoder (see Appendix H for details).

5 Analysis

This section presents an analysis of the Hyperde-
coder’s embeddings and ablations, establishing the
efficacy of our architecture design choices.

5.1 Hypernetwork Embeddings
We visualise the embeddings learnt by the encoder
before being passed to the hypernetwork (‘e’ in
Equation 8) by utilising dimensionality reduction
with t-SNE (van der Maaten and Hinton, 2008)
and PCA (Pearson, 1901). Although Figure 2 sug-
gests the hypernetwork does customise to differ-
ent datasets to a degree, Figure 3 shows the most
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Figure 2: t-SNE visualisation of GLUE validation set
hypernetwork embeddings produced by our approach.

Model Encoder-decoder Encoder-only
Hyperdecoder (ours) 75.23 74.94
Adapter 74.69 72.65

Table 7: GLUE validation set performance for encoder-
only and encoder-decoder models excluding STS-B. We
detail the encoder-only setup in Appendix C.

salient difference between samples is the predicted
label. Note that following Karimi Mahabadi et al.
(2021) we train our models to output numeric rather
than text labels, meaning that while the labels may
have semantic differences between datasets, the ac-
tual output from the decoder is identical between
datasets. This suggests the hypernetwork has learnt
to map from embedding space to the text labels,
and the encoder is doing much of the classification
work. We further investigate this by training simple
linear classifiers for all datasets apart from STS-B
on top of the T5 encoder (with learnt adapters) in
Table 7. We note that we can recover much of the
performance of our model in this case, suggesting
that the decoder is largely working to map from
represented space to text label space. Furthermore,
the efficacy of our model at long-context out-of-
domain datasets for MRQA further suggests that
the hypernetwork can effectively control the de-
coder to output specific labels when needed, but
can flexibly swap to generate arbitrary text output
when needed, unlike a simple linear classifier. This
is especially important for multi-tasking and long-
context documents where the model must swap
between generating short set labels and arbitrary
longer text. A visualisation of the hypernetwork
embeddings generated for NewsQA in Figure 4 fur-
ther shows that empty string answers are generally
clustered together.
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Figure 3: PCA visualisation of GLUE validation set
hypernetwork embeddings, coloured by predicted label.
STS-B examples removed for simplicity, as it is cast to
a 21-class classification task for T5.
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Figure 4: PCA visualisation of hypernetwork embed-
dings for NewsQA instances. Blue indicates predicted
answer is the empty string, orange non-empty string.

5.2 Ablations
Placement of adapter and parameter genera-
tors We investigate alternate adapter generation
possibilities by varying regular, task, and encoder-
conditioned adapters independently in the encoder
and decoder while keeping the total number of
trainable parameters roughly constant. We use the
same setup as our previous GLUE experiments.
As seen in Table 8, input-conditioned or task-
conditioned adapters do not perform as well as
regular adapters in the encoder. The task hypernet-
work struggles to learn useful adapters at all, while
the encoder-conditioned adapters perform better
but still do not match directly learnt adapters, likely
due to the regular adapters being more effectively
able to share knowledge or simply being easier to
optimise. However, it seems much easier to learn
to generate adapters for the decoder, with both task
and encoder-conditioned adapters performing well.
Our approach, using regular adapters in the encoder
and encoder-conditioned adapters in the decoder,
performs best overall.
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Encoder↓ Decoder→ Full-Finetuning Adapters Task-Conditioned Adapters Encoder-Conditioned Adapters
Full-Finetuning 86.3 - - -
Adapters - 86.4 86.3 86.9
Task-Conditioned Adapters - 51.5 54.3 57.9
Encoder-Conditioned Adapters - 83.4 82.3 82.8

Table 8: Average GLUE benchmark performance across varied encoder/decoder adapter configurations using
T5large v1.1 + LM as the base model. Number of trainable parameters is kept similar across approaches apart from
full-finetuning. More details given in Appendix F.

Model GLUE Avg
Hyperdecoder 86.9
- MLP 86.7
+ post-layernorm input 83.2

Table 9: GLUE performance over different ablations.

