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Abstract

How to achieve neural machine translation with
limited parallel data? Existing techniques of-
ten rely on large-scale monolingual corpora,
which is impractical for some low-resource
languages. In this paper, we turn to connect
several low-resource languages to a particular
high-resource one by additional visual modal-
ity. Specifically, we propose a cross-modal
contrastive learning method to learn a shared
space for all languages, where both a coarse-
grained sentence-level objective and a fine-
grained token-level one are introduced. Ex-
perimental results and further analysis show
that our method can effectively learn the cross-
modal and cross-lingual alignment with a small
amount of image-text pairs and achieves sig-
nificant improvements over the text-only base-
line under both zero-shot and few-shot sce-
narios. Our code could be found at https:
//github.com/ictnlp/LNMT-CA.

1 Introduction

Neural machine translation (NMT) has shown ex-
cellent performance and becomes the dominant
paradigm of machine translation. However, NMT
is a data-driven approach, which requires a large
amount of parallel data. When the data is insuffi-
cient, it is impractical to train a reasonable NMT
model. Unfortunately, there are many languages in
the world for which sufficient training data is not
available, and sometimes there is no parallel data
at all. Therefore, the translation of low-resource
languages is a vital challenge for NMT.

In recent years, researchers have attempted to
improve the performance of NMT for low-resource
languages. Lample et al. (2018a) proposed an unsu-
pervised approach to learn weak mappings between
languages with large amount of monolingual data
(>1M), which is also costly for low-resource lan-
guages. Liu et al. (2020); Lin et al. (2020b); Pan
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Figure 1: We aim at realizing zero-shot and few-shot
machine translation for the low-resource language. Dif-
ferent languages with the same meanings are projected
to a shared space by cross-modal alignment.

et al. (2021); Gu and Feng (2022) proposed multi-
lingual NMT models, which learn a shared space of
multiple languages to achieve translations between
languages that appear in the training set but do
not have the corresponding parallel data. However,
they still require auxiliary parallel data of source
and target languages along with many other lan-
guages, which is still infeasible for low-resource
languages.

In recent years, with increasing attention of
multi-modal tasks, resource of image-text pairs
have become more abundant. Inspired by re-
cent efforts on cross-modal alignment (Radford
et al., 2021; Li et al., 2021; Fang et al., 2022), in
this paper, we propose a cross-modal contrastive
learning method, which align different languages
with images as the pivot to enable zero-shot and
few-shot translations for low-resource languages.
With parallel sentence pairs between one high-
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resource auxiliary language and the target lan-
guage, we can achieve the translation from low-
resource languages to the target language only
by obtaining small amounts of image-text pairs
(<0.1M) for those languages. The parallel sen-
tence pairs are used to learn the mapping from
the high-resource language to the target language,
and the image-text pairs are used to learn a shared
space for all languages through cross-modal align-
ment. With images as the pivot, the mapping from
the low-resource languages to the target language
are learned, thus achieving zero-shot translation
without any parallel sentence pairs between them.
As shown in Figure 1, the high-resource language
German and the low-resource language French are
brought together by cross-modal alignment, which
transfers the translation ability from DE—EN to
FR—EN. Experiments and analysis show that our
method consistently outperforms the baseline un-
der both zero-shot and few-shot scenarios. Fur-
thermore, our method can effectively realize cross-
modal and cross-lingual alignment.

2 Method

In this section, we present our proposed cross-
modal contrastive learning method, which includes
both sentence-level and token-level objectives.

2.1 Task Definition

Our goal is to achieve zero-shot or few-shot transla-
tion from 7" low-resource languages L1, Lo, ..., LT
to the target language L, with the help of a par-
ticular high-resource language L. For the high-
resource language L, there are triples of data
D; = {(i,x,y)}, where i is the image and x and
y are the descriptions in L and L, respectively. For
each low-resource language L;, only paired data
Dr, = {(i,x)} are available. Note that different
languages never share the same images.

