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Abstract

Modern large-scale Pre-trained Language Mod-
els (PLMs) have achieved tremendous success
on a wide range of downstream tasks. How-
ever, most of the LM pre-training objectives
only focus on text reconstruction, but have not
sought to learn latent-level interpretable rep-
resentations of sentences. In this paper, we
manage to push the language models to obtain
a deeper understanding of sentences by propos-
ing a new pre-training objective, Sparse Latent
Typing, which enables the model to sparsely
extract sentence-level keywords with diverse
latent types. Experimental results show that our
model is able to learn interpretable latent type
categories in a self-supervised manner without
using any external knowledge. Besides, the lan-
guage model pre-trained with such an objective
also significantly improves Information Extrac-
tion related downstream tasks in both super-
vised and few-shot settings. Our code is pub-
licly available at https://github.com/renll/

SparseLT.

1 Introduction

Transformer-based Pre-trained Language Models
(PLMs) have achieved significant success on a wide
range of NLP tasks. However, typical pre-training
objectives for PLMs only focus on teaching the
model to directly reconstruct text-level words or
sentences, but have not sought to obtain deeper sen-
tence understanding by learning latent-level inter-
pretable representations. For example, transformer-
decoder models like the OpenAI GPT series (Rad-
ford et al., 2018, 2019; Brown et al., 2020) adopt
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Figure 1: A general illustration of our approach to teach
pre-trained language model to extract sentence-level
keywords with latent type representations in a com-
pletely self-supervised manner.

the task of language modeling for pre-training, and
transformer-encoder models like BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) are
trained by predicting the masked tokens within a
sentence. Both of these training objectives merely
train the models to recover the masked tokens or
predict the next words or sentences, while ignoring
to learn latent-level representations of sentences
that could be potentially useful for both better lan-
guage understanding and downstream tasks.

Pre-training a language model to learn latent rep-
resentations is extremely hard: First, there are no
ground-truth labels for the latent representations
that could be used for reliable supervised learning.
During pre-training, the model is only given an
unlabeled text corpus over which to identify latent
representations such as sentence-level keywords
and structures. This means the training process
must be strictly self-supervised (Rush et al., 2018).
Furthermore, to be interpretable, the latent repre-
sentations for natural language texts are supposed
to be discrete, which further complicates the design
of a completely differentiable training framework.

To push the language models to learn deeper
understandings of sentences, in this paper, we
propose a novel pre-training framework, Sparse
Latent Typing, that enables the language model
to sparsely extract sentence-level keywords with
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meaningful latent types. We have tackled all above-
mentioned challenges and our framework is fully
differentiable and completely self-supervised. As
shown in Figure 1, given an input sentence from
the pre-training corpus, we introduce a latent typ-
ing mechanism to jointly selects and classifies the
keywords from the sentence into a category of ran-
domly initialized latent types. We implement such
a latent classification model based on Gumbel Sam-
pling (Jang et al., 2017) to make sure the over-
all pre-training framework is differentiable. Since
there are no ground-truth labels available for the
selected keywords and latent types, we incorporate
an one-layer transformer decoder into the training
pipeline to map the fused token and latent type
representations back to the original sentence, and
use the sentence reconstruction loss to control for
adequate usefulness of the latent representations.
Our approach provides the decoder model with a
shortcut to directly access the encoded token repre-
sentations, so that the latent representation for each
of the input tokens can be learned as an auxiliary
type representation. For pre-training objectives, in
addition to minimizing the sentence reconstruction
error, we also introduce a novel typing sparsity loss
to minimize the number of token representation
selected for latent typing. A KL-divergence based
diversity loss is also proposed to encourage a di-
verse selection of the latent types. Experimental
results show that our model is able to learn inter-
pretable latent type categories in a self-supervised
manner without using any external knowledge. Be-
sides, the language model pre-trained with such
an objective also significantly improves Informa-
tion Extraction related downstream tasks in both
supervised and few-shot settings.

In summary, our contributions are three-fold:

• We propose a fully differentiable language
model pre-training framework that enables
the model to sparsely extract sentence-level
keywords with latent types in a completely
self-supervised manner.

• We provide comprehensive analysis and inter-
pretation for our experimental results showing
that the pre-trained model is able to extract
meaningful latent type representations.

• Extensive experiments on IE-related down-
stream tasks demonstrate that our proposed
pre-training framework can significantly ad-
vance state-of-the-art.

2 Related Work

Knowledge-Enhanced Language Models As
pretrained language models (Radford et al., 2018;
Devlin et al., 2019; Liu et al., 2019; Radford
et al., 2019; Brown et al., 2020; Lewis et al.,
2020a; Raffel et al., 2020) are achieving great suc-
cess on downstream NLP tasks, many research
studies focus on how to make these PLMs more
knowledgeable. Previous studies (Peters et al.,
2019; Zhang et al., 2019; Xiong et al., 2020; He
et al., 2020; Yamada et al., 2020; Qin et al., 2021;
Wang et al., 2021) either focus on designing entity-
relation-aware pre-training objectives, or modify-
ing the model architecture to make it capable of
fusing both text and entity information. How-
ever, all of these previous approaches utilize large-
scale, human-annotated, semi-structured external
resources (e.g., Wikipedia). In comparison, our
method is completely self-supervised and only
needs a text corpus for pre-training, which focuses
more on encouraging the model to learn knowledge
clusters at a latent level.