Other Elements We also investigate removing
the MLP used in Equation 8 and using layer nor-
malisation outputs as input to the adapters (‘post-
layernorm input’). The results in Table 9 suggest
the MLP provides some utility and using inputs
pre-layer normalisation works better.

6 Related Work

6.1 Multi-task Models
Neural networks have long been known to uncover
and make use of task relatedness when training
across multiple tasks (Caruana, 1997). Applica-
tions of this approach in NLP initially have usu-
ally involved generating shared representations and
passing these to task-specific layers (Collobert and
Weston, 2008; Liu et al., 2019). Newer approaches
have opted to use a single set of parameters for
all tasks, achieved by casting them to unified for-
mats (Raffel et al., 2020). This allows massive
multi-tasking approaches where extremely large
models are trained across a wide variety of tasks
(Aghajanyan et al., 2021; Aribandi et al., 2022),
often with benefits to few or zero-shot performance
(Sanh et al., 2022; Wei et al., 2022). This requires
finetuning large models for long amounts of time
over a large number of tasks, which may be out of
reach with a limited compute budget.

6.2 Parameter-efficient Tuning
Numerous parameter-efficient approaches to fine-
tuning large models have been proposed, includ-
ing adapters (Houlsby et al., 2019), prefix-tuning
(Li and Liang, 2021), prompt-tuning (Lester et al.,
2021), and p-tuning (Liu et al., 2021a,b), all of
which involve learning a small set of parameters in

carefully chosen locations to achieve performance
close to fully-finetuning the model. Recent studies
have shown the effectiveness of these methods can
be increased with differing placements (Pfeiffer
et al., 2021; He et al., 2022a) and that parameters
learnt for one task or language can be combined to
allow better performance across a wide variety of
tasks or languages (Pfeiffer et al., 2021, 2020).

6.3 Hypernetwork-based Adaption Methods
Generating network weights with another network
was originally proposed by Schmidhuber (1991) in
a general setting. More recently, Ha et al. (2017)
showed modulating weights in CNNs and LSTMs
could improve performance on various tasks, in-
cluding language modelling. With the rise of large
pretrained transformers in NLP, much recent work
has explored generating adaptations for these mod-
els. Tay et al. (2021) and Karimi Mahabadi et al.
(2021) investigate generating adapter (or adapter-
like) layers using task embeddings and hypernet-
works for multitasking, evaluating primarily on
sequence classification tasks using T5 v1.0. Ye and
Ren (2021) investigate generating adapters from
task descriptions for zero-shot tasks and find this
provides improvements over just fully-finetuning
the underlying model. Concurrently, Volk et al.
(2022) use a T5 model to convert input instances
into domain ‘signatures’, which they condition a
hypernetwork on to generate classifier weights. In
contrast, we directly generate weights for adapters
from the encoded input representation. Recent
work has further applied hypernetwork-based adap-
tation methods to vision and language tasks (Sung
et al., 2021), prompt-tuning (He et al., 2022b), and
few-shot-based multitasking (Ponti et al., 2022).

Outside of sequence-to-sequence-based ap-
proaches, Pilault et al. (2021) find modifying mul-
tiple parts of BERT to be conditional on a task em-
bedding to be effective for sequence classification
tasks. Üstün et al. (2020) and Ansell et al. (2021)
also explore generating multilingual adapters for
mBERT using linguistic typological features, the
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former using parameter generators in every layer.

7 Conclusion

We propose a novel method for generating adapters
conditioned on a model’s input and show that this
improves performance in multi-task settings across
a variety of tasks. We explore the effectiveness
of our approach for sequence classification, QA,
and summarisation tasks, and find that it often out-
performs strong parameter-efficient baselines. Fu-
ture work could examine applying our approach to
other architectures (e.g. decoder-only models) or
explore the tradeoffs between shared and generated
parameters across different layers. An analysis of
our approach suggests the primary benefits come
from improved control of the encoder over the de-
coder, enhancing the effects of positive transfer
from the shared encoder. This allows our approach
to efficiently adapt a pretrained language model to
multiple tasks unseen during pretraining while still
benefiting strongly from positive transfer.

