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Abstract

This paper attacks the challenging problem
of sign language translation (SLT), which in-
volves not only visual and textual understand-
ing but also additional prior knowledge learn-
ing (i.e. performing style, syntax). How-
ever, the majority of existing methods with
vanilla encoder-decoder structures fail to suf-
ficiently explore all of them. Based on
this concern, we propose a novel method
called Prior knowledge and memory Enriched
Transformer (PET) for SLT, which incorpo-
rates the auxiliary information into vanilla
transformer. Concretely, we develop gated in-
teractive multi-head attention which associates
the multimodal representation and global sign-
ing style with adaptive gated functions. One
Part-of-Speech (POS) sequence generator re-
lies on the associated information to predict
the global syntactic structure, which is there-
after leveraged to guide the sentence gener-
ation. Besides, considering that the visual-
textual context information, and additional
auxiliary knowledge of a word may appear in
more than one video, we design a multi-stream
memory structure to obtain higher-quality
translations, which stores the detailed corre-
spondence between a word and its various rel-
evant information, leading to a more compre-
hensive understanding for each word. We con-
duct extensive empirical studies on RWTH-
PHOENIX-Weather-2014T dataset with both
signer-dependent and signer-independent con-
ditions. The quantitative and qualitative exper-
imental results comprehensively reveal the ef-
fectiveness of PET.

1 Introduction

Recently, the combination of vision and language
attracts increasing attention. Sign language transla-
tion which aims to provide translated natural sen-
tences for sign language videos is a valuable but
challenging task in this topic (Camgoz et al., 2018,

† corresponding author

Translation: Im (ADP) | westen (NOUN) | ist (VERB) | es (PRON) | freundlich (ADJ)

Figure 1: An example of sign language translation,
where the video frames and the sentence correspond to
each other. Besides, each word (red) has its syntactic
attribute (green).

2020a,b; Jin and Zhao, 2021). Since the visual
and textual modalities are not aligned strictly in a
weakly-supervised manner, the difficulties of sign
language translation mainly lie in the multimodal
representation learning of both modalities and the
alignments between them. Besides, additional prior
knowledge (i.e. the performing style of different
signers, the common syntactic structures of sen-
tences) also has a strong influence on multimodal
learning.

Encoder-decoder structures built upon long
short-term memory unit (Hochreiter and Schmidhu-
ber, 1997) (LSTM) or transformer (Vaswani et al.,
2017) are widely used in end-to-end sign language
translation, which directly generates natural sen-
tences without intermediate products like gloss se-
quences. Generally, the encoder extracts and en-
codes the sign language information, the decoder
makes full use of the encoded results with cross-
modal interaction. Camgoz et al. (2018) first pro-
poses the sign language translation task and utilizes
LSTMs combined with attention mechanism (e.g.
Luong Attention (Luong et al., 2015), Badanau At-
tention (Bahdanau et al., 2014)) to solve it. Due to
the insufficient capacity to capture the long-range
temporal correlations, Camgoz et al. (2020b) re-
places LSTM with transformer, which could cor-
relate any two-time steps of sequential features.
The stacked attention blocks improve most of the
metrics by a large margin. Camgoz et al. (2020a)
combines multiple articulatory channels with an-
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choring losses and proposes a novel multi-channel
transformer architecture for sign language transla-
tion. Li et al. (2020) employs video segment rep-
resentation with multiple temporal granularities to
develop a semantic pyramid network. In summary,
many endeavors are devoted to the improvement of
deep architectures for multimodal representation
learning. However, the influences of additional
prior knowledge are totally ignored. For example,
as shown in Fig. 1, the natural sentence has its
unique syntactic structure.