Latent Structure Learning There are also sev-
eral studies (Liu et al., 2021; Subramani et al.,
2022) that incorporate latent structure learning into
language model pre-training. Particularly, Montero
et al. (2021) also proposes to use a transformer
decoder layer to reconstruct the original sentence
to provide training signals. However, instead of
learning coarse-grained sentence representations,
we focus on learning fine-grained latent type rep-
resentation that are interpretable and useful at the
token level. To meet this end, we propose a se-
ries of novel training objectives and architecture
designs to facilitate a sparse selection and typing
of the token representations in the latent space.

Information Extraction Our approach to detect
sentence-level keywords with latent types is in-
spired by Information Extraction (IE) (Cowie and
Lehnert, 1996), an essential NLP task that aims
to extract knowledge from texts. Although IE in-
cludes a wide range of tasks varying in what to
extract (entities, relations, events) and where to
extract from (sentences, documents, corpora), typ-
ical IE frameworks usually include two essential
steps: 1) Selection: selecting the most task-relevant
units from the inputs, 2) Classification: assign-
ing each of these a correct type label. Such a
select-and-classify framework is common to sev-
eral IE tasks, including entity extraction, event de-
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tection and event argument extraction. Accordingly,
in our approach, we follows a similar Selection-
Classification approach to incorporate word selec-
tions and latent typing in pre-training.

3 Problem Formulation

Given a text corpus D composed of text sentences
S, we use s = {w1, · · · , wN}, s ∼ S to repre-
sent a sentence consisting of N tokens. Assum-
ing a text encoder f : S 7→ X that takes the
sentence s as input and outputs the token repre-
sentations x1, · · · ,xN , our latent type classifier
h : X 7→ (Z, X̂ ) then selects a subset of token
representations x̂1, · · · , x̂T , T ≤ N and classifies
them into latent type representations z1, · · · , zT .
Each of the token types zi is selected from a latent
embedding space C consisting of Vc = |C| different
latent vectors. The text decoder g : (Z, X̂ ) 7→ S
then reconstructs the original sentence s through
the pair of latent types and selected token represen-
tations (Z, X̂ ).

The objective of sparse latent typing is to find
pairs of latent types and token representations that
are as compact as possible but still contain the nec-
essary information for reconstructing the original
input sentences. Formally, we want to minimize
the following joint objective,

min
θf ,θh,θg

T,Lrec(f, h, g),LKL(f, h) (1)

with:

Lrec(f, h, g) = E s∼S [− log pg(s|h(f(s)))],
LKL(f, h) = DKL(ph(z|f(s))||p(z)),

where T is the number of the selected token repre-
sentations, p(z) is a prior distribution of the latent
types, and DKL(·||·) is the Kullback–Leibler (KL)
divergence. The reconstruction loss and the KL
term in our formulation follows the classical VAE
(Kingma and Welling, 2013), but there are two key
differences: (1) The latent variables z are discrete
categorical variables, (2) Instead of only taking
the latent representation z, the decoder takes both
the token vectors and the corresponding latent vec-
tors for sentence reconstruction. Since the discrete
version of VAE is well studied by the previous ef-
forts such as VQ-VAE (Van Den Oord et al., 2017)
and Gumbel-Softmax (Jang et al., 2017), the opti-
mization problem remains as how to minimize the
non-differentiable term T to encourage the sparse
selection of the token representations.

4 Learning Sparse Latent Types

To tackle the non-differentiable problem of the size
of the selected typing pairs T = |(Z, X̂ )|, we first
take a closer look at the latent type classifier h
which decides the latent type zi of each token rep-
resentation xi. Our insight is that we can regard
the action of not selecting a token representation
as a frozen zero type vector c1 = 0 ∈ C. We then
do an element-wise multiplication between zi and
xi to obtain the representations x̄i = xi ⊗ zi that
are to be fed into the text decoder g. The advan-
tages of this approach are that (1) the element-wise
multiplication naturally prevents the gradient from
being propagated to the token representations that
are classified as the zero type vector c1, (2) the
element-wise multiplication directly modulates the
gradients of the token representations with the la-
tent type vectors. This can in principle provide
better guidance to the text encoder with the infor-
mation of the latent vectors than can be provided by
other vector fusion operators such as element-wise
addition or vector concatenation. Based on this
framework, we developed a novel typing sparsity
loss in Section 4.2 to approximately minimize the
typing pairs size T . While our approach is gener-
ally applicable for any text encoder and decoder,
specific neural architectures used in this work are
discussed in Section 5.1.

In our framework, the latent type classifier h is
simplified as a mapping h′ : X 7→ Z that only
outputs the latent types zi for each token represen-
tation. The simplified text decoder g′ : X̄ 7→ S
then only needs to model the fused representation
space X̄ = Z ⊗ X for sentence reconstruction. ⊗
is the vector fusion operator and should be inter-
preted as element-wise multiplication in this work.
The proposed architecture for sparse latent typing
is illustrated in Figure 2, which is further explained
in the following subsections.

4.1 Gumbel Latent Typing

Given the token representations generated from
the text encoder, X = {x1, · · · ,xN} ∈ RN×dm ,
where N is the number of input tokens, and dm is
the length of the token representation vectors, our
Gumbel latent type classifier first maps X into log-
its L ∈ RN×Vc with a weight matrix W ∈ Rdm×Vc ,
and then outputs the probabilities Pi,v of choosing
the v-th latent type for each token representation
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Figure 2: The proposed architecture for pre-training a language model with Gumbel Latent Typing, where dm is the
length of the token representation vectors, Vc is the pre-defined size of the latent types, and ⊙ means the matrix
multiplication. The white block in the latent type embedding is the zero type vector.

xi,

Pi,v =
e(Li,v+Gi,v)/τ

∑Vc
k=1 e

(Li,k+Gi,k)/τ
,

L = XW,

where Gi,v ∼ Gumbel(0, 1) is the Gumbel noise
sampled from a standard Gumbel distribution and
τ is the non-negative temperature, following the
previous efforts on the Gumbel softmax operation
(Jang et al., 2017; Maddison et al., 2016). The
reason why we are using Gumbel softmax for our
latent type classifier is that it enables choosing a
latent type representation in a fully differentiable
way, and thus can further facilitate our design of the
sparsity loss to do an approximate minimization of
the size of the typing pairs T .