Limitations

Our work explores a novel idea within parameter-
efficient finetuning by conditioning a model on
itself, enabling greater flexibility for multi-tasking
while adding relatively few parameters. However,
this flexibility has limits: some tasks are more dif-
ficult to adapt with our method than others, as seen
in the summarisation results in section 4.3. Ex-
amining other parameter efficient training methods
such as LoRA (Hu et al., 2022) or prefix-tuning
(Li and Liang, 2021) on top of adapters may yield
further improvements (He et al., 2022a), but may
also uncover a dependence on the particular adapter
setup used by our approach. Additionally, parts of
our design involve compressing information (in
particular, the mean-pooling used to condition the
hypernetwork), and further experiments on tasks
with long inputs or outputs (such as summarisation)
may reveal potential limitations of this approach
and suggest further improvements. Additionally,
our work only examines English-based tasks, so
the ability of the model to handle alternate or po-
tentially multiple languages at once is unknown.
We note that existing work has shown adapters and
hypernetworks to be useful for multilingual adapta-
tion (Pfeiffer et al., 2020; Üstün et al., 2020; Ansell
et al., 2021), suggesting that our approach may
be effective for multilingual multitasking when
combined with these existing multilingual adap-

tation methods. Finally, the nature of the hyper-
network approach means that it may be difficult
to scale to massive multi-tasking on the scale of
exT5 (Aribandi et al., 2022) or T0 (Sanh et al.,
2022), as the hypernetwork itself has limited ca-
pacity to store tasks. We do not investigate how
this approach scales with respect to tasks, instead
focussing on how the hypernetwork improves pos-
itive transfer and mitigates negative transfer for
tasks whose positive and negative transfer effects
are well-known.

References
Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava,

Xilun Chen, Luke Zettlemoyer, and Sonal Gupta.
2021. Muppet: Massive multi-task representations
with pre-finetuning. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 5799–5811, Online and Punta
Cana, Dominican Republic. Association for Com-
putational Linguistics.

Eneko Agirre, Lluís Màrquez, and Richard Wicen-
towski, editors. 2007. Proceedings of the Fourth
International Workshop on Semantic Evaluations
(SemEval-2007). Association for Computational Lin-
guistics, Prague, Czech Republic.

Alan Ansell, Edoardo Maria Ponti, Jonas Pfeiffer, Se-
bastian Ruder, Goran Glavaš, Ivan Vulić, and Anna
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Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
bastian Ruder. 2020. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654–7673, Online. Association for Computa-
tional Linguistics.

Jason Phang, Thibault Févry, and Samuel R. Bowman.
2018. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. CoRR,
abs/1811.01088.

Jonathan Pilault, Amine El hattami, and Christopher
Pal. 2021. Conditionally adaptive multi-task learn-
ing: Improving transfer learning in {nlp} using fewer
parameters & less data. In International Conference
on Learning Representations.

Edoardo M Ponti, Alessandro Sordoni, and Siva Reddy.
2022. Combining modular skills in multitask learn-
ing. arXiv preprint arXiv:2202.13914.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
EMNLP, pages 2383–2392. Association for Compu-
tational Linguistics.

Amrita Saha, Rahul Aralikatte, Mitesh M. Khapra, and
Karthik Sankaranarayanan. 2018. DuoRC: Towards
complex language understanding with paraphrased
reading comprehension. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1683–
1693, Melbourne, Australia. Association for Compu-
tational Linguistics.

Victor Sanh, Albert Webson, Colin Raffel, Stephen
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-
drea Santilli, Thibault Fevry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M Rush. 2022. Multi-
task prompted training enables zero-shot task gener-
alization. In International Conference on Learning
Representations.

Jurgen Schmidhuber. 1991. Learning to control fast-
weight memories: An alternative to dynamic recur-
rent networks. Technical Report FKI147-91, Institut
fur Informatik, Technische Universitat Munchen.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of EMNLP, pages 1631–1642.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. 2021.
Vl-adapter: Parameter-efficient transfer learning for
vision-and-language tasks. ArXiv, abs/2112.06825.