Motivated by the above observations, we pro-
pose a new method called prior knowledge and
memory enriched transformer for sign language
translation. Specifically, we develop gated inter-
active multi-head attention which associates the
multimodal representation and global signing style
with adaptive gated functions. Besides, we employ
sentence templates that consist of POS tags to rep-
resent the syntactic structures of natural sentences,
and accordingly, syntax learning is performed by
directly inferring POS tags with the style-specific
multimodal representation. The natural sentences
are generated conditioned on such auxiliaries. Fur-
thermore, we find that the visual and textual con-
text information, and additional auxiliary knowl-
edge of a word may appear in more than one sign
language video. For example, a word that comes
up with different words may lead to various con-
textual visual perceptions, and the general gestu-
ral tendency of a word could support the decod-
ing process. Therefore, we design a multi-stream
memory structure to store the full-spectrum corre-
spondence between a word and its various relevant
information in training data. The obtained mem-
ory contents are employed to aid in decoding. We
conduct extensive empirical studies on the bench-
mark dataset, RWTH-PHOENIX-Weather-2014T
(PHOENIX14T) (Camgoz et al., 2018), with both
signer-dependent and signer-independent condi-
tions. The quantitative and qualitative results com-
prehensively reveal the effectiveness and general-
ization of PET. The main contributions of this paper
can be summarized as follows:

• We propose a new method called prior knowl-
edge and memory enriched transformer for
sign language translation, which explores not
only multimodal understanding but also the
influences of additional prior knowledge on
multimodal learning.

• We develop gated interactive multi-head atten-

tion by associating the multimodal represen-
tation and global signing style with adaptive
gated functions. The POS sequence gener-
ator relies on the style-specific multimodal
information to predict the syntactic structure,
which is leveraged to guide the natural sen-
tence generation.

• We design a multi-stream memory structure
to store the full-spectrum correspondence be-
tween a word and its various relevant informa-
tion in training data, leading to a more com-
prehensive understanding for each word.

• The quantitative and qualitative results on the
challenging dataset, PHOENIX14T of both
signer-dependent and signer-independent con-
ditions comprehensively reveal the effective-
ness and generalization of PET.

2 Related Work

2.1 Sign Language Translation

Sign language recognition (SLR) aims to recognize
single gestures from an input video clip. Many en-
deavors are devoted to SLR (Camgoz et al., 2016,
2017; Cui et al., 2019; Graves et al., 2006; Wang
et al., 2018; Cui et al., 2017). Sign language trans-
lation is the final goal of recognition, which aims
to directly translate the sign language videos into
natural sentences. SLT is similar to video caption-
ing (Jin et al., 2019a, 2020, 2019b; Pei et al., 2019),
to some extent. Existing methods are categorized
into two-stage and end-to-end methods. Two-stage
methods first transform the videos into gloss (ges-
ture) sequences and then rearrange them to gen-
erate natural sentences. To guarantee the fluency
of sentences, some words that do not carry visual
information are added (Camgoz et al., 2018). End-
to-end sign language translation aims to directly
translate the original sign language videos into nat-
ural sentences without intermediate products. Cam-
goz et al. (2018) first proposes the sign language
translation task and utilizes both two-stage and end-
to-end methods to solve it. Camgoz et al. (2018)
adopts vanilla LSTM-based encoder-decoder struc-
ture. Due to the insufficient capacity to capture the
long-range temporal correlations. Camgoz et al.
(2020b) replaces LSTM with transformer, which
could correlate any two-time steps of sequential fea-
tures. The stacked attention blocks improve most
of the metrics with a large margin. Li et al. (2020)
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employs video segment representation with mul-
tiple temporal granularities to develop a semantic
pyramid network.

However, the methods mentioned above fail to
explore the multimodal understanding and addi-
tional prior knowledge learning sufficiently. In this
paper, we propose PET to solve this problem.

3 Approach

Fig. 2 shows the overall framework of prior knowl-
edge and memory enriched transformer based on
encoder-decoder structure. We develop gated in-
teractive multi-head attention in all the attention
blocks with adaptive gated control of signing style
embeddings. In the decoder, we treat the sen-
tence templates which consist of POS tags as the
syntax-aware auxiliary for natural sentence gen-
eration. Practically, two consecutive decoding
blocks (syntactic and textual blocks) rely on the
style-specific multimodal representation to predict
the target words. Furthermore, we design a multi-
stream memory structure to enhance the compre-
hensive understanding for each word.

