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Abstract

Knowledge graphs are commonly used as
sources of information in commonsense ques-
tion answering, and can also be used to express
explanations for the model’s answer choice. A
common way of incorporating facts from the
graph is to encode them separately from the
question, and then combine the two represen-
tations to select an answer. In this paper, we
argue that highly faithful graph-based explana-
tions cannot be extracted from existing models
of this type. Such explanations will not include
reasoning done by the transformer encoding the
question, so will be incomplete. We confirm
this theory with a novel proxy measure for faith-
fulness and propose two architecture changes
to address the problem. Our findings suggest
a path forward for developing architectures for
faithful graph-based explanations.

1 Introduction

In commonsense question answering, many ap-
proaches incorporate knowledge from external re-
sources in addition to using large pre-trained lan-
guage models. Most often this is done to improve
performance, however explanations can also be ex-
pressed by highlighting a subset of this information.
Making the model output the facts used to answer
a particular question can increase trustworthiness
and help with debugging.

For this kind of explanation to be helpful, it must
faithfully represent the model’s reasoning; that is,
the explanation must accurately reflect the facts
used to answer the question. Faithfulness is in-
dependent of whether or not the explanation is a
reasonable justification of why an answer was cho-
sen (Jacovi and Goldberg, 2020). We refer to how
convincing an explanation is for an answer as plau-
sibility.1 It is useful to separate the two concepts as
a faithful representation of the model’s reasoning

1Terminology for these concepts varies, e.g. faithfulness
is also known as trustworthiness. See Jacovi and Goldberg
(2020) for discussion.
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Figure 1: The architecture of one class of question an-
swering models that use knowledge graphs. The orange
dashed line is removed in our first ablation.

process will be the most useful to a developer who
is debugging a model, regardless of whether it is
plausible or not.

We argue that explanations from a broad class
of models are of limited faithfulness (K M et al.,
2018; Mihaylov and Frank, 2018; Lin et al., 2019;
Feng et al., 2020; Yasunaga et al., 2021; Madaan
et al., 2021, illustrated in figure 1). Explanations
extracted from the graph encoder (figure 2) are
unlikely to reflect the full set of facts used because
the text encoder also independently reasons about
the question and contributes to answer selection.

In addition to our theoretical arguments, we pro-
pose a proxy method for empirically measuring
faithfulness. Our results confirm that, because per-
formance does not significantly change when un-
helpful input is given to the graph encoder, it has
minimal influence on the final answer choice. Ex-
planations extracted from the graph encoder there-
fore should not be used as they are not faithful to
the reasoning of the overall model.

We propose two changes to the model architec-
ture and find that they increase the proportion of
reasoning done in the graph encoder, thereby also
increasing explanation faithfulness. The results
also reflect a difference we identify in how two
graph encoders interact with the text encoder, lead-
ing to a path forward for developing architectures
for faithful explanations.
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Figure 2: An explanation retrieval technique applied
to the graph encoder selects nodes and edges from the
input graph to be the explanation.

2 Model architecture

We focus on a class of models that combine a text
encoder and a graph encoder for commonsense
question answering (figure 1). Explanations are
naturally expressed as a subset of edges in the input
graph (figure 2) and could be used for understand-
ing which facts the model used to choose its answer.
These explanations are easy to interpret. Alterna-
tive approaches to incorporating external knowl-
edge exist, like serialising knowledge graph triples
and concatenating them to the text encoder input.
A common approach to explaining predictions of
text encoders is to calculate token-level attributions
(Ribeiro et al., 2016), which is too specific in this
scenario where facts are the desired output.

We test the behaviour of two recent models:
MHGRN (Feng et al., 2020) and QA-GNN (Ya-
sunaga et al., 2021). The high-level operation of
both models is comparable and representative of
others that have the same architecture. An em-
bedding of the question context – a question with
an answer choice – is obtained from the text en-
coder, which in both cases is RoBERTa-Large (Liu
et al., 2019). The context is also used to extract a
subgraph of up to 200 nodes (sometimes called a
schema graph) from a larger knowledge graph.