2.2 Model Framework

As shown in Figure 2, our model consists of four
sub-modules: image encoder, source encoder, tar-
get decoder and contrastive module.

We use Vision Transformer (ViT) (Dosovitskiy
et al., 2021) as the image encoder to extract vi-
sual features. ViT first splits the image into
several patches, and then feed the sequence of
embed patches with a special [class] token
into Transformer (Vaswani et al., 2017). Finally,
the image is encoded as a sequence of vectors

v = (vg,v1,...,Um), Where vy is the representa-
tion of [class] token which can be regarded
as the global representation of the image, and
vP = (vy,...,vp,) are the patch-level representa-
tions. In next sections, we use vg for sentence-level
contrastive learning and v? for token-level con-
trastive learning.

The source encoder consists of N Transformer
encoder layers, which is shared across all lan-
guages (L1 7 and E). For the input sentence
x = (z1, ..., Ty), the output of source encoder is
denoted as w = (wy, ..., wy,). The target decoder
consists of N Transformer decoder layers. For
the sentence pairs (x,y), the cross-entropy loss is
defined as:

lyl
Lop ==Y logp(yily<ix). (1)

=1

The contrastive module aims to align the output
of image encoder and source encoder, which con-
tains both sentence-level and token-level parts. We
will introduce them in Section 2.3 and 2.4.

2.3 Sentence-level Contrastive Learning

We start with the sentence-level contrastive learn-
ing objective, which aims at learning coarse align-
ment between image and text.

Contrastive Learning The idea of contrastive
learning (Sohn, 2016) is to make the representa-
tions of corresponding pairs closer and, on the con-
trary, to make the irrelevant pairs farther.

Given two sets X = {z;}M, and Y = {y;}}4,,
for each z;, the positive example is (x;, y;) and the
remaining M — 1 irrelevant pairs (z;,y;)(i # j)
are considered as negative examples. The con-
trastive loss between X and Y is defined as:

S (s(x, 1)
Ectr(Xa Y) = - Z log ]\jxp S(x“ b /T) )
i=1 Zj:1 exp(s(wi, y;)/T)
(@)
where s() is the cosine similarity function
s(a,b) = a'b/||al|||b||. T is the temperature hyper-
parameter to control the strength of penalties on
hard negative samples (Wang and Liu, 2021).

Sentence-level Contrast Sentence-level con-
trastive learning aims to align the sentence-level
representations across modalities, which are de-
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Figure 2: Overview of our proposed model.
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We then calculate the contrastive loss within a
batch of size B, whose textual representations and
visual representations are W* = {w{, ...w%} and
V* = {v],...,v}}, respectively. The correspond-
ing pairs of images and captions (w ( v?) are posi-
tive examples, and other pairs (w}, ])( i # j)are
considered as negative examples. Finally, the loss
function of sentence-level contrastive learning is
defined as follows:

Ls_ctr (Ws’ VS) = Letr (Ws’ VS) + Letr (VS) WS)
&)
Since we have image-text pairs in different lan-
guages within a batch, we first separate the batch
into several mini-batches according to the language,
and then calculate the contrastive loss for every lan-
guage respectively. It is worth mentioning that we
also calculate contrastive loss for target language
Ly with paired data {(i,y)} in D;. We will ana-
lyze its effect in Section 4.3.

2.4 Token-level Contrastive Learning

Though sentence-level contrastive learning can
learn coarse-grained alignment between modalities,

it may ignore some detailed information, which is
crucial for predicting translations. To achieve better
alignment between modalities, we propose token-
level contrastive learning to learn fine-grained cor-
respondences between images and text.

Selective Attention To model the correlations be-
tween image patches and words, we use selective
attention (Li et al., 2022) to learn the patch-level
contribution of images. For patch-level visual rep-
resentations vP = (vy,...v,,) and word-level tex-
tual representations w = (wy, ..., wy,), the query,
key and value of selective attention are w, vP, vP,
respectively:

vl = Softmax <(WQ W

VP T
e )(WV'V”)
(6)

where Wq, Wik and Wy are learnable matrix pa-
rameters.