Yi Tay, Zhe Zhao, Dara Bahri, Donald Metzler, and Da-
Cheng Juan. 2021. Hypergrid transformers: Towards
a single model for multiple tasks. In International
Conference on Learning Representations.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Kaheer
Suleman. 2017. NewsQA: A machine comprehen-
sion dataset. In Proceedings of the 2nd Workshop
on Representation Learning for NLP, pages 191–200,
Vancouver, Canada. Association for Computational
Linguistics.

George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias Zschunke,
Michael R. Alvers, Dirk Weissenborn, Anastasia
Krithara, Sergios Petridis, Dimitris Polychronopou-
los, Yannis Almirantis, John Pavlopoulos, Nico-
las Baskiotis, Patrick Gallinari, Thierry Artiéres,
Axel-Cyrille Ngonga Ngomo, Norman Heino, Eric
Gaussier, Liliana Barrio-Alvers, Michael Schroeder,
Ion Androutsopoulos, and Georgios Paliouras. 2015.
An overview of the bioasq large-scale biomedical se-
mantic indexing and question answering competition.
BMC Bioinformatics, 16(1):138.

Ahmet Üstün, Arianna Bisazza, Gosse Bouma, and Gert-
jan van Noord. 2020. UDapter: Language adaptation
for truly Universal Dependency parsing. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
2302–2315, Online. Association for Computational
Linguistics.

1726

https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
http://arxiv.org/abs/1811.01088
http://arxiv.org/abs/1811.01088
https://openreview.net/forum?id=de11dbHzAMF
https://openreview.net/forum?id=de11dbHzAMF
https://openreview.net/forum?id=de11dbHzAMF
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P18-1156
https://doi.org/10.18653/v1/P18-1156
https://doi.org/10.18653/v1/P18-1156
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=hiq1rHO8pNT
https://openreview.net/forum?id=hiq1rHO8pNT
https://doi.org/10.18653/v1/W17-2623
https://doi.org/10.18653/v1/W17-2623
https://doi.org/10.1186/s12859-015-0564-6
https://doi.org/10.1186/s12859-015-0564-6
https://doi.org/10.18653/v1/2020.emnlp-main.180
https://doi.org/10.18653/v1/2020.emnlp-main.180


Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579–2605.

Tomer Volk, Eyal Ben-David, Ohad Amosy, Gal
Chechik, and Roi Reichart. 2022. Example-based
hypernetworks for out-of-distribution generalization.
arXiv preprint arXiv:2203.14276.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2018. Neural network acceptability judgments.
arXiv preprint 1805.12471.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V Le. 2022. Finetuned language mod-
els are zero-shot learners. In International Confer-
ence on Learning Representations.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus for
sentence understanding through inference. In Pro-
ceedings of NAACL-HLT.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Qinyuan Ye and Xiang Ren. 2021. Learning to gener-
ate task-specific adapters from task description. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 646–653,
Online. Association for Computational Linguistics.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. CoRR, abs/2106.10199.

A Baseline Details

A.1 Single Adapter
Our single adapter baseline involves placing paral-
lel adapters (He et al., 2022a) in each layer of the
encoder and decoder and directly learning the pa-
rameters. For most tasks, we make use of adapters
with size 410 in order to keep the trainable parame-
ter budget equivalent to our approach. For MRQA,
we achieve better results with adapters of size 800
in the encoder and size 36 in the decoder.

A.2 Task Hypernet
This model uses two hypernetworks to produce
adapters for the encoder and decoder respectively,
based on a learnt task embedding. The hypernet-
work layout and adapter placement are identical
to the one proposed in our method, with the ex-
ception that the initial input is a task embedding
and not the mean-pooled encoder output. The in-
clusion of this baseline shows that the benefits of
our method come from the use of input-specific de-
coders instead of improved adapter placement. For
this approach, we use adapters of size 50 and hyper-
networks of size 100, keeping the overall number
of trainable parameters close to our approach.