The graph encoder creates an embedding for the
knowledge in this subgraph; a message passing
graph neural network (GNN) (Gilmer et al., 2017)
is used in both cases. A key difference between
the two models is the structure of the GNN. In
each layer of MHGRN, multiple paths through the
subgraph are found that end at each node, which
are encoded and then pooled to form the new node
embedding. QA-GNN instead updates nodes at
each layer by aggregating messages from direct
neighbours. After the final layer in both models,
the node embeddings are combined via attentional
pooling with respect to the text embedding.

The models also use the text embedding at each

layer in different ways. In MHGRN, it is used to
calculate the relevance of each path when creating
the new embedding for each node. In QA-GNN,
a pseudo-node initialised with this embedding is
added to the graph, allowing it to participate in
message passing with the other nodes.

To score each answer choice, the text embedding
of the question context is concatenated with the
embedding of that answer’s extracted subgraph.
An MLP is then used to produce a score.

3 Explanation faithfulness

We claim that the class of models described in §2
are intrinsically unable to provide graph-structured
explanations that are highly faithful to the full
model. Our desire for these explanations is that
they are the collection of facts used by the model
to complete a natural language understanding task.
The more faithful these explanations are, the more
useful they will be for developers to understand
model behaviour. Following Jacovi and Goldberg
(2020), we do not consider faithfulness to be a
binary quality. Instead, we argue that different ar-
chitectural choices either increase or decrease how
faithful extracted explanations can be.

Explanations have low faithfulness because this
class of model uses both text and graph embeddings
to choose between answer candidates, but expla-
nations are only extracted from the graph encoder.
These explanations cannot give a full characteri-
sation of the facts used to answer the question, as
the text encoder is likely to have also contributed
relevant information. When the text encoder is a
pre-trained transformer it is infeasible that it does
not contribute in this way, as they can achieve rea-
sonable performance on question answering (De-
vlin et al., 2019). Graph-structured explanations
are therefore necessarily incomplete.

3.1 Increasing faithfulness

We highlight three aspects of these models that, if
changed, would increase explanation faithfulness.

Use of text embedding The text embedding is
directly used for prediction in the final MLP of
the model, represented as the orange dashed line
in figure 1. This is the clearest way in which the
graph encoder is skipped, and we argue that this
must be removed if graph-based explanations are
to be used for understanding models.

The text embedding is also used in the graph
component. This inclusion is unavoidable, as it is
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necessary to provide the question context to guide
reasoning in the graph. However, the embedding
could also transfer the results of reasoning carried
out in the text encoder, which would not be repre-
sented in a graph explanation.

Freezing the text encoder A further way to min-
imise the influence of the text encoder is to freeze
it during training. The model will still produce a
meaningful representation of the question context,
but with minimal task-specific information. Indeed,
we found that embeddings from our pre-trained
text encoder (RoBERTa-Large) with no fine-tuning
gave just above chance accuracy on our evalua-
tion datasets. Using these embeddings instead of
fine-tuned ones necessarily increases faithfulness
as the graph component now contributes to a higher
proportion of reasoning.

Freezing the text encoder’s weights will increase
the faithfulness of explanations from QA-GNN
more than from MHGRN due to differences in how
they use the text embedding. In MHGRN, infor-
mation from the text encoder is only expressed
as weights for explicit reasoning chains, so any
reasoning can be reflected in a graph-structured
explanation. It is not clear whether freezing the
text encoder is required in this case. For QA-GNN
however, the text embedding participates in mes-
sage passing with nodes, so the text encoder must
be frozen.

Interpretability technique Although we do not
investigate them here, it is also important that the
explanation extraction technique has been evalu-
ated for faithfulness (figure 2). MHGRN and QA-
GNN both use attention values to select a subset of
edges to be in the explanation. However, it is not
clear that attention faithfully represents how mod-
els reason (Jain and Wallace, 2019; Serrano and
Smith, 2019). Approaches which specifically con-
sider faithfulness, like GraphMask (Schlichtkrull
et al., 2021), should be considered instead.

3.2 A proxy for faithfulness

In addition to our theoretical arguments, we pro-
pose a proxy technique to examine the impact of
our proposed architecture changes. Human judge-
ments are unsuitable for this purpose (Jacovi and
Goldberg, 2020), but it is useful to quantify faith-
fulness particularly because we view it as a scale
rather than binary property.

