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Abstract

Entity Alignment (EA) aims to find equivalent
entity pairs between KGs, which is the core
step of bridging and integrating multi-source
KGs. In this paper, we argue that existing GNN-
based EA methods inherit the inborn defects
from their neural network lineage: weak scal-
ability and poor interpretability. Inspired by
recent studies, we reinvent the Label Propa-
gation algorithm to effectively run on KGs
and propose a non-neural EA framework —
LightEA, consisting of three efficient compo-
nents: (i) Random Orthogonal Label Genera-
tion, (ii) Three-view Label Propagation, and
(iii) Sparse Sinkhorn Iteration. According to
the extensive experiments on public datasets,
LightEA has impressive scalability, robustness,
and interpretability. With a mere tenth of time
consumption, LightEA achieves comparable
results to state-of-the-art methods across all
datasets and even surpasses them on many.

1 Introduction

Knowledge Graph (KG) describes the real-world
entities and their internal relations by triples
(head, rel,tail), expressing the information on the
internet in a form closer to human cognition. To
this day, KGs have facilitated a mount of down-
stream internet applications (e.g., search engines
(Yang et al., 2019b) and dialogue systems (Yang
et al., 2020)) and become one of the core driving
forces in the development of artificial intelligence.
In practice, KGs are usually constructed by vari-
ous departments with multi-source data. Therefore,
they typically contain complementary knowledge
while having overlapping parts. Integrating these
independent KGs could significantly improve the
coverage rate, which is especially beneficial to low-
resource language users.

Entity Alignment (EA) aims to find equivalent
entity pairs between KGs (as shown in Figure 1),
which is the core step of bridging and integrating
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Figure 1: A toy example of entity alignment.

multi-source KGs. Therefore, EA attracts enor-
mous attention and progresses rapidly. Most exist-
ing methods regard EA as a graph representation
learning task and share the same two-stage archi-
tecture: (i) encoding the KGs into low-dimensional
spaces via graph encoders (e.g., TransE (Bordes
et al., 2013) and GCN (Kipf and Welling, 2016))
and (ii) mapping the embeddings of equivalent en-
tity pairs into a unified vector space through con-
trastive losses (Hadsell et al., 2006).

Recently, Graph Neural Network (GNN) has
achieved impressive success in many sorts of graph
applications. Following Wang et al. (2018b),
who first introduced Graph Convolutional Net-
work (GCN) into EA, numerous new fancy mecha-
nisms are proposed and stacked over vanilla GCN
for better performance, such as Graph Matching
(Fey et al., 2020), Relational Attention (Mao et al.,
2020a), and Hyperbolic embedding (Sun et al.,
2020a). According to an EA paper list ! on Github,
over 90% of EA methods adopted GNNss as their
graph encoders in recent three years.

However, there is no such thing as a free lunch.
These increasingly complex GNN-based methods
inherit the following inborn defects from their
GNN lineage: (i) Weak scalability. Since the
scales of real-world graphs are usually massive
(e.g., YAGO3 (Suchanek et al., 2007) contains 17
million entities), the scalability of graph algorithms
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is crucial. However, as summarized by Zhao et al.
(2020), most advanced EA methods require several
hours (Sun et al., 2018; Cao et al., 2019) or even
days (Xu et al., 2019) on the DWY100K dataset,
which only contains 200, 000 nodes. Although an
efficient loss function (Mao et al., 2021a) or a graph
sampler (Gao et al., 2022) could effectively alle-
viate this problem, all existing EA methods are
still overstretched when facing the real-world KGs.
(ii) Poor interpretability. Interpreting neural net-
works is a recognized challenge, and the complex
graph structure makes it more difficult. A few stud-
ies try to explain the behaviors of EA methods by
showing wrong cases (Yang et al., 2019a) or visual-
izing attention weights (Wu et al., 2020). And most
EA studies (Sun et al., 2018; Xu et al., 2019; Mao
et al., 2020b) do not attempt to give any interpreta-
tion, only focusing on improving the performances
on evaluation metrics.