3.1 Style-Aware Gated Interactive Encoder
Following (Camgoz et al., 2020b), we utilize the
2D-CNN (Tan and Le, 2019) pre-trained with
recognition task (Koller et al., 2019) to extract vi-
sual features of sign language videos. Concretely,
we first sample video frames and then send them
to 2D-CNN. For convenience, we use I ∈ RTi×d

to denote the extracted features, where Ti is the
number of video frames. As shown in Fig. 2,
the encoder consists of stacked attention blocks.
Considering the fact that different signers have
corresponding performing styles (i.e. body, pose),
we perform adaptive gated interaction for the self-
attention mechanism, which associates the visual
representation and signing style with adaptive gated
functions. Note that, for each specific signer, we
obtain the performing style embedding g by simply
mean-pooling all the visual features of the corre-
sponding signer (both videos and frames) in the
dataset. Specifically, the self-attention layer is for-
mulated as:

GI_Self(I) = GI_MH(I, I|g) (1)

where “GI”, “Self”, “MH” denote gated interac-
tive, self attention, and multi-head attention, respec-
tively. The first “I” in GI_MH(.) denotes query,
the second “I” denotes key and value. Further, the
calculation of each head is expressed as:

GI_MH(I, I|g) = [hd1, ..., hdh]W1

hdi = GI_AT(IWQ
i , IW

K
i , IW

V
i |gWG

i )
(2)

where [.] denotes concatenation operation, hdi
denotes the output of i-th head, W1 ∈ Rd×d,
WQ

i ,W
K
i ,W

V
i ∈ Rd× d

h are trainable variables.
“GI_AT” takes the signing style embedding into
consideration and the process is as below:

GI_AT(Q,K, V |s) = softmax(
Q

′
K

′T

√
dk

)V (3)

where we utilize Q, K, V , and s to denote IWQ
i ,

IWK
i , IW V

i , and gWG
i to save space. Q

′
and

K
′

are the results of style-specific interaction with
adaptive gated functions:

Q
′
=(1+Gq)�Q, Gq=σ([s,QM, s�QM]Wq)

K
′
=(1+Gk)�K, Gk=σ([s,KM, s�KM]Wk)

(4)

where � denotes element-wise multiplication, σ(.)
denotes sigmoid gated function, the subscript of
KM ∈ R

d
h and QM ∈ R

d
h denotes mean-pooling,

Wq, Wk ∈ R
3d
h
× d

h are trainable variables. We em-
ploy residual connection and layer normalization
following the self-attention layer:

I
′
= LN(I + GI_Self(I)) (5)

where “LN” denotes layer normalization, followed
by a feed-forward layer (FFN) to introduce non-
linear transformation:

FFN(I
′
) = Max(0, I

′
W2 + b2)W3 + b3

I
′′
= LN(I

′
+ FFN(I

′
))

(6)

where W2 ∈ Rd×4d, b2 ∈ R4d, W3 ∈ R4d×d, b3 ∈
Rd are trainable variables, I

′′ ∈ RTi×d represents
the encoded visual features.

3.2 Syntax-Aware Memory Enriched
Decoder

The decoder also consists of stacked attention
blocks as shown in Fig. 2. Note that the struc-
tures of syntactic and textual blocks are the same as
those of encoder-decoder attention blocks. Specif-
ically, to predict the word yte at te-th time step,
we utilize E<te ∈ Rte×d that denotes the embed-
dings of “BOS” token and the words whose time
steps are less than te. The process of the masked

3768



Gated Interactive Self-Attention Block Encoder-Decoder Attention Block

Syntactic Block

Textual Block

TAG

M
u

lti-Stream
 M

em
o

ry R
easo

n
ing

EMB

TAG

EMB

TAG

EMB

Word EmbeddingPre-trained Visual CNN

...

...

...

Multi-Stream Memory Structure

IS_Self

Add & Normalize

Feed-Forward Layer

Add & Normalize

GI_Self

Add & Normalize

Feed-Forward Layer

Add & Normalize

GI_Self

Add & Normalize

GI_MH (Encoder-Decoder)

Add & Normalize

Feed-Forward Layer

Add & Normalize

Gated Interactive Self-Attention Block

Encoder-Decoder Attention Block

<BOS>

<EOS>

Figure 2: Left is the overall framework of PET, where the encoder processes extracted video features with stacked
gated interactive self-attention blocks and the decoder makes full use of the visual features with encoder-decoder
attention blocks. Note that the structures of syntactic and textual blocks are the same as those of encoder-decoder
attention blocks. “TAG” and “EMB” denote POS tag and embedding, respectively. The multi-stream memory
structure is leveraged for auxiliary decoding, where v, u, and x denote visual, textual, and syntactic memory,
respectively. Right is the structures of self-attention block and encoder-decoder attention block.