After the selective atten-
tion, we obtain two sequences W = (wy, ..., Wy, )
and v = (vi,...,v!) with the same length of n.
We then calculate the token-level contrastive loss
within each pair of sequences. Tokens with same in-
dex (w;, v!) are positive examples, and other pairs
of tokens (w;, v%)(i # j) are negative examples.
The token-level contrastive loss is as follows:

Token-level Contrast

£tfctr (W, Vt) = Ectr(wa Vt) + £ctr (Vta W)
(7
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The token-level contrastive loss of all image-text
pairs will be summed together.

2.5 Coarse-to-fine Training Strategy

To combine sentence-level and token-level objec-
tives together, we propose a 2-stage coarse-to-fine
training strategy, the intuition behind which is to
first learn coarse-grained alignment through the
sentence-level objective, and then add fine-grained
alignment with the token-level objective.

Stage 1 For the first stage of training, the model is
trained with cross-entropy loss of the high-resource
language L and sentence-level contrastive loss of
all languages (including target language L,):

Leoarse = IE(x,y)GDE Lce(X,y)
+ )\S]E(i7y)EDE Ls—ctr(i,y)

+ )\SE(i,x)eDE L etr(i, x) (8)
T

+As Z E(i,X)eDLi Ls—ctr(1, %),
i=1

where )\ is the weight hyper-parameter of sentence-
level contrastive loss.

Stage 2 For the second stage of training, we add
the token-level contrastive loss to Eq. 8, which can
be formulated as follows:

ﬁﬁne - ﬁcoarse
=+ At]E(i,y)G'Dz‘Ct_Ctr(i’ y)
+ AtE(i}x)gi)Z Et—ctr(iv X) (9)

T
A Z E(ix)epy, Li—ctr(i, %),
i=1

where )\; is the weight hyper-parameter of token-
level contrastive loss.

Zero-shot and Few-shot Translation After 2-
stage training with contrastive loss, we can directly
evaluate the performance of the trained model on
zero-shot translation. Furthermore, we can use
small amount of additional parallel data of low-
resource languages Dy, = {(x,y)} to finetune the
model, and then evaluate the performance on few-
shot translation. During finetuning, only cross-
entropy loss is used:

Lfinetune = E(x,y)EDLECE(Xa Y)- (10)

Directions Multi30K  MsCOCO VizWiz Total

DE—EN 10,000 40,000 10,136 60,136
FR—EN 10,000 40,000 10,136 60,136
CS—EN 9,000 41,000 10,136 60,136

Table 1: Detailed dataset statistics.

3 Experiments

3.1 Datasets

In our experiments, we select German (DE) as the
high-resource language and English (EN) as the
target language. We choose French (FR) and Czech
(CS) as two low-resource languages and test the
performance of FR—EN and CS—EN on zero-
shot and few-shot translation. Due to the scarcity of
image-text pairs in German, French, and Czech, we
create pseudo data with machine translation models
from two image captioning datasets in English.

Multi30K Multi30K (Elliott et al., 2016) dataset
contains images with annotations in four languages:
English, German, French, and Czech. The train-
ing and validation sets consist of 29,000 and 1,014
instances, respectively. We evaluate our model
on Test2016, Test2017, and MsCOCO test sets,
which contain 1,000, 1,000, and 456' instances.
For Czech—English task, only Test2016 is avail-
able.

MsCOCO MsCOCO (Lin et al., 2014) dataset
contains images with English captions. We use
the Captioning 2015 set for our experiments. Af-
ter filtering out the unannotated images, there are
121,000 image-text pairs in total.

VizWiz VizWiz (Gurari et al., 2020) dataset also
contains images with English captions. There are
30,408 image-text pairs in total.

Pseudo Data Since the MsCOCO and VizWiz
datasets only have English captions of images. We
use pretrained machine translation models to trans-
late English captions into German, French and
Czech. The detailed information of the machine
translation models can be seen in Appendix A.