With the Gumbel decision probability P ∈
RN×Vc , the latent type representations Z ∈
RN×dm are obtained through a marginalization of
P over the latent type embeddings C ∈ RVc×dm ,

c1 = 0,

Z = {z1, · · · , zN},

zi =

Vc∑

k=1

Pi,kck,

where c1 is the zero type vector. The final fused
representation X̄ is obtained by an element-wise
multiplication,

X̄ = X ⊗ Z.

Intuitively, if Pi,k is entirely concentrated on c1 as
τ → 0, i.e., Pi,1 = 1, we effectively eliminate
token wi (or its representation xi).

During the evaluation stage of our latent type
classifier, the latent type embedding with the largest
logit score is selected as the latent type representa-
tion for each of the token vectors xi,

k∗ = argmax
k

Li,k,

zi = ck∗ .

To alleviate the discrepancy between the training
and the evaluation, we adopt the temperature an-
nealing (Jang et al., 2017) trick to the Gumbel-
Softmax for a better differentiable approximation
of the argmax operator.

4.2 Training Objectives

Based on our problem formulation, we adopt three
types of training loss for the end-to-end training of
our model: (1) Typing Sparsity Loss that encour-
ages the latent type classifier to choose more zero
types, (2) KL-Divergence with respect to a uniform
prior distribution to encourage the diverse selection
of the latent types, (3) Reconstruction Loss that en-
sures the latent representation maintains essential
information of the input text.

Typing Sparsity Loss An important property
of Gumbel-Softmax is that when the temperature
τ → 0, the decision probability Pi ∈ RVc will tend
to be an one-hot index vector sampled from the
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underlying categorical distribution,

P̂i(C = v) =
eLi,v

∑Vc
k=1 e

Li,k
,

where L ∈ RN×Vc is the logits before doing
Gumbel-Softmax. This means that we can control
the decision behavior of the model through mod-
ulating the shape of this categorical distribution.
Therefore, our typing sparsity loss is designed as
the negative log-likelihood of the global averaged
probability of choosing the zero type c1,

Ls = − log
1

N

N∑

i=1

P̂i(C = 1),

where N is the number of tokens in the input
sentence. Intuitively, if P̂i converges to an one-
hot vector, then P̂i(C = 1) ∈ {1, 0}, and∑N

i=1 P̂i(C = 1) = N − T becomes the number
of the tokens that are not selected for typing, which
is equivalent to what we want to maximize in the
problem formulation of Equation (1).

KL-Divergence To encourage a diverse selec-
tion of the latent types, we assume a uniform
prior distribution of the latent type representations
p(z) = 1/Vc. The KL-divergence term is calcu-
lated between the global averaged probability P̄v

and the uniform prior, i.e.,

LKL =
1

Vc

Vc∑

v=1

P̄v log(P̄v),

P̄v =
1

N

N∑

i=1

P̂i,v,

where Vc is the number of the latent types.

Reconstruction Loss Our reconstruction loss di-
rectly follows our problem formulation, i.e.,

Lrec = − 1

B

B∑

i=1

log pg(si|h(f(si))),

where B is the batch size of the sampled text data.
When pre-training a masked language model, we
also include a Masked Language Model loss fol-
lowing BERT (Devlin et al., 2019),

LMLM = − 1

B

B∑

i=1

log pf (si|s̃i), (2)

where f is the text encoder, and s̃i is the corrupted
sequence.

The total loss function is a weighted sum of the
above four losses,

L = LMLM + αLrec + βLs + γLKL, (3)

where α, β, γ ∈ R≥0 are weighting factors.

5 Experiments

In our experiments, we first conduct intrinsic eval-
uation to investigate whether the model can suc-
cessfully learn word selections with meaningful la-
tent types during pre-training. Then, we apply our
model on both supervised and few-shot IE tasks to
evaluate the effectiveness of our pre-training frame-
work on downstream tasks.

5.1 Sparse Latent Type Learning

Pre-training Setup We adopt the VOA corpus
constructed by (Li et al., 2020) for sparse la-
tent type pre-training, which was extracted from
108,693 multimedia news articles openly available
on the Voice of America website between 2006 and
2017. We use the bert-base-uncased version of the
BERT (Devlin et al., 2019) model as our encoder,
and a single transformer decoder layer to recon-
struct the sentence, following Kasai et al. (2020);
Montero et al. (2021). While our approach is gen-
erally applicable for both encoder-only Masked
Language Model (MLM) and the encoder-decoder
Denoising Language Model (e.g. BART (Lewis
et al., 2020b)), we focus on MLM because MLM is
more widely used in the downstream information
extraction tasks. The implementation details can
be found in Appendix A.