A.3 Modular Task Hypernetwork
This is the method proposed by Ponti et al. (2022),
which learns a mapping from task id to a sparse
set of skills, each of which corresponds to a set
of LoRA (Hu et al., 2022) parameters. These pa-
rameters are then combined to create task-specific
adaptations. We set the number of skills |S| = 4
and use a two-speed learning rate as suggested by
the authors. We set the main learning rate as 3e−4,
and the secondary learning rate for Z as 1e−2. We
use the same learning rate schedule as detailed in
section 3.2. The rank of the LoRA adaptations is
set to 16, following the defaults used in Ponti et al.
(2022).

B Training Details

We run experiments on a single NVIDIA A100
80GB GPU, with all reported results from one train-
ing run using the provided hyperparameters. A sin-
gle training run (including preprocessing and all
evaluation) of our approach on the GLUE bench-
mark (with T5large v1.1 + LM as the underlying
model) takes 18 hours. A single training run of our
approach on the MRQA datasets (with T5base v1.1
+ LM as the underlying model), including final
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evaluation, takes 13 hours. A training single run of
our model on the Summarisation and NLI datasets
(with T5base v1.1 + LM as the underlying model),
including evaluation, takes 22.5 hours. We note
that T5base v1.0 (or ‘vanilla’) has roughly 220 mil-
lion parameters total, T5base v1.1 + LM has roughly
250 million parameters total, and T5large v1.1 + LM
has roughly 800 million parameters total.

C Encoder-Only Model Details

The encoder-only models used in Table 7 consist
of a T5 encoder with adapters inserted as done
for the adapter-only and our model. We train a
unique linear layer per task that maps from the hy-
pernetwork embedding to logits, which are passed
through a softmax layer to make a final predic-
tion. We initialise the T5 encoder with the trained
adapter layers in encoders, using the checkpoints
reported in Table 1. This encoder is kept frozen
during training. To match the MLP used to gen-
erate the hypernetwork embeddings in equation 8,
we place an identical MLP on top of the adapter-
augmented T5 encoder and pass its output to the
linear classifier. This MLP is trained along with the
classifier. To train, we use the AdamW optimiser
with a learning rate of 2e-5 for 3 epochs with linear
learning rate warmup and decay with 500 warmup
steps.

D Parameters

We calculate the number of parameters for each
method as follows. In each case, l is the number
of layers, d the hidden size of the model, a the
adapter dimension, t the number of tasks, and b the
hypernetwork bottleneck size. For simplicity, we
will assume that the encoder and decoder adapter
sizes are the same below, but it is straightforward
to calculate the parameters used in the encoder and
decoder separately and sum these for cases where
the encoder and decoder sizes differ. We leave out
bias parameters for simplicity.

D.1 Adapters
We only consider placing adapters in the feedfor-
ward module of the transformer layer. Every layer
has one adapter consisting of two linear layers and
a non-linearity, giving l(2ad+ a+ d) overall new
parameters.

Dataset Train Split Size Validation Split Size Test Split Size
CoLA 8551 521 522
SST-2 66349 1000 872
STS-B 5749 750 750
MRPC 3668 204 204
QQP 362846 1000 40430
MNLI 392702 9832 9815
QNLI 103743 1000 5463
RTE 2490 138 139

Table 10: Summary statistics of splits used when evalu-
ating GLUE.

D.2 Task Hypernetwork
For the task-embedding-based hypernetwork ap-
proach, we generate all adapters with two hypernet-
works, one for the encoder and one for the decoder.
the main parameter costs come in the form of the
final layer of the hypernetwork, which consists of
four linear layers producing the weights and biases
of the two linear layers making up the adapter, thus
costing b(2ad+a+d). Given task embedding size
et and layer embedding size el, the total cost of the
hypernetwork is tet+lel+(et+el)b+b(2ad+a+d).
This is then multiplied by two as we have hypernet-
works for the encoder and decoder.