self-attention layer and the following normalization
layer is formulated as:

E
′
<te = LN(E<te + GI_Self(E<te)) (7)

where we also perform adaptive gated interaction
for self-attention mechanism. The obtained E

′
<te

are utilized to correlate the encoded visual features
in the following layer with cross-modal attention:

E
′′
<te = LN(E

′
<te + GI_MH(E

′
<te , I

′′|g))

O = LN(E
′′
<te + FFN(E

′′
<te))

(8)

where E
′
<te and I

′′
are treated as query and key,

respectively. O ∈ Rte×d denotes the output of one
encoder-decoder attention block.

3.2.1 Syntax-Aware Decoding
Since the decoder has N attention blocks, we dis-
tinguish the output of different blocks with super-
scripts, O1, O2,...,ON ∈ Rte×d. Note that ON−1

and ON are the output of syntactic and textual
blocks, respectively. We calculate the probability
distributions of different POS tags as:

Ps,te = softmax(WsO
N−1
te ) (9)

where Ws ∈ RNs×d is trainable, Ns is the vocabu-
lary size of POS tags. We combine the syntactic in-
formation andON−1

te for the subsequent process. In

practice, we project the POS tags into correspond-
ing embeddings: (ON−1

te )
′
= ON−1

te +Es
te , where

Es
te denotes POS embedding at te-th time step. The

obtained synthetic representation (ON−1
te )

′
is con-

sidered as the input of textual block. Due to the
space limitation, we omit the calculation in textual
block which is similar to Eqns. 7 and 8. The output
of textual block is used to predict words:

Pb,te = softmax(WpO
N
te ) (10)

where Wp ∈ RNw×d is also trainable, Nw is the vo-
cabulary size of words. Overall, we jointly model
the multimodal representation and global syntactic
structure for sign language translation by develop-
ing an end-to-end trainable neural network.

3.2.2 Multi-Stream Memory Structure
We develop a multi-stream memory structure for
auxiliary decoding. The rationale behind this de-
sign is that a word in the vocabulary may appear in
multiple sign language videos. Since a word that
comes up with different words may lead to various
contextual visual perceptions and one word may
correspond to more than one syntactic category, the
memory structure is developed to capture the de-
tailed relevant information from different sign lan-
guage videos where the same word appears, leading
to a comprehensive understanding for this word.
(1). Weakly-Aligned Visual Memory: The mem-
ory structure is developed to store the descriptive
information for each word in the vocabulary. We
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construct a dictionary 〈w, r〉 to record the words
w and corresponding representation r. Since the
fine-grained alignments between natural words and
video frames are not provided, we could not di-
rectly obtain the visual memory. However, the
end-to-end training of PET provides the weakly-
supervised alignments through the cross-modal in-
teraction in the encoder-decoder attention blocks.
Therefore, we adopt a separate training scheme.
Concretely, we first train a basic sign language
translation model with prior knowledge enriched
transformer introduced in previous sections to ac-
quire the weakly-supervised alignments between
words and video frames. In practice, we only keep
the cross-modal attention weights in the textual
block. The visual context information vj,i for the
j-th word i-th head is modeled as:

vj,i =

∑Nv
nv=1

∑Nf

nf=1(a
i
nv ,nf

fv,inv ,nf )∑Nv
nv=1

∑Nf

nf=1(a
i
nv ,nf

)

vj = [vj,1, ..., vj,i, ..., vj,h]

(11)

where Nv denotes the number of related videos in
the training set, Nf denotes the number of frames.
Note that we only retain the top-Nf relevant video
frames to reduce the invalid information. ainv ,nf

denotes nf -th attention weight among the top-Nf

weights and fv,inv ,nf denotes the corresponding vi-
sual features in i-th head. Note that we only focus
on the visual features of the last encoding block.
The context features are normalized to make the
magnitude consistent for words with different fre-
quencies. The final context information vj is ob-
tained by concatenating the results of all the heads.
(2). Global Syntactic Memory: Considering the
fact that a word appearing in multiple sentences
may have different syntactic information, we calcu-
late the ratio of different POS categories for each
word. The syntactic representation uj for the j-th
word is modeled as:

uj =
∑Ns

ns=1
bsns

fsns
,
∑Ns

ns=1
bsns

= 1 (12)

where bsns
and fsns

denote the weight and embed-
ding of ns-th POS tag, respectively.
(3). Adjacent Textual Memory: The vanilla
transformer-based decoder does not model the com-
patibility between adjacent words explicitly. Thus,
the textual memory is designed to capture the infor-
mation of adjacent words. Concretely, we set the

maximal adjacent step to Na, which means that we
retain the word embeddings of adjacent words and
the threshold is Na. The context representation xj
for the j-th word is modeled as:

xj =

∑Nv
nv=1

∑2Na+1
na=1 f tnv ,na

Nv(2Na + 1)
(13)

where f tnv ,na
denotes the na-th word embedding

among the 2Na + 1 adjacent embeddings. We also
employ normalization for the final result. In sum-
mary, we obtain the multi-stream memory struc-
ture which records full-spectrum information rj
for each word wj with a map structure: 〈wj , rj〉 =
〈wj , {vj , uj , xj}〉.

3.2.3 Memory Enriched Decoding
We employ the constructed multi-stream memory
structure to build an auxiliary decoding system,
where the translation results are further combined
with the generated sentences by the syntax-aware
decoding system. In this way, the translation qual-
ity is improved.

In detail, the memory enriched decoding system
is built upon the backbone of the syntax-aware de-
coding system as an auxiliary module. The proba-
bility distributions of different words are calculated
similarly to Eqn. 10:

Pm,te = softmax(Qte) (14)

where Qte ∈ RNw denotes the relevance scores
of different words and Qte,j ∈ R denotes the j-th
element among them. We employ Qte,j to measure
the qualification of j-th word for te-th time step
based on its memory contents:

Qte,j=w
T
p tanh(Wv[vj , O

N
te ]+Wu[uj , E

s
te ]

+Wx[xj , E
y
te-1])

(15)

where we concatenate the memory contents (vj , uj ,
xj) with corresponding representation (ON

te , Es
te ,

Ey
te-1) at te-th time step. For instance, uj , Es

te ∈ Rd

both denote syntactic information, xj , E
y
te-1 ∈ Rd

both denote textual information. Wv,Wu,Wx ∈
Rd×2d, wp ∈ Rd are all trainable variables.

3.3 Training
The optimization goal of sign language translation
is to minimize the cross-entropy loss function de-
fined as accumulative loss from all the time steps.
Consequently, the syntax-aware decoder is trained
by minimizing the combined loss:
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Lb=−
Te∑

te=1

[
logPb,te(yte)+λlogPs,te(ste)

]
(16)

where yte and ste denote the ground-truth word
and POS tag at te-th time step, respectively. λ is
a hyper-parameter to balance the two losses. In
practice, we set it to 0.5. The memory enriched
decoder is trained in a similar way:

Lm = −
Te∑

te=1

logPm,te(yte) (17)

The syntax-aware decoder and memory enriched
decoder are trained in order. We fix the trainable
variables except for those in Eqn. 15 when training
memory enriched decoder. During inference, we
combine the generated results of both decoders.

4 Experiments

In this section, we present the experimental settings
of sign language translation and report the results
on the benchmark datasets.

Table 1: The statistical results of PHOENIX14T, where
the total number of samples is 8257.

Signer 1 2 3 4 5 6 7 8 9

All 2191 95 683 1207 1933 47 866 966 269

4.1 Dataset and Protocols
PHOENIX14T (Signer-Dependent) is the first
complete sign language understanding dataset,
where a training or testing sample contains a sign
language video and the corresponding signer, gloss
annotations, natural language translation. Con-
cretely, PHOENIX14T is labeled by 9 different
signers (the training, validation, and test sets all
contain these signers) with a vocabulary of 1066
different sign glosses. In general, one gloss may
correspond to multiple natural words, and some
words that do not carry visual information are
added to guarantee the fluency of sentences, lead-
ing to a vocabulary of 2887 words for translation
into German language.
PHOENIX14T (Signer-Independent) is ob-
tained by re-dividing the original PHOENIX14T
dataset. Since the 9 signers are in both the training
set and test set, there are no unseen signers for eval-
uating the generalization. We simply choose the

Table 2: Evaluation results on PHOENIX14T (Signer-
Dependent), where B@{1, 2, 3, 4} denotes BLEU-{1,
2, 3, 4} and R denotes ROUGE-L.