Downstream Evaluation To evaluate the valid-
ity of our latent typing approach, we apply our
pre-trained model by fine-tuning on downstream
tasks. We focus on Information Extraction specifi-
cally, and adopt Supervised Joint Information Ex-
traction (Lin et al., 2020) and Few-shot Named
Entity Recognition (Ding et al., 2021) as two typ-
ical IE tasks to evaluate our model on both super-
vised and few-shot IE settings. We initialize the
BERT model with bert-base-uncased weights and
continue pre-training 100,000 steps using the com-
bined loss defined in (3) on the VOA corpus. Since
we only focus on evaluating our model on the IE
tasks, only the pre-trained text-encoder is used for
fine-tuning on the downstream tasks. More details
can be found in Appendix A.
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5.2 Supervised Information Extraction

Datasets We evaluate our pre-trained model on
the English subset of ACE-2005 dataset1 and the
ERE dataset, which are the most widely-used event-
centric IE dataset containing annotations for ex-
tracting entities, events, and relations. Following
the preprocessing steps and dataset splits in (Lin
et al., 2020), we keep 7 entity types, 6 relation
types, 33 event types, and 22 argument roles for the
ACE-2005 dataset, and 7 entity types, 5 relation
types, 38 event types, and 20 argument roles for
the ERE dataset. More detailed dataset statistics
are shown in Table 1.

Dataset Split #Sents #Ents #Events #Rels

ACE-05
Train 17,172 29,006 4,202 4,664
Dev 923 2,451 450 560
Test 832 3,017 403 636

ERE
Train 14,736 39,501 6,208 5,054
Dev 1,209 3,369 525 408
Test 1,163 3,295 551 466

Table 1: Dataset statistics for supervised IE.

Baselines We compare the performances of fine-
tuning BERT on supervised IE with the following
pre-training approaches: 1) BERT-Vanilla: we di-
rectly use the bert-base-uncased checkpoint to fine-
tune on the supervised IE tasks, which is also the
same as what the baseline models do in OneIE (Lin
et al., 2020). 2) BERT-MLM: we initialize the
BERT model with the bert-base-uncased check-
point and then fine-tune on the VOA corpus for
100,000 steps only using the masked language
modeling loss LMLM defined in (2). 3) BERT-
SparseLT: our proposed approach. We pretrain the
BERT model from the bert-base-uncased check-
point on the VOA corpus for 100,000 steps by en-
couraging the model to learn sparse latent types us-
ing the loss function defined in (3), with the hyper-
parameters α = 0.05, β = 0.05, γ = 0.1. We did
not compare our model with knowledge-enhanced
pretrained language models like ERNIE (Zhang
et al., 2019) and ERICA (Qin et al., 2021) because
they use external knowledge resources aligned with
the pre-training corpus, while our methods are com-
pletely self-supervised.

Results We report the F1 scores for four different
IE subtasks on both ACE-2005 and ERE datasets:

1https://catalog.ldc.upenn.edu/LDC2006T06

Entity Extraction, Relation Extraction, Event De-
tection and Event Argument Role Labeling, and
the results are shown in Table 2. In general, our
BERT-SparseLT model has the best performance
among all model competitors, even better than
the OneIE model which uses global features for
fine-tuning. In particular, our proposed method
greatly improves the entity extraction performance
(an absolute improvement of 7.59% on the ERE-
Entity subtask), which follows our intuition since
sparse latent typing can make the model more sen-
sitive about important entity mentions in the sen-
tence. We can also see that BERT-MLM outper-
forms BERT-Vanilla, which comes as no surprise
since further pre-training the models on additional
corpora usually leads to better performances. The
key observation that demonstrates the effectiveness
of our approach is BERT-SparseLT outperforms
BERT-MLM significantly, where our model uses
exactly the same pre-training corpus without any
additional information.

5.3 Few-shot Named Entity Recognition

Dataset We use the most recent FewNERD (Ding
et al., 2021) dataset to evaluate the performance
of our proposed model on few-shot IE settings.
The FewNERD dataset includes 8 coarse-grained
and 66 fine-grained entity types, which has two
experimental settings: 1) Inter: The training and
testing entity types are divided only based on 66
fine-grained entity types. 2) Intra: A more chal-
lenging setting where the training and testing entity
types strictly belong to different coarse-grained en-
tity types. We evaluate the few-shot performance
of our models in both settings and the results are
shown in Table 3.

Baselines and Results We compare our model
with two competitive baselines StructShot (Yang
and Katiyar, 2020) and CONTaiNER-Viterbi (Das
et al., 2022). We replace the BERT text en-
coder from the state-of-the-art model CONTaiNER-
Viterbi with our text encoder pre-trained with
sparse latent typing, and denote it as CONTaiNER-
Viterbi + BERT-SparseLT. We report the F1 score
of the fewshot Named Entity Recognition tasks in
both intra and inter evaluation settings. In general,
our proposed framework greatly ourperforms pre-
vious models in both settings by 6.24% and 3.75%
respectively while creating a new state-of-the-art
of this benchmark.
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Dataset ACE-2005 ERE
IE subtasks Entity Trigger Argument Relation Entity Trigger Argument Relation

BERT-Vanilla 75.34 66.40 44.90 41.35 79.39 55.58 36.76 31.05
OneIE-bert-base (Lin et al., 2020) 77.86 66.91 48.01 47.88 79.84 54.33 37.85 33.39

BERT-MLM 78.30 68.66 48.53 51.72 79.54 55.39 38.35 33.78
BERT-SparseLT 81.10 70.95 50.87 52.80 87.13 55.76 39.64 37.12

Table 2: Overall test F1-scores (%) of Supervised Joint Information Extraction.