Dataset Composition After creating the pseudo
data, we divide the above three datasets into three
equal parts for DE—EN, FR—EN, and CS—EN,
respectively. As shown in Table 1, each source lan-
guage has 60,136 image-text pairs with annotations

'5 sentences are removed because they appear in the
MsCOCO dataset, which is part of our training set.
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Models FR—EN CS—EN Average
Test2016  Test2017 MsCOCO | Test2016 g
Baseline 0.30 0.14 0.29 0.09 0.21
S-CTR 8.95 7.88 9.32 7.23 8.35
S+T-CTR 17.76 14.74 16.97 13.58 15.76

Table 2: BLEU scores of FR—EN and CS—EN on zero-shot translation.
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Figure 3: BLEU scores of FR—EN and CS—EN on few-shot translation.

in its own language, which are used for cross-modal
contrastive learning. At the same time, the 60,136
German— English sentence pairs are used for train-
ing of translation task. All sentences are segmented
into subword units using byte-pair encoding (BPE)
(Sennrich et al., 2016). The vocabulary is shared
for all source languages and the target language,
with a size of 18K.

3.2 System Settings

We use vision transformer in pre-trained CLIP
(Radford et al., 2021) model as the image encoder.
The patch size is 16x 16, and the resolution size
is 224. The sequence length is 50, which contains
a special [class] token and 49 feature tokens.
The source encoder and target decoder are based
on Transformer (Vaswani et al., 2017) architecture.
Both the encoder and decoder have N = 6 layers.
The number of attention heads is set to 4. The
dropout is set to 0.3, and the value of label smooth-
ing is 0.1. For training, we use Adam optimizer
(Kingma and Ba, 2015) and 2000 warm-up updates.
The learning rate is 5e-4. Each batch contains up

to 16K tokens. We train the model for up to 70
epochs. For our 2-stage training strategy, the first
half of training is Stage 1, and the rest is Stage 2.

For sentence-level contrastive learning, the tem-
perature hyper-parameter 7; is set to 0.007 and the
weight hyper-parameter A, is set to 5. For token-
level contrastive learning, 7; is 0.1 and A is 1.

For evaluation, we average the last 5 checkpoints
and use beam search with a beam size of 5. We use
sacreBLEU? (Post, 2018) to compute the BLEU
(Papineni et al., 2002) scores on detokenized in-
stances®. For few-shot translation, we randomly
sample 5 groups of parallel data from the training
set of Multi30K and report the means and standard
deviations. All experiments are done on 4 TITAN
Xp GPUs. We implement our system based on
fairseq* (Ott et al., 2019).

https://github.com/mjpost/sacrebleu

3sacreBLEU signature: nrefs:1 | bs:1000 | seed:12345 |
case:lc | eff:no | tok:13a | smooth:exp | version:2.0.0

‘https://github.com/pytorch/fairseq
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SRC: gens (people)

SRC: maison (roof)

SRC: Des gens réparent le toit d'une maison.

( People are fixing the roof of a house. )

SRC: batiment (building)

SRC: gars (guy)

X,
SRC: Un gars travaille sur un batiment.

( A guy works on a building. )

Figure 4: Attention maps of the selective attention module of two cases.

3.3 Baseline Systems

Our baseline is text-only Transformer trained with
DE—EN sentence pairs. For zero-shot translation,
we directly evaluate the baseline model. For few-
shot translation, we finetune the baseline model
with the same parallel corpus in low-resource lan-
guages as our model. All the configurations of the
baseline are the same as our model.

3.4 Results

We evaluate the baseline, our model with only
sentence-level contrastive loss (S-CTR), and our
model with both sentence-level and token-level con-
trastive loss (S+T-CTR) under zero-shot and few-
shot scenarios.

Zero-shot Translation Table 2 shows the results
on zero-shot translation. The baseline without con-
trastive learning does not have the capability of
zero-shot translation. On the contrary, S-CTR and
S+T-CTR gain significantly improvements over the
baseline. Compared with S-CTR, the S+T-CTR
model has a further improvement of 7.41 BLEU
score on average, which proves that more fine-
grained alignment can significantly improve the
performance on zero-shot machine translation.