Method
PHOENIX14T

B@1 B@2 B@3 B@4 R

Multitask 37.22 23.88 17.08 13.25 36.28
DeepHand 38.50 25.64 18.59 14.56 38.05
Mul-Ch. - - - 19.51 45.90

NSLT 32.24 19.03 12.83 9.58 31.80
TSPNet 36.10 23.12 16.88 13.41 34.96

SL-Trans. 47.20 34.46 26.75 21.80 -
ST-Trans. 48.61 35.97 28.37 23.65 -
STMC-T 48.73 36.53 29.03 24.00 46.77

PET 49.54 37.19 29.30 24.02 49.97

Table 3: Evaluation results on PHOENIX14T (Signer-
Independent), where * denotes that we implement the
methods by ourselves, since none of the previous work
conducts experiments on signer-independent setting.

Method
PHOENIX14T

B@1 B@2 B@3 B@4 R

NSLT* 26.01 13.84 8.95 6.28 25.22
TSPNet* 28.10 16.81 11.82 9.15 31.00

SL-Trans.* 40.15 26.70 19.22 14.78 40.22

PET 41.72 28.97 21.36 16.94 42.45

signers 8, 9 (1235 samples) for testing and the other
signers (7022 samples) for training and validation,
the statistical info is shown in Table 1.

We follow the commonly used protocol
Sign2Text (S2T) in the previous work (Camgoz
et al., 2020b), which aims to directly translate the
sign language videos into natural sentences with-
out converting the input into intermediate prod-
ucts. Since the visual and textual modalities are
not aligned strictly in a weakly-supervised man-
ner, the difficulties of Sign2Text mainly lie in the
multimodal alignments.

4.2 Implementation Details

Framework: Following (Camgoz et al., 2020b),
a modified version of JoeyNMT (Kreutzer et al.,
2019) is employed to implement PET. We utilize
PyTorch and Tensorflow frameworks. Except for
the CTC beam search decoding module which is
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Table 4: Evaluation results of style-specific interaction, where P14T (SD) and P14T (SI) denote PHOENIX14T
with signer-dependent and singer-independent settings.

Method
P14T (SD) P14T (SI)

B@1 B@2 B@3 B@4 R B@1 B@2 B@3 B@4 R

w/o. GI 48.61 35.24 27.58 22.89 48.34 40.22 27.36 20.05 15.42 40.36
Add 49.04 36.05 28.32 23.40 48.88 40.91 28.19 20.65 16.36 40.76
Enc. 49.45 36.57 28.95 23.45 49.15 41.37 28.54 20.57 16.66 41.54
Dec. 49.30 36.32 28.84 23.42 49.08 41.43 28.52 20.89 16.72 41.28

PET 49.54 37.19 29.30 24.02 49.97 41.72 28.97 21.36 16.94 42.45

implemented with Tensorflow, the other modules
are developed with PyTorch.
Network Details: The hidden size is set to
512 for all the multi-head attention mechanisms.
The numbers of heads and attention blocks are
8 and 3, respectively. The ground-truth POS
tags could be obtained by Stanford POS Tagger,
which are divided into 13 categories: ADJ, ADV,
ADP, VERB, NOUN, DET, PRON, AUX, CONJ,
PROPN, NUM, UNK, PUNCT, we project them
into 512-dimensional syntactic embeddings. We
train all of the networks from scratch.
Training: In the training stage, we utilize Adam
algorithm (Kingma and Ba, 2014) to optimize the
loss function. The batch size is set to 64. The
learning rate is set to 5×10−4 initially. We evaluate
our network every 100 iterations. If the metric on
validation set does not improve for 9 evaluation
steps, we decrease the learning rate by a factor of
0.5. When the learning rate is less than 10−6, we
finish the training stage.
Testing: Since the test set may have unseen sign-
ers, we calculate the style embedding with mean-
pooling operation for the acquired visual features
similarly. Beam search is a commonly used method
to decode words during evaluation. We adopt the
beam size 5. We employ the commonly-used met-
rics, BLEU-n and ROUGE-L.