D.3 Encoder-conditioned Decoders
The cost of the decoder is similar to the task hyper-
network, except we add the cost of the MLP and
use the hidden size of the model instead of the task
embedding size: 2d2+(d+ el)b+ b(2ad+ a+ d).
Note b(2ad + a + d) ≫ d2 for the adapter and
model size choices used in our work. The encoder
costs the same as the adapters case: l(2ad+a+d).
Our overall cost is simply the sum of the two.

E Dataset Statistics

In Tables 10, 11 and 12 provide some summary
statistics of each dataset used and split sizes.

F Full GLUE Ablation Results

In Table 13 we provide the full results from the abla-
tions performed in Tables 8 and 9. Model names are
in format <encoder type>-<decoder type>. ‘Gener-
ated’ refers to encoder-conditioned adapters, ‘man-
ual’ regular adapters, and ‘task’ task-conditioned
adapters.

G MRQA Varied Encoder Results

In Tables 14 and 15 we provide results from ex-
periments varying encoder and decoder sizes, as
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Dataset Train Split Size Validation Split Size
SQuAD 86588 10507
HotpotQA 72928 5901
TriviaQA 61688 7785
NewsQA 74160 4212
SearchQA 117384 16980
Natural Qs 104071 12836
BioASQ - 1504
DROP - 1503
DuoRC - 1501
RACE - 674
Relation Ext. - 2948
TextbookQA - 1503

Table 11: Summary statistics of splits used when evalu-
ating MRQA, before applying preprocessing.

Dataset Train Split Size Validation Split Size Test Split Size
XSum 204045 11332 11334
CNN/Daily Mail 287113 13368 11490
Wiki Lingua 99020 13823 28614
MNLI 392702 9832 9815
Abductive NLI 168654 1000 1532
Adversarial NLI 162865 3200 3200

Table 12: Summary statistics of splits used when eval-
uating summarisation and NLI datasets. Note we com-
bine all Adversarial NLI rounds (r1, r2, r3).

mentioned in section 4.2. For the final results re-
ported in Tables 4 and 5, we use an encoder size of
512 for adapters and the hyperdecoder.

H Full Summarisation and NLI Results

In Table 16 we provide a breakdown of the results
reported in Table 6.
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Model
% Trainable

Param.
CoLA SST-2 STS-B MRPC QQP MNLI QNLI RTE Avg

Full Finetuning 100% 63.6 94.8 92.0 / 91.6 88.7 / 91.8 92.2 / 89.5 88.6 93.3 77.5 86.3
Manual-Manual 2.9% 58.5 95.3 91.7 / 91.4 89.7 / 92.5 91.2 / 88.3 89.8 94.0 81.2 86.4
Manual-Task 1.7% 54.6 96.0 91.9 / 91.9 89.7 / 92.6 91.0 / 88.1 90.0 94.1 83.3 86.3
Manual-Generated 2.9% 58.5 96.6 91.8 / 91.7 89.7 / 92.5 91.3 / 89.5 89.8 94.5 82.6 86.9
Task-Manual 1.7% 8.2 80.7 38.4 / 38.4 69.0 / 80.1 78.5 / 74.2 61.9 69.8 51.5 57.7
Task-Generated 3.0% 0.0 83.1 38.4 / 42.5 69.5 / 81.0 90.6 / 87.6 63.0 60.1 52.2 57.9
Task-Task 2.7% 0.0 82.1 16.4 / 16.4 70.4 / 81.4 89.8 / 86.5 56.6 64.8 50.7 54.3
Generated-Manual 3.3% 50.3 95.7 90.6 / 90.8 82.8 / 87.6 89.8 / 86.5 89.1 92.2 76.1 83.4
Generated-Task 3.3% 41.6 95.3 82.4 / 92.7 83.1 / 88.3 89.5 / 86.2 88.6 92.1 79.7 82.3
Generated-Generated 4.4% 45.4 95.8 88.6 / 88.4 84.2 / 88.5 89.7 / 86.3 89.5 91.8 76.8 82.8
Manual-Generated, no MLP 2.6% 62.0 96.0 92.2 / 92.3 86.7 / 90.3 91.1 / 88.2 90.0 93.4 81.9 86.7
Manual-Generated,
post-layernorm adapter input

2.9% 45.0 94.8 90.7 / 91.1 82.3 / 87.5 89.8 / 86.7 89.3 92.8 79.7 83.2

Table 13: Performance of models using T5large v1.1 + LM as the base model on GLUE test set splits described in
section 3.1.1. Trainable parameters is % of the trainable parameters used compared to fully finetuning T5.