Model 5-way 10-way Average
1 ∼ 2 shot 5 ∼ 10 shot 1 ∼ 2 shot 5 ∼ 10 shot

INTRA

StructShot (Yang and Katiyar, 2020) 30.21 38.00 21.03 26.42 28.92
CONTaiNER-Viterbi + BERT (Das et al., 2022) 40.40 53.71 33.82 47.51 43.86
CONTaiNER-Viterbi + BERT-SparseLT (Ours) 47.20 59.67 40.48 53.04 50.10

INTER

StructShot (Yang and Katiyar, 2020) 51.88 57.32 43.34 49.57 50.52
CONTaiNER-Viterbi + BERT (Das et al., 2022) 56.10 61.90 48.36 57.13 55.87
CONTaiNER-Viterbi + BERT-SparseLT (Ours) 57.14 66.17 52.75 62.43 59.62

Table 3: Overall test F1-scores (%) of Few-shot Named Entity Recognition.

6 Analysis

In this section, we address the following research
questions on Sparse Latent Typing.

How are the latent types distributed over the
encoded token representations? We draw a t-
SNE (van der Maaten and Hinton, 2008) plot of
the encoded token representations x of 1,000 sen-
tences (30792 tokens in total) randomly sampled
from the pre-training corpus in Figure 3. The token
representations are colored with their correspond-
ing latent type indices. From the figure, we can
observe that the token representations begin to be
distributed as individual islands with the same col-
ors after 300k steps of pre-training from scratch.
This implies that our sparse latent typing objective
can effectively encourage the clustering of the to-
ken representations in a small latent space defined
by 64 randomly initialized type embeddings. We
can also observe a similar trend of latent clustering
for the BERT-SparseLT model, which is illustrated
in Appendix B, Figure 4.

Can Typing Sparsity Loss effectively con-
trol the sparsity of token selections? We pre-
trained three BERT-SparseLT models with different
weighting factors β of the Typing Sparsity Loss to
investigate its influence on latent type selections
and sentence reconstruction. (Additional samples
for β = 0.05 are included in Appendix B, Table 14)
From Table 4, we can observe that as the β in-

creases the model will select fewer tokens with
non-zero types. The corresponding sentence re-
construction also degenerates significantly as fewer
tokens are selected by our Gumbel latent type clas-
sifier. This means that our proposed typing sparsity
loss can effectively control the number of the typed
tokens and thus affect the quality of reconstructed
sentences. We also did the same experiments for
the models pre-trained from scratch (Appendix B,
Table 11) to illustrate that such sparse selection
behavior is independent of the initialization of the
model parameters.

To what extent are the learned latent types inter-
pretable? In Table 5, we calculate the frequen-
cies for the top-10 most selected latent types v and
the probability P (x|z = v) of the top-5 frequent
tokens tagged by the type v. The statistics are
computed over 100 randomly sampled sentences
from the pre-training VOA corpus with the BERT-
SparseLT model. We can observe that the zero type
(index 0) is mostly associated with less meaningful
tokens such as ",", "CLS","SEP", which are used
for delimiting the semantics. This means that the
model can effectively learn to select more mean-
ingful tokens through our sparse latent typing ob-
jective. We can also observe that the type 61 seems
more correlated with the physical locations and the
type 50 is mostly related to functional words. We
also do the same analysis for the model pre-trained
from scratch in Appendix B, Table 12. The results
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β Latent Typing of the Input Tokens Reconstructed Sentence

0.05
she(58), murdered(24), her(1), new(8), york(42), she was murdered in her new york office,

office(61), just(34), days(11), learning(4), waitress(62), just days after learning that waitress was
accepted(60), sundance(9), film(63), festival(50), accepted in her the sundance film festival.

0.06
murdered(47),learning(22), the government was murdered in the philippines,
waitress(42), accepted(51), and a man after learning that waitress was

sundance(47), accepted in the sundance festival.

0.07 ∅ the u. s. officials have been critical of the country’s.

Table 4: The latent typing and the reconstruction results of the input tokens, "She was murdered in her New York
office, just days after learning that Waitress had been accepted into the Sundance Film Festival.", with different
BERT-SparseLT models continually pre-trained with different values of the weighting factors β. The corresponding
latent type indices for each of the tokens are noted in the parentheses.

Top-10 Frequent Type Index v Top-5 Frequent Tokens Tagged by the Type v

0 (37.86%) , (12.2%) the (12.1%) . (11.6%) CLS (8.2%) SEP (8.2%)
61 (3.82%) ##ta (2.4%) abdullah (2.4%) kabul (2.4%) afghan (2.4%) ##hi (1.6%)
48 (3.29%) identified (2.8%) told (2.8%) ’ (1.9%) ##j (1.9%) calls (1.9%)
50 (2.82%) " (5.5%) mm (5.5%) ” (4.4%) which (3.3%) we (2.2%)
20 (2.30%) but (8.1%) abortion (8.1%) " (5.4%) that (4.1%) dr (4.1%)
53 (2.27%) carrier (2.7%) ka (2.7%) fraud (2.7%) claims (2.7%) harder (2.7%)
8 (2.02%) also (4.6%) 2017 (3.1%) among (3.1%) commission (3.1%) department (3.1%)
38 (1.83%) never (3.4%) story (3.4%) afghanistan (3.4%) could (3.4%) rate (3.4%)
62 (1.80%) abdullah (5.2%) indigo (3.4%) allegations (3.4%) graduating (1.7%) innovative (1.7%)
29 (1.77%) low (5.3%) cost (5.3%) me (5.3%) may (3.5%) gee (3.5%)

Table 5: The frequencies of the top-10 most selected latent types v and the corresponding top-5 frequent tokens
tagged by the type v. The frequencies are computed over 100 randomly sampled sentences from the pre-training
corpus and are noted in the parentheses after the tokens. The model is continually pretrained from a bert-base-
uncased checkpoint.

appear to be more interpretable due to more consis-
tent training dynamics than continual pre-training
from a checkpoint.