Few-shot Translation Figure 3 shows the results
on few-shot translation on four test sets. The S+T-
CTR model consistently outperforms the baseline
and the S-CTR model under different amounts of
parallel data, demonstrating the effectiveness of
our method in few-shot scenarios.

(a) Baseline (b) S+T-CTR model
Figure 5: Visualization of source representations for DE,
FR, and CS under the zero-shot scenario. (a) baseline.
(b) S+T-CTR model. Sentences are from Multi30K
Test2016 sets of DE—EN, FR—EN, and CS—EN.

Models R@1T R@57 R@107
Baseline 0.2 0.8 1.3
S-CTR 34.4 65.0 75.4
S+T-CTR  36.3 66.5 76.1

Table 3: Text-to-image retrieval on FR—EN Test2016.

4 Analysis

4.1 Cross-modal Alignment

The main idea of our method is to align multilin-
gual text and images in their representation space.
To verify this alignment, we conduct the text-to-
image retrieval experiment and visualize the atten-
tion map of the selective attention module.

Text-to-image Retrieval Text-to-image retrieval
means finding the top- K nearest images to the text.
We compute the Recall@ K score for K = 1,5, 10.
As shown in Table 3, S-CTR gains a substantial
34.2/64.2/74.1% increase in R@1/5/10 over the
baseline, which proves the effectiveness of con-
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trastive learning for cross-modal alignment. In
addition, S+T-CTR gains an extra 1.9/1.5/0.7% in-
crease in R@1/5/10, proving that the fine-grained
learning objective enables better alignment.

Attention Maps To further verify the effect of
token-level contrastive learning for cross-modal
alignment, we extract attention maps of the selec-
tive attention module. Figure 4 demonstrates that
the selective attention module successfully notices
the semantically related areas. For example, the
French word "gens" (means "people") corresponds
to the three people and the word "maison” (means
"roof™) corresponds to the roof area.

4.2 Cross-lingual Alignment

Section 4.1 analyses the effectiveness of contrastive
learning on cross-modal alignment. However, our
ultimate goal is to achieve cross-lingual alignment
through cross-modal alignment, which means to
learn a shared space for all languages.

To analyze, we compare the baseline and S+T-
CTR model under the zero-shot scenario, which
means no FR—EN or CS—EN parallel data is
available. We average the output of the source en-
coder and use T-SNE (Laurens and Hinton, 2008)
to reduce the dimension into two for visualization.
As shown in Figure 5, without contrastive learn-
ing, there is a clear distinction between different
source languages. On the contrary, with contrastive
learning, the representations of three languages
have obviously overlapped, which proves that our
method learned good cross-lingual alignment.

4.3 Ablation Studies

Target Language Contrast The target language
is generally isolated from the source language in
standard machine translation. However, we found
that adding the target language into contrastive
learning is effective. As shown in Table 4, models
without contrastive learning of the target language
have a significant drop in BLEU score under both
zero-shot and few-shot situations. We conclude that
contrastive learning of the target language can help
establish connections between source and target
languages, which will be beneficial for translation.

Contrastive Loss vs. L2 Loss Contrastive loss
is not the only way to draw the distance between
modalities. We try to replace the contrastive loss

FR_EN CS—EN

Models | Target | /™ ko100 | 7S FS100
Baseline ~ ] 024 1344 | 009 9.10
% | 781 1255 | 693 867

S-CTR v 871 2149 | 723 1643
% | 1447 1316 | 1097 824

SYFTCIR | | 1649 2285 | 1358 17.62

Table 4: Ablation study on contrastive learning of the
target language. ZS means zero-shot translation, FS100
means few-shot translation with 100 parallel sentences.