An ancient Chinese saying goes, "drawing new
inspiration while reviewing the old." A recent study
(Huang et al., 2021) reinvents the classical graph
algorithm — Label Propagation (LP) (Zhu and
Ghahramani, 2002), combining it with shallow neu-
ral networks. Surprisingly, this simple method out-
performs the current best-known GNNs with more
than two orders of magnitude fewer parameters and
more than two orders of magnitude less training
time. Inspired by their excellent work, this paper
proposes the Three-view Label Propagation mech-
anism that enables the LP algorithm, designed for
homogeneous graphs, to effectively run on KGs
(a kind of typical heterogeneous graph). Besides,
we further propose two approximation strategies
to reduce the computational complexity and en-
hance the scalability: Random Orthogonal Label
Generation and Sparse Sinkhorn Iteration. The
above three components constitute the proposed
non-neural EA framework — LightEA. Accord-
ing to the extensive experiments on four groups of
public datasets, LightEA has impressive scalability,
robustness, and interpretability:

(1) Scalability: Unlike GNN-based EA meth-
ods that require multiple rounds of forward and
backward propagation, LightEA only requires one
round of label propagation without any trainable
parameters. After abandoning neural networks,
LightEA achieves extremely high parallel comput-
ing efficiency. With a PC that has one RTX3090
GPU, LightEA only takes 7 seconds to obtain the
alignment results on DBP15K and less than 35 sec-

onds on DWY100K, which is only one-tenth of
the state-of-the-art EA method. LightEA could
also easily handle DBP1M which contains more
than one million entities and nearly ten million
triples, while most EA methods even cannot run on
it. Besides running speed, the flexible framework
enables LightEA could easily incorporate iterative
strategies and literal features (e.g., entity names) to
improve performance.

(2) Robustness: In this paper, we design a
thorough robustness examination that evaluates
LightEA on four groups of public datasets con-
taining cross-lingual, mono-lingual, sparse, dense,
and large-scale subsets. With a mere tenth of time
consumption, LightEA achieves comparable re-
sults to state-of-the-art methods across all datasets
and even surpasses them on many. Besides, since
LightEA does not have trainable parameters, the
performance fluctuation of multiple runs is limited.

(3) Interpretability: Researchers generally con-
sider linear models (e.g., Linear Regression) have
decent interpretability because their outputs are the
linear summation of the input features. Consistent
with the LP algorithm, the computational process
of LightEA is also entirely linear. After removing
Random Orthogonal Label, each dimension of the
label vectors will have a clear and realistic meaning.
We could trace the propagation process at each step
to clearly explain how the entities are aligned.

In addition to the above contributions, we further
design extensive auxiliary experiments to investi-
gate the behaviors of LightEA in various situations.
The source code and datasets are now available in
Github (github.com/MaoXinn/LightEA).

2 Task Definition

A KG could be defined as G = (£, R, T), where
£ is the entity set, R is the relation set, and 7 C
€& x R x &€ represents the set of triples. Given the
source graph G, the target graph G;, and the set
of pre-aligned entity pairs P, EA aims to find new
equivalent entity pairs based on G, Gy, and P.

3 Related Work

3.1 Entity Alignment

Most existing methods regard EA as a graph rep-
resentation learning task and share the same two-
stage architecture: (i) encoding the KGs into low-
dimensional spaces via graph encoders and then (ii)
mapping the embeddings of equivalent entity pairs
into a unified vector space by contrastive losses.
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Method

MtransE(Chen et al., 2017)
JAPE (Sun et al., 2017)

Encoder Literal Iterative

Trans
Trans

BootEA (Sun et al., 2018) Trans v
KDCOE (Chen et al., 2018) Trans v v
RSN (Guo et al., 2019) RNN
TransEdge(Sun et al., 2020b) Trans v
GCN-Align (Wang et al., 2018b) ~ GNN
MuGNN (Cao et al., 2019) GNN
RDGCN (Wu et al., 2019) GNN v
GM-Align (Xu et al., 2019) GNN v
HyperKA (Sun et al., 2020a) GNN
MRAEA (Mao et al., 2020a) GNN v
RREA (Mao et al., 2020b) GNN v
Dual-AMN (Mao et al., 2021a) GNN v
EASY (Ge et al., 2021b) GNN v v
ClusterEA (Gao et al., 2022) GNN v

Table 1: Categorization of some popular EA methods.

Graph encoder is the most prominent and impor-
tant part of existing EA methods. Early methods
usually used TransE (Bordes et al., 2013) and its
variants as the graph encoder. However, due to
TransE only focusing on optimizing independent
triples h + r = t, it lacks the ability to model the
global structure of KGs. With impressive capabil-
ity in modeling graph data, GNNs quickly become
the mainstream algorithm for almost all graph ap-
plications, including entity alignment. Since Wang
et al. (2018Db) first introduced GCN into EA, numer-
ous GNN-based EA methods have been springing
up. For example, GM-Align (Xu et al., 2019) in-
troduces Graph Matching Networks to capture the
entity interactions across KGs. RREA (Mao et al.,
2020b) proposes the Relational Reflection opera-
tion to generate relation-specific entity embeddings.
HyperEA (Sun et al., 2020a) adopts hyperbolic em-
beddings to reduce the dimension of entities.

Besides the modifications on encoders, some
EA methods adopt iterative strategies