How could different loss combinations affect the
model performance? We conduct an ablation
study of the loss weighting factors of the BERT-
SparseLT model to illustrate the influence of differ-
ent loss combinations on the few-shot NER perfor-
mance in Table 7. Including all the four losses pro-
duces the best test performance on the 5-way 1∼2
shot evaluation of the Intra setting of the FewN-
ERD benchmark. This proves that all the training
objectives are necessary for improving the gener-
alizability of the token representations learned by
the encoder. We also include the reconstruction
and the latent typing results of the models trained
with α = 0.05 in Appendix B, Table 13 for further
qualitative analyses.

Can sparse latent typing improve the sentence-
level Natural Language Understanding (NLU)
ability? We evaluate BERT-Vanilla, BERT-MLM
and the BERT-SparseLT models on the Gen-
eral Language Understanding Evaluation (GLUE)

benchmark to demonstrate the influence of sparse
latent typing on NLU, and the results are shown in
Table 6. The finetuning hyperparameters are shown
in Appendix B, Table 9. Our BERT-SparseLT
model obtains slightly worse results than the vanilla
BERT, but still has marginal improvement over the
MLM baseline that excludes the sparse latent typ-
ing objectives. The inferior results are as expected
for two reasons: 1) The evaluation of the GLUE
benchmark heavily relies on the [CLS] token which
is always latent typed as a zero-type by the BERT-
SparseLT model and thus lacks the enough train-
ing signals for fine-grained clustering in the latent
space. 2) The VOA corpus for continual pretrain-
ing is in the specific news domain, which may not
be beneficial for general NLU. We hypothesize that
large-scale pretraining from scratch of an encoder-
decoder model should overcome these limitations,
and we leave it as the future work due to the limita-
tion of the computation resources.

7 Conclusion

In this paper, we propose a novel language model
pre-training framework that encourages the model
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System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average

BERTBASE-Vanilla 84.7/84.8 88.5 91.5 92.4 58.1 88.7 90.8 70.4 83.3

BERTBASE-MLM-VOA 84.5/84.8 88.6 91.4 92.1 59.4 88.5 89.3 64.6 82.6
BERTBASE-SparseLT-VOA 84.5/84.8 88.6 91.4 92.1 59.4 89.1 90.7 66.8 83.0

Table 6: The evaluation results on the development sets of the GLUE benchmark. Following Devlin et al. (2019),
we report the F1 scores for QQP and MRPC, Spearman correlations are reported for STS-B, and accuracy scores for
the other tasks. A fixed random seed is applied for all the experiments for fair comparisons.

Figure 3: The t-SNE visualization of the encoded token
representations x with the corresponding latent type in-
dices after 300k steps of pre-training with the sparse
latent typing objective. The pre-training process is con-
ducted on the VOA-corpus with randomly initialized
parameters.

to sparsely extract sentence-level keywords with
meaningful latent types in a completely self-
supervised manner. Experimental results and anal-
ysis demonstrate that incorporating sparse latent
type learning early in the pre-training stage will
not only facilitate the model to learn sentence-level
keyword selections with interpretable latent types,
but also improves downstream Information Extrac-
tion tasks in both supervised and few-shot settings.

8 Limitations

One primary limitation of our framework is that the
language model pretrained with sparse latent typing
might only improve performance on Information
Extraction tasks. Although this is intuitive since
IE shares essential similarity with latent typing, it
is exciting to see whether our model can improve
other downstream tasks such as natural language
generation and abstractive summarization.

Another limitation of our work is that, due to the
lack of the computation resources, we did not con-

α β γ 5-way 1∼2 shot

0 0 0 46.10
0 0 0.1 45.87
0 0.05 0 45.72

0.05 0.05 0 46.72
0.05 0 0 46.48
0.05 0 0.1 46.99

0 0.05 0.1 45.94
0.05 0.05 0.1 47.20

Table 7: The test F1 scores on the INTRA 5-way 1∼2
shot setting of the FewNERD dataset for different BERT-
SparseLT models continually pre-trained with different
loss weighting factors, α, β, γ.

duct experiments of large-scale pretraining from
scratch for a comprehensive examination of our
framework’s ability on improving the general NLU
performance. For future works, it is also worth
exploring on whether the sparse latent typing ob-
jective can improve the machine translation perfor-
mance by regularizing a sparse and unified latent
space for cross-lingual meaning representations.

Finally, our model is only capable of extract-
ing sentence-level keywords with latent types, but
is not designed to learn a comprehensive graph
structure for each input sentence. Although it is
debatable whether a more complex latent graph
representation is better than concise latent types, it
is still worth adding this into future work plans.
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A Implementation Details

Our transformer decoder layer follows the same ar-
chitecture as the BART model (Lewis et al., 2020a).
The word embeddings for both the text encoder and
decoder are tied together. Our implementation is
based on the Transformers codebase 2. (Wolf et al.,
2020).

We train our model on 4 NVIDIA Tesla V100
GPUs with 16GB memory. The pre-training time
for bert-base-uncased model on the VOA-corpus
is about 12 hours. A linear learning rate scheduling

2https://github.com/huggingface/transformers
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with warm-up is adopted. For Gumbel latent typ-
ing, we adopt the following temperature annealing
schedule,

τ = max(5× 0.99997T , 0.5)

where T is the number of training steps. We con-
tinually pretrain a BERT-base model from the bert-
base-uncased checkpoint for 100k steps. For the
experiment of pre-training from scratch, we only
train a RoBERTa-large (Liu et al., 2019) model on
the VOA-corpus for 300k steps, given the limita-
tion of our computation resources. The detailed
hyper-parameters are summarized in Table 8 and
Table 10.