FR—EN CS—EN

Models | Loss | /™ 'pgi00 | 7S FESI00
Bascline | - | 024 1344 | 009  9.10
Sievel | L2 | 845 1960 | 683 1505
Vel CeTR | 871 2149 | 723 1643
GeTieve | L2 | 602 1561 | 594 1276
Vel | CTR | 1649 22.85 | 1358 17.62

Table 5: BLEU scores of models with L2 loss and con-
trastive loss. ZS means zero-shot translation, FS100
means few-shot translation with 100 parallel sentences.

BLEU
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Temperature
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Figure 6: BLEU scores on Multi30K validation set
against different temperatures for sentence-level and
token-level contrastive learning.

with L2 loss:

M
Lra=> |l —uill* (11)
i=1

As shown in Table 5, the contrastive loss performs
better than the L2 loss. We believe it is because the
contrastive loss can not only bring the correspond-
ing pairs closer but also push the irrelevant pairs
farther with negative examples.

4.4 Temperature Hyper-parameter

The temperature 7 is an important hyper-parameter
in contrastive learning. A lower temperature can
help the model distinguish positive example from
negative ones. Here we choose 0.01, 0.1, 0.5 and 1
for experiments. Figure 6 shows the BLEU scores
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against different temperatures on validation set.
For sentence-level contrastive learning, we ob-
serve that lower temperatures obtain better results.
We try to choose the temperature as low as possi-
ble. However, a temperature lower than 0.007 may
lead to gradient explosion. So we finally select
Ts = 0.007. For token-level contrastive learning,
we found 7 = 0.1 achieved best results on vali-
dation set. We think it is because that tokens in a
sentence should not be excessively distinguished.

4.5 Case study

In this section, we make a qualitative analysis with
several examples. Table 6 shows the references
and translation results of different models. First,
we compare S-CTR and S+T-CTR under the zero-
shot scenario. In Case 1, "two trees" have not been
translated by the S-CTR model, while the S+T-
CTR model translates it correctly. A similar issue
occurs in Case 2 (missing "a man in a dark blue
shirt"). Both cases suggest that fine-grained token-
level alignment could avoid missing translation.

However, both S-CTR and S+T-CTR may have
grammar problems under the zero-shot scenario,
which can be solved by finetuning with a few par-
allel data. In Case 1, the phrase "playing a game of
dirt" is obviously illogical, while the additional 100
parallel data corrects the preposition "of" to "in",
which is more grammatical. This phenomenon
shows that it is difficult to learn grammar knowl-
edge with contrastive learning, but only a few
parallel data can compensate for this.

5 Related Work

Multimodal Machine Translation Multimodal
Machine Translation aims to introduce visual
modality to enhance NMT. Early methods
(Caglayan et al., 2016; Huang et al., 2016; Cal-
ixto et al., 2016; Delbrouck and Dupont, 2017a;
Caglayan et al., 2017; Calixto and Liu, 2017; Del-
brouck and Dupont, 2017b; Calixto et al., 2017;
Libovicky and Helcl, 2017; Caglayan et al., 2018;
Zhou et al., 2018; Helcl et al., 2018) are mainly
based on RNN architecture with attention. Recent
methods (Ive et al., 2019; Yao and Wan, 2020; Yin
et al., 2020; Liu et al., 2021; Lin et al., 2020a;
Caglayan et al., 2021; Zhang et al., 2020; Fang and
Feng, 2022; Li et al., 2022) based on Transformer
further improve the performance. However, re-
cent studies (Caglayan et al., 2019; Wu et al., 2021)
found that visual information is often ignored when

parallel corpus is sufficient. Therefore, in this pa-
per, we turn to investigate the contribution of visual
modality when the parallel corpus is not sufficient.

Zero-shot and Few-shot MT Since NMT
strongly relies on large scale of parallel data, re-
searchers begin to focus on situations with limited
parallel data. Previous methods like unsupervised
machine translation (Lample et al., 2018d,b,c; Ren
etal., 2019; Sennrich and Zhang, 2019; Ruiter et al.,
2019) achieve this with abundant monolingual data.
Multilingual machine translation (Aharoni et al.,
2019; Liu et al., 2020; Lin et al., 2020b; Pan et al.,
2021) achieve this with parallel corpus of many
other directions. Another line of research is to
achieve zero-shot or few-shot translation with the
help of visual modality (Nakayama and Nishida,
2017; Li et al., 2020), but they failed to achieve
satisfactory performance with extremely limited
data. We extend this research line and achieve bet-
ter performance with less data.