Model
Encoder
Adapter

Size

Decoder
Adapter

Size

Hypernet
Bottleneck

Size

% Trainable
Param.

SQuAD HotpotQA TriviaQA NewsQA SearchQA Natural Qs Avg

Hyperdecoder (ours) 64 64 128 6.2% 91.1 78.9 73.5 67.7 82.6 77.6 78.6
Hyperdecoder (ours) 512 36 72 5.9% 91.3 79.9 75.0 68.6 82.9 79.1 79.5
Hyperdecoder (ours) 800 2 16 6.2% 90.8 79.5 75.0 68.6 82.9 78.6 79.2
Adapter 370 370 - 5.5% 88.7 75.9 67.4 64.9 79.5 74.3 75.1
Adapter 512 225 - 5.5% 90.8 79.5 75.0 68.6 82.9 78.6 79.2
Adapter 800 2 - 6.0% 91.0 79.6 75.5 68.6 82.9 78.9 79.4

Table 14: F1 score of models on in-domain MRQA validation split. All models use the T5base v1.1 + LM checkpoint
as a starting point.

Model
Encoder
Adapter

Size

Decoder
Adapter

Size

Hypernet
Bottleneck

Size

% Trainable
Param.

BioASQ DROP DuoRC RACE Relation Ext. TextbookQA Avg

Hyperdecoder (ours) 64 64 128 6.2% 66.2 43.3 57.8 46.8 85.4 58.4 59.7
Hyperdecoder (ours) 512 36 72 5.9% 65.8 47.0 58.1 46.3 84.3 59.5 60.2
Hyperdecoder (ours) 800 2 16 6.2% 65.7 44.1 55.2 45.4 84.6 54.9 58.3
Adapter 370 370 - 5.5% 63.4 33.3 56.4 44.8 83.1 56.9 56.3
Adapter 512 225 - 5.5% 66.0 48.2 55.6 47.7 84.0 57.5 59.8
Adapter 800 2 - 6.0% 66.4 43.7 55.9 47.2 84.5 55.6 58.9

Table 15: F1 score of models on out-of-domain MRQA validation split. All models use the T5base v1.1 + LM
checkpoint as a starting point.

Model
% Trainable

Param.
XSUM R2 CNN/Daily Mail R2 Wiki Lingua R2 MNLI Ab. NLI Ad. NLI Sum. Avg. NLI Avg. Overall Avg.

Full-finetuning 100% 17.4 19.3 18.4 85.6 64.3 44.3 18.4 64.8 41.6
Adapter 5.5% 15.4 18.7 16.7 86.2 65.2 45.0 16.9 65.5 41.2
Adapter (enc-heavy) 5.5% 15.5 18.7 16.8 86.5 67.2 45.2 17.0 66.3 41.7
Hyperdecoder (ours) 6.2% 14.6 18.2 16.0 85.5 63.8 44.1 16.3 64.5 40.4
Hyperdecoder (ours) (enc-heavy) 5.9% 15.3 18.6 16.5 86.3 66.4 44.1 16.8 65.6 41.2
Task Hypernet 10.4% 11.6 17.0 13.4 83.9 61.5 40.5 14.0 62.0 38.0

Table 16: Performance across Summarisation and NLI datasets using T5base v1.1 + LM. Summarisation scores are
Rouge2 scores, while NLI scores are accuracy using test splits described in section 3.1.3. ‘Enc-heavy’ variants use
encoder adapter sizes of 512 and the matching decoder/hypernetwork sizes in Table 14.
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