For fine-tuning on downstream tasks, we replace
the BERT model used in the state-of-the-arts with
our pre-trained BERT-SparseLT model and fol-
low the same hyper-parameter settings. Specifi-
cally, for supervised IE, we use the codebase from
OneIE (Lin et al., 2020) 3, and for few-shot IE, the
codebase from CONTaiNER (Das et al., 2022) is
adopted.4.

Hyper-parameters Values

Weighting factor for Reconstruction loss, α 0.05
Weighting factor for Typing Sparsity loss, β 0.05

Weighting factor for KL-divergence, γ 0.1

Model dimension, dm 768
Number of latent types, Vc 64

Batch size 32
Learning rate warm-up steps 300

Max trainig steps 100,000
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1e-8

Weight decay 0.01
Learning rate 1e-5

Gradient clipping norm 1.0
MLM masking probability 0.15

Number of decoder layers 1
Dropout rate 0.1

Activation function GELU

Table 8: Detailed settings for model hyper-parameters
when pretraining from a bert-base-uncased checkpoint.

B Additional Analysis

This section includes all the additional figures and
the tables mentioned in section 6.

3http://blender.cs.illinois.edu/software/
oneie/

4https://github.com/psunlpgroup/CONTaiNER

Hyper-parameters Values

Learning Rate {1e-5, 2e-5, 5e-5}
Batch size 32

Learning rate warm-up ratio 0.06
Max trainig epochs 10

Weight decay 0.1
Learning rate decay Linear

Table 9: Hyperparameters for finetuning the BERT-
SparseLT model on the GLUE benchmark. We follow
the settings in Liu et al. (2019).

Hyper-parameters Values

Weighting factor for Reconstruction loss, α 1.3
Weighting factor for Typing Sparsity loss, β 0.2

Weighting factor for KL-divergence, γ 0.1

Model dimension, dm 1024
Number of latent types, Vc 64

Batch size 32
Learning rate warm-up steps 300

Max trainig steps 300,000
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1e-8

Weight decay 0.01
Learning rate 1e-5

Gradient clipping norm 1.0
MLM masking probability 0.15

Number of decoder layers 1
Dropout rate 0.1

Activation function GELU

Table 10: Detailed settings for model hyper-parameters
when pretraining from scratch.

Figure 4: The t-SNE visualization of the encoded to-
ken representations x with the corresponding latent type
indices for the BERT-SparseLT model. The model is
continually pretrained from a bert-base-uncased check-
point.
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β Latent Typing of the Input Tokens Reconstructed Sentence

0.2
She(36), murdered(20), her(57), New(17), office(1), just(51), She said murdered of her New York office,

days(33), after(23), learning(62), that(39), Wait(10), ress(10), had(59), just days after learning that wanderingress had
accepted(11), into(59), Sund(10), ance(10), Film(10), Festival(10) been accepted into the Sundance Film Festival.

0.3
murdered(59), her(63), office(7), just(63), The U.S. officials have just just days of learning

days(49), learning(49), Wait(7), ress(43), had(24), the countryress had been accepted had been
accepted(24), Sund(43), ance(43), Film(43), Festival(43) a Sundance Film Festival, the

0.4
murdered(9), The U.S. President Barack Obama, the U.S.

learning(63), Wait(9), ress(50), akaress, and the accepted the Sundance
accepted(63), Sund(63), ance(63), Film(9), Festival(9) Film Festival.

Table 11: The latent typing and the reconstruction results of the input tokens, "She was murdered in her New York
office, just days after learning that Waitress had been accepted into the Sundance Film Festival.", with different
models pre-trained from scratch with different values of the weighting factors β. The corresponding latent type
indices for each of the tokens are noted in the parentheses.

Top-10 Frequent Type Index v Top-5 Frequent Tokens Tagged by the Type v

0 (30.55%) , (14.1%) the (13.8%) . (13.1%) CLS (10.3%) SEP (10.3%)
47 (5.86%) in (3.2%) and (3.2%) said (1.6%) as (1.1%) out (1.1%)
10 (5.73%) abortion (2.7%) cost (2.2%) Indigo (1.6%) eta (1.6%) innovative (1.1%)
16 (5.14%) eta (1.8%) parallel (1.8%) autism (1.8%) MMR (1.8%) Smart (1.2%)
61 (3.2%) that (7.8%) was (5.9%) a (3.9%) has (2.9%) would (2.9%)

46 (2.76%) Abdullah (5.7%) Ge (2.3%) Jones (2.3%) measles (2.3%) Minnesota (2.3%)
36 (2.73%) was (3.4%) that (3.4%) on (3.4%) ) (2.3%) she (2.3%)
15 (2.70%) ," (3.5%) told (2.3%) could (2.3%) statistics (2.3%) ( (2.3%)
45 (2.54%) and (3.7%) under (2.5%) Afghan (2.5%) new (2.5%) vaccine (2.5%)
2 (2.23%) cost (2.8%) ., (1.4%) hopes (1.4%) challenges (1.4%) os (1.4%)

Table 12: The frequencies of the top-10 most selected latent types v and the corresponding top-5 frequent tokens
tagged by the type v. The frequencies are computed over 100 randomly sampled sentences from the pre-training
corpus and are noted in the parentheses after the tokens. The model is pretrained from scratch on the VOA corpus.
We can observe that the zero type (index 0) is mostly associated with less meaningful tokens. We can also observe
that the type 46 seems more correlated with the physical locations and the types 47 and 36 are mostly related to
functional words. Type 16 is also meaningful as it appears to be related to the discussion of the potential linking of
MMR vaccines to autism in children.
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α β γ Latent Typing Reconstructed Sentence

0.05 0.05 0.1 she(58), murdered(24), her(1), new(8),
york(42), office(61), just(34), days(11),
learning(4), waitress(62), accepted(60), sun-
dance(9), film(63), festival(50)

she was murdered in her new york office, just
days after learning that waitress was accepted
in her the sundance film festival.