Our method measures how much of the reason-
ing in the overall model is performed in the graph

encoder. If assumption 1 does not hold, it suggests
that reasoning is being performed in a different part
of the model, which would not be captured in the
explanation. The explanation would therefore not
be faithful to the full model’s workings.

Assumption 1. If a faithful explanation is to be ex-
tracted from a graph encoder, large changes to its in-
put should have a large impact on model behaviour.

The large change we make to the graph encoder
input is to shuffle schema graphs across questions
so they become irrelevant. If a large proportion of
reasoning is done in the graph encoder, this shuf-
fling should cause accuracy to be at or below ran-
dom chance. This is because the shuffled graph
contains at best minimal useful information, and
at worst misleading information for answering the
question correctly. If reasoning is instead predomi-
nantly done by the text encoder, we would expect
accuracy to drop less severely. Therefore the closer
to random chance the accuracy is, the more faithful
the explanations are.

We combine the regular and shuffled data condi-
tions with three model conditions: the unmodified
versions of MHGRN and QA-GNN, and versions
with the two successive ablations from §3.1. The
first ablation removes the textual embedding from
the final MLP only (− Embed.). On top of this, the
second also freezes the weights of the text encoder
(− Train TE.).

3.3 Training and data

We use the same training hyperparameters as Feng
et al. (2020) and Yasunaga et al. (2021), which we
reproduce in appendix A. We slightly modify the
official code for each model to implement our ar-
chitecture changes.2 We use ConceptNet (Speer
et al., 2017) as the base knowledge graph, and eval-
uate on CommonsenseQA (CSQA) (Talmor et al.,
2019) and OpenBookQA (OBQA) (Mihaylov et al.,
2018). We use standard dataset splits for OBQA,
and ‘in house’ (Lin et al., 2019) splits for CSQA.
We use RoBERTa-Large as our text encoder, which
we also use to initialise node embeddings in the
GNN following Feng et al. (2020). We re-train
the model for each experiment with 10 different
random seeds and report the mean accuracy.

2We release our code at https://github.com/
GuyAglionby/faithful-kg-qa-explanations.
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4 Results

Table 1 gives our experimental results; supplemen-
tary details are provided in appendix B. Follow-
ing Reimers and Gurevych (2017), we use the
Kolmogorov-Smirnov test (Massey, 1951) to check
whether the test score distributions for each pair
of model-data setups are significantly different. In
this section, we compare the results in the two data
scenarios in each of the model ablation scenarios.
For both datasets, we expect that if a randomly cho-
sen graph is used then a system that can faithfully
output explanations will have accuracy at or below
chance (25%).

CSQA OBQA
Reg. Shuf. Reg. Shuf.

QA-GNN 70.26 69.72 62.98 65.24
− Embed. 64.68 60.68 52.36 53.66
− Train TE. 30.46 19.50 40.70 25.26

MHGRN 69.71 69.07 65.98 65.50
− Embed. 24.66 19.64 42.56 31.96
− Train TE. 24.45 19.76 41.04 36.00

Table 1: Average accuracy (10 random seeds) in two
data scenarios regular and shuffled for each dataset, and
three model scenarios for each model type.

Original model In all four cases, the accuracy
in the shuffled scenario remains high: there is no
significant difference with the regular case. As-
sumption 1 is contradicted, and this result suggests
that the model architecture allows the text encoder
to do all of the reasoning. Even in the regular
scenario it is likely that a large proportion of the
reasoning is done outside of the graph encoder be-
cause the change in performance between the two
data scenarios is so low. We conclude that expla-
nations extracted from the graph encoder do not
reflect the overall model’s operation.

Text embedding removed We next examine the
models where the text embedding is no longer in-
cluded in the final MLP. Here there is a significant
(p < 0.02) difference between accuracy when us-
ing regular versus shuffled graphs in all cases but
QA-GNN on OBQA. The fact that unhelpful input
now causes performance to drop suggests that more
reasoning is done in the graph component in this
model setup than in the previous one. Explanations
from the graph encoder are therefore more faithful
to overall model behaviour.