4.3 Compared Baseline Methods

NSLT (Camgoz et al., 2018): NSLT first proposes
the SLT task and employs LSTM-based structure
to translate sign language videos.
Multitask (Orbay and Akarun, 2020): Multitask
employs joint learning scheme to enhance the SLT
performance.
DeepHand (Orbay and Akarun, 2020): DeepHand
transfers the knowledge of hand dataset to the SLT
task.

Figure 3: The trade-off between different losses in Eqn.
16, where we set λ = 0 as the baseline.

SL-Trans. (Camgoz et al., 2020b): SL-Trans. is
the recent mainstream method for SLT, the encoder
and decoder both consist of Transformer modules.
TSPNet (Li et al., 2020): TSPNet employs video
segment representation with multiple temporal
granularities to develop a semantic pyramid net-
work.
Mul-Ch. (Camgoz et al., 2020a): Mul-Ch. com-
bines multiple articulatory channels with anchoring
losses and proposes a novel multi-channel trans-
former architecture for sign language translation.
ST-Trans. (Voskou et al., 2021): ST-Trans. equips
Transformer with stochastically competing linear
units and performs variational Bayesian inference
over all connection weights, throughout the net-
work.
STMC-T (Yin and Read, 2020): STMC-T em-
ploys spatial-temporal multi-channel Transformer
to solve the SLT task.

4.4 Quantitative Results

We compare PET with the recent state-of-the-art
methods. Following the previous work (Cam-
goz et al., 2020b), for PHOENIX14T (Signer-
Dependent), we develop the gloss-based PET by
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Table 5: Evaluation of memory-enriched decoding

Method
P14T (SD) P14T (SI)

B@1 B@2 B@3 B@4 R B@1 B@2 B@3 B@4 R

w/o. Vis 49.63 36.28 28.58 23.40 49.32 41.24 28.35 20.89 16.30 41.46
w/o. Tex 49.52 36.54 28.83 23.44 49.12 41.05 28.16 20.74 16.44 40.93
w/o. Syn 49.69 36.42 28.75 23.55 49.48 41.58 28.55 21.07 16.64 41.32

w/o. Mem 48.94 35.64 28.07 22.71 49.05 40.54 27.53 20.25 15.56 40.64

PET 49.54 37.19 29.30 24.02 49.97 41.72 28.97 21.36 16.94 42.45

adding the gloss supervision with CTC loss in the
encoder. Table 2 shows the experimental results,
we could find that PET (model-based) outperforms
all the model-based and feature-based methods,
NSLT (Camgoz et al., 2018), Multitask (Orbay
and Akarun, 2020), DeepHand (Orbay and Akarun,
2020), SL-Trans. (Camgoz et al., 2020b), TSPNet
(Li et al., 2020), Mul-Ch. (Camgoz et al., 2020a),
ST-Trans.(Voskou et al., 2021) and STMC-T (Yin
and Read, 2020) on all the metrics. In particu-
lar, PET achieves 49.97% on ROUGE-L, making a
large improvement of 3.20% over STMC-T.

Table 3 shows the results on PHOENIX14T
(Signer-Independent), we implement several state-
of-the-art methods manually, since none of the pre-
vious work conducts experiments on the signer-
independent setting (PET is model-based method,
so we mainly reproduce the model-based methods,
since the methods of other types are compatible
with PET). Note that, to keep fairness, we employ
the same method of feature extraction in the origi-
nal paper for NSLT, TSPNet, and SL-Transformer,
respectively. The experimental results demonstrate
the generalization of PET for unseen signers.

4.5 Ablation Study

In this section, we evaluate the effectiveness of all
the contributions with ablation experiments.

4.5.1 Effect of Adaptive Gated Interaction
As shown in Table 4, we design four control exper-
iments to demonstrate the effectiveness of adaptive
gated interaction, where w/o. GI denotes that we
remove the adaptive gated interaction from all at-
tention blocks and keep the other contributions,
Add denotes that we add the style embedding to
the multimodal features, Enc (only) denotes that
we only keep the adaptive gated interaction in the
encoder, while Dec (only) denotes that we discard
the adaptive gated interaction in the encoder. It

is observed that PET outperforms four ablation
methods on the benchmark datasets and w/o. GI
achieves the worst performances on both BLEU
and ROUGE-L, which demonstrates that the trans-
lation results benefit from the style information.
The remaining ablation results illustrate that gated
interaction is better than naive addition. In addi-
tion, the adaptive gated interaction enhances the
multimodal alignments, corresponding results are
shown in the appendix.