Cross-modal Contrastive Learning Contrastive
learning has lead to a great success in multi-
modal tasks like cross-lingual transfer (Huang et al.,
2021), video-text understanding (Xu et al., 2021),
and so on. One of the most representative methods
is CLIP (Radford et al., 2021), which learns good
alignment between images and text with contrastive
learning. Recent work also shows the power of
cross-modal contrastive learning in speech transla-
tion (Ye et al., 2022). Inspired by these efforts, we
propose a cross-modal contrastive learning method
to achieve zero-shot and few-shot translation.

6 Conclusion

In this paper, we propose a cross-modal con-
trastive learning method including sentence-level
and token-level objectives, which realizes zero-
shot and few-shot translation. Experimental results
show that our method gains significant improve-
ments over baseline under both scenarios. Further
analysis demonstrate that our method learns good
cross-modal and cross-lingual alignment. In the
future, we will explore how our method enables
cross-lingual transfer on more tasks.

Limitations

One limitation of our work is the pseudo data we
used. Limited by the fact that most of existing im-
age captioning datasets are annotated in English,
we have to use additional translation models to
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Models

Case 1 FR—EN

Ref SRC Des enfants sont dehors , jouant dans la terre a coté de deux arbres.
’ TGT Some children are outside playing in the dirt where two trees are.
S-CTR (ZS) The young children are playing a game of dirt. (two trees)
S+T-CTR (ZS) The children are outside playing a game of dirt next to two trees.
S+T-CTR (FS100) | The children are outside playing a game in the dirt near two trees.
Case 2 CS—EN
Ref SRC Muz ve zluté kosili a muZ v tmavém modrém tricku si povidaji.
’ TGT A man in a yellow shirt and a man in a dark blue shirt talking.
S CTR (ZS) Man in yellow shirt is crying. (a man in a dark blue shirt)
S+T-CTR (ZS) Man in yellow shirt (and) a man in a blue shirt is smiling.
S+T-CTR (FS100) | A man in a yellow shirt and a man in a blue shirt is talking.

Table 6: Qualitative examples from Multi30K Test2016 set. The red text indicates the grammar or vocabulary error,
(words in brackets) indicate the missing words, and the green text indicates the correct translations.

generate pseudo captions in German, French and
Czech. The lack of real data may impact the per-
formance of our method.
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A Translation Models for Pseudo Data

In this section, we introduce the detailed informa-
tion of translation models we use to construct the
pseudo data. For EN—DE and EN—FR directions,
we use the pretrained model from Ott et al. (2018)°,
which consist of 6 encoder and decoder layers. The
number of attention heads is set to 16. The dropout
is set to 0.3 for EN-DE and 0.1 for EN-FR. The
label smoothing is set to 0.1.

For EN—CS, we train a Transformer-base model
on the WMT2015 EN—CS training set, which con-
tains about 15M parallel data. The model contains
6 encoder and decoder layers. The number of at-
tention heads is set to 8. The dropout and the label
smoothing is set to 0.1.

We evaluate the EN—DE and EN—FR models
on the WMT test set newstest2014, and evalu-
ate the EN—CS model on newstest2015. As
shown in Table 7, the performance of our models
is reliable.

Languge Model BLEU
Vaswani et al. (2017) 28.4
EN=DE s (Ott et al., 2018) 29.3
Vaswani et al. (2017) 41.0
ENZFR s (Ot et al., 2018) 432

Luong and Manning (2016)  20.7

EN=CS Ours (Vaswani et al., 2017) 25.2

Table 7: BLEU scores of translation models for con-
structing the pseudo data.

*https://github.com/facebookresearch/
fairseqg/tree/main/examples/translation
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