Although faithfulness has increased, the shuffled
accuracy for QA-GNN is still substantially above

random. This is likely due to how the text embed-
ding is used within its graph encoder. Explanations
from the graph encoder are therefore still largely
unfaithful to the model.

The MHGRN shuffled result is much nearer ran-
dom chance. Here the text embedding is only used
to calculate attention weights, so it is more difficult
for reasoning in the text encoder to make up for the
unhelpful input to the graph encoder. This change,
therefore, increases faithfulness in MHGRN sub-
stantially more than in QA-GNN.

It is surprising that MHGRN’s regular CSQA
result is also near chance. This suggests either that
MHGRN is unable to learn how to use the graph
with this change made, or that the schema graph
does not contain useful information for the task.
We conclude that the second case is more likely
because the model is still able to achieve 42.56%
accuracy on OBQA.

Both ablations When both ablations are applied,
three of the four models have a significant differ-
ence in accuracy between the regular and shuffled
scenarios (p < 0.001), and the shuffled performance
is at or below random chance. The difference is
not significant for MHGRN on OBQA, although
an absolute drop does occur. We further note the
significant (p < 0.01) change in accuracy for all
four QA-GNN models from − Embed to − Train
TE., which confirms that much of the previous per-
formance is a result of the text encoder learning the
task. These results suggest that the graph encoder
is now the model component with the highest in-
fluence on performance, which is the ideal case for
retrieving faithful explanations.

None of the differences in accuracy between
− Embed and − Train TE. for MHGRN are sig-
nificant. The lack of change suggests that the text
encoder already had minimal influence on accuracy
in the first ablation, so there is no need to further
reduce it with the second.

There is one anomalous change in MHGRN’s
performance, where accuracy increases from
31.96% to 36.00% on OBQA. As there is unlikely
to be a meaningful way to combine nodes from a
random schema graph for a question, the training
signal for the graph encoder as it performs atten-
tive pooling is likely to be noisy. The same is true
for the pooling of paths for new node embeddings.
When the text encoder is frozen the influence of
this noise is removed, which may explain the rise
in performance.
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5 Discussion

We have demonstrated that in MHGRN and QA-
GNN, as the ability of the pre-trained text encoder
to learn a task is curtailed, accuracy significantly
decreases. This result suggests that it was the text
encoder that most contributed to performance. Our
finding is reinforced by the fact that shuffling sub-
graphs across questions has no significant impact
on performance. Explanations extracted from the
graph encoder will therefore be unfaithful to the
overall operation of the model, as they will not
capture the substantial reasoning done in the text
encoder.

Our two successive model changes make expla-
nations more faithful by increasing the proportion
of reasoning done in the graph encoder. Removing
the direct use of the text embedding in the final
classification MLP is crucial for retrieving faithful
explanations. For QA-GNN it is also necessary to
freeze the text encoder weights; this is not the case
for MHGRN due to how it uses the text embedding.

Our results generalise from the two models we
examined. KagNet (Lin et al., 2019) and the Knowl-
edgeable Reader (Mihaylov and Frank, 2018) pre-
cede both models and work most similarly to MH-
GRN. There, the question context embedding is
also used to calculate attention weights for embed-
dings of different facts. GreaseLM (Zhang et al.,
2022) instead builds on QA-GNN, and further inte-
grates the text encoder embeddings with the GNN.
Although the authors do not discuss explanations
with this model, it is an example of where further
integration of the two encoders would harm faith-
fulness.

Future work on faithfully interpretable models
may structure their use of the text encoder in a sim-
ilar way to MHGRN, as this more easily leads to
faithful explanations. Such work might examine
how to better train the text encoder to weight the
relevancy of facts. Although recent work success-
fully achieves higher accuracy via tighter coupling
of the graph and text encoders (Zhang et al., 2022),
models that maintain separation are likely to yield
faithful explanations more easily. How to do this
while maintaining reasonable accuracy remains an
open question, although we argue that the ability to
produce faithful explanations is particularly valu-
able. One cause for the performance drop might
be the quality of the extracted subgraphs: our re-
sults suggest that they are more appropriate for
CommonsenseQA than OpenBookQA.