4.5.2 Effect of Syntax-Aware Auxiliary
We adjust the ratio of different losses in Eqn. 16
and obtain the experimental results that are shown
in Fig. 3. To make the comparison more intu-
itive, we set λ = 0 as the baseline and provide
the relative performances of BLEU-1 and BLEU-4
on PHOENIX14T (SD). We find that the perfor-
mances improve as the λ increases when λ is less
than 0.5. Subsequently, the performances are be-
ginning to level off. Such results demonstrate the
effectiveness of syntax-aware auxiliary.

4.5.3 Effect of Memory-Enriched Decoding
As shown in Table 5, we also design several control
experiments to evaluate the impact of the memory
enriched decoding, where w/o. Mem denotes the
model without memory mechanism, w/o. Vis de-
notes the model only without visual memory, w/o.
Tex, w/o. Syn denote the models without textual
memory and syntactic memory, respectively. We
find that PET outperforms all the ablation methods
on both BLEU-4 and ROUGE-L. Particularly, com-
pared with w/o. Mem, PET achieves a significant
improvement on BLEU-4 (1.38% for SI, 1.31% for
SD).

4.6 Qualitative Results

We would like to investigate the generation process
of our model by qualitative results in this section.
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Table 6: Qualitative results of PET, where “Ref” de-
notes reference, “SL-Trans.” denotes SL-Transformer.
As the annotations in the PHOENIX14T dataset are
in German, we share both the produced sentences and
their translations in English. Note that the words high-
lighted in red are those that require critical translation,
the words highlighted in blue are the failure cases of
current mainstream method SL-Transformer.

Ref: und zum wochenende wird es dann sogar wieder ein bisschen kälter .

( and at the weekend it even gets a little colder again . )

SL-Trans.: und der januar .

( and january . )

PET: und das wird dann am wochenende ein bisschen kälter .

( and that gets a bit colder on the weekend . )

Ref: ganz ähnliche temperaturen wie heute zwischen sechs und elf grad .

( very similar temperatures as today between six and eleven degrees . )

SL-Trans.: hier und da ähnliche temperaturen wie heute meist ein grad .

( here and there temperatures similar to today, mostly one degree . )

PET: ähnliches wetter heute nacht nur sechs bis elf grad .

( similar weather tonight only six to eleven degrees . )

Ref: deutschland liegt morgen unter hochdruckeinfluss der die wolken weitgehend

vertreibt .

( tomorrow germany will be under the influence of high pressure which will

largely drive away the clouds . )

SL-Trans.: in deutschland liegt morgen unter tiefdruckeinfluss und wolken .

( in germany tomorrow is under the influence of low pressure and clouds . )

PET: Morgen wird Deutschland von hohem Druck betroffen sein .

( tomorrow germany will be hit by high pressure . )

Here we provide some sign language translation
examples in Table 6. As the annotations in the
PHOENIX14T dataset are in German, we share
both the produced sentences and their translations
in English. Note that the words highlighted in red
are those that require critical translation, the words
highlighted in blue are the failure cases of current
mainstream method SL-Transformer. Benefiting
from the style-specific interaction, syntax-aware
auxiliary, and memory enriched decoding, PET
could accurately translate some detailed informa-
tion compared with SL-Transformer and retain the
whole contents of the ground truth better than SL-
Transformer, which demonstrates the effectiveness
again.

5 Conclusion

In this paper, we have proposed a new method
called prior knowledge and memory enriched trans-
former for sign language translation. Specifically,
we develop the adaptive gated interaction which as-
sociates the multimodal representation and global
signing style in all the attention blocks. One POS
sequence generator relies on the associated infor-
mation to predict the global syntactic structure,
which is thereafter leveraged to guide the sentence
generation. Besides, considering that the visual and
textual context information, and additional auxil-
iary knowledge of a word appear in more than one

video, we design a memory structure to store the
full-spectrum correspondence between a word and
its various relevant information in the training data.
The experimental results reveal the effectiveness
and generalization of PET.
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