0.05 0 0.1 CLS(46), she(54), was(13), murdered(35),
in(47), her(28), new(28), york(32), of-
fice(25), ,(26), just(46), days(14), after(31),
learning(44), that(4), waitress(44), had(41),
been(27), accepted(58), into(41), the(30),
sundance(61), film(5), festival(36), .(1)

she was murdered in her new york office, just
days after learning that waitress had been
accepted into the sundance film festival.

0.05 0.05 0 ∅ the u. s. military chief said.

0.05 0.0 0 CLS(38), she(4), was(4), murdered(4), in(4),
her(4), new(4), york(4), office(4), ,(4),
just(4), days(4), after(4), learning(4), that(4),
waitress(4), had(4), been(4), accepted(4),
into(4), the(4), sundance(4), film(4), festi-
val(4), .(4), SEP(48)

she was murdered in her new york office, just
days after learning that waitress had been
accepted into the sundance film festival.

Table 13: The latent typing and the reconstruction results of various BERT-SparseLT models continually pretrained
with different α, β and γ values. The input sentence is "She was murdered in her New York office, just days
after learning that Waitress had been accepted into the Sundance Film Festival.". From the table, we can see that
removing the typing sparsity loss (β = 0) will result the model to select all the input tokens, and removing the
KL-divergence term (γ = 0) will cause the model to either not select any tokens (assigning all the tokens as the zero
type) or have almost the same latent type (e.g. type 4) for all the input tokens. The corresponding latent type indices
for each of the tokens are noted in the parentheses.
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Input Tokens Latent Typing Reconstructed Sentence

In-domain Sentences

A 45-year-old man who was tackled
down and arrested by police after al-
legedly attacking officers with a knife
in South Roxana, Illinois, has been
charged by the local prosecutors.

45(36), year(48), old(16), man(35),
who(8), was(52), tackled(37),
down(59), arrested(19), police(36),
after(28), allegedly(14), attacking(48),
officers(60), with(5), knife(7), sou
th(4), ro(62), ##xa(48), ##na(48),
illinois(20), has(50), charged(49),
local(39), prosecutors(38),

a 45 - year - old man who was tack-
led down and arrested by police af-
ter allegedly attacking officers with a
knife in south roxana, illinois, has been
charged at the local prosecutors.

Natural language processing (NLP) is
a subfield of linguistics, computer sci-
ence, and artificial intelligence con-
cerned with the interactions between
computers and human language, in par-
ticular how to program computers to
process and analyze large amounts of
natural language data.

natural(20), language(24), process-
ing(54), nl(29), ##p(42), )(43),
sub(34), ##field(61), linguistics(29),
computer(29), science(15), arti-
ficial(59), intelligence(59), con-
cerned(12), interactions(19), be-
tween(34), computers(20), human(28),
language(21), particular(15), how(38),
program(6), computers(61), pro-
cess(32), analyze(13), large(53),
amounts(48), natural(25), lan-
guage(10), data(21),

natural language processing ( nlp )
is a subfield of linguistics, computer
science and artificial intelligence con-
cerned about the interactions between
computers and human language, in par-
ticular how to program computers to
process to process and analyze large
amounts of natural language data.

Out-of-domain Sentences

The objective of sparse latent typing is
to find pairs of latent types and token
representations that are as compact as
possible but still contain the necessary
information for reconstructing the orig-
inal input sentences.

objective(30), sparse(27), late(48),
##nt(42), typing(23), find(60),
pairs(63), late(29), ##nt(4), types(53),
token(53), representations(6), as(49),
compact(59), as(58), possible(20),
but(58), still(20), contain(48), nec-
essary(20), information(35), rec(36),
##ons(42), ##tructing(44), original(6),
input(27), sentences(44)

the objective of sparse latent typing is
to find pairs of latent types and token
representations, as compact as possi-
ble but still contain the necessary infor-
mation for reconstructing the original
input sentences.

Our approach provides the decoder
model with a shortcut to directly ac-
cess the encoded token representations,
so that the latent representation for
each of the input tokens can be learned
as an auxiliary type representation.

our(20), approach(20), provides(48),
deco(19), ##der(13), model(27),
with(16), short(49), ##cut(61), di-
rectly(18), access(48), encoded(25),
token(53), representations(6), so(2),
that(59), late(49), ##nt(4), repre-
sentation(22), each(26), input(25),
token(53), can(41), learned(38),
as(58), auxiliary(32), type(30), repre-
sentation(53)

our approach provides the decoder
model with a shortcut to directly ac-
cess the encoded token representations,
so that the latent representation of each
of the input tokens can be learned as
an auxiliary type representation repre-
sentation.

Table 14: Sample latent typing and sentence reconstruction results of the continually pretrained BERT-SparseLT
model for both the in-domain and the out-of-domain sentences. The in-domain sentences are sampled from the
VOA corpus and the Wikipedia, while the out-of-domain sentences are from the main content of this paper.
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