Faithful explanations can be used to better un-
derstand model behaviour to help improve them.
An implausible but faithful explanation is a signal
to a model developer that something may need to
be changed in the model. In this way, explanation
quality can also be used to judge how good a model
is, alongside accuracy. However, the plausibility
of an explanation is only a useful property if the
explanation is faithful.

Limitations

Although we have argued for why using random
schema graphs is a reasonable method for inves-
tigating the faithfulness of explanations retrieved
from this class of model, they remain a proxy. It is
possible therefore that for some of our model abla-
tion conditions we draw conclusions about faithful-
ness that are too strong or too weak.

Additionally, we only investigate two models
from a class of architectures for incorporating ex-
ternal knowledge and do not examine other kinds
of methods, as discussed in §2. Although we argue
that our analysis is sound for this class, it is possi-
ble that another general type of architecture would
be more suited to obtaining faithful explanations
for question answering. Our model changes cause
accuracy to drop substantially, although we argue
that the ability to produce faithful explanations is
valuable.
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A Hyperparameters

We train both models for a maximum of 70 epochs,
and because we observed high variability across
random seeds we use an early stopping patience of
30.
QA-GNN All parameters optimised with RAdam
(Liu et al., 2020). Batch size is 128. A maxi-
mum of 128 tokens are input to the text encoder,
which is trained with learning rate 1e−5 but frozen
for the first 4 epochs. The 5-layer GNN has 200-
dimensional embeddings and is trained with learn-
ing rate 1e− 3. Parameters have L2 weight decay
of 0.01 applied.
MHGRN All parameters optimised with RAdam.
Batch size is 32. A maximum of 128 tokens are
input to the text encoder, which is trained with
learning rate 1e−5 but frozen for the first 3 epochs.
The 1-layer GNN has 100-dimensional embeddings
and is trained with learning rate 1e− 3. Each layer
performs 3-hop message passing. Parameters have
L2 weight decay of 0.01 applied.

B Additional results

Standard deviations on the test set for each exper-
iment are given in table 2, and development set
scores in table 3. The average run times of these
experiments on an Nvidia A100 GPU are shown in
table 4, which correspond to the number of optimi-
sation steps in table 5.

CSQA OBQA
Reg. Shuf. Reg. Shuf.

QA-GNN 1.02 0.53 3.03 2.90
− Embed. 1.42 2.26 10.12 6.75
− Train TE. 1.19 1.32 2.36 2.28

MHGRN 0.73 0.91 2.48 1.68
− Embed. 0.79 1.12 6.60 13.18
− Train TE. 0.68 1.31 2.37 10.11

Table 2: Standard deviation of test set score across 10
runs, corresponding to table 1.

CSQA OBQA
Reg. Shuf. Reg. Shuf.

QA-GNN 76.11 75.82 65.36 68.08
− Embed. 74.13 70.76 56.78 59.02
− Train TE. 33.49 22.27 45.62 28.30

MHGRN 75.24 75.28 69.52 69.24
− Embed. 29.37 22.44 47.76 36.68
− Train TE. 29.07 22.29 44.82 42.08

Table 3: Average development set accuracy across 10
runs, used to select the test scores reported in table 1.

CSQA OBQA
Reg. Shuf. Reg. Shuf.

QA-GNN 3.29 2.92 2.12 2.07
− Embed. 4.21 4.06 1.96 2.07
− Train TE. 1.41 1.56 0.97 1.01

MHGRN 2.23 2.23 1.85 1.72
− Embed. 2.02 2.90 1.25 1.50
− Train TE. 2.04 2.72 1.27 1.45

Table 4: Average run time (in hours) for experiments in
table 1.

CSQA OBQA
Reg. Shuf. Reg. Shuf.

QA-GNN 3524 3162 2769 2683
− Embed. 4509 4348 2582 2718
− Train TE. 2539 2827 2204 2293

MHGRN 10,906 10,826 10,881 10,168
− Embed. 9922 13,992 7487 8975
− Train TE. 10,028 13,273 7564 8634

Table 5: Average number of optimisation steps for ex-
periments in table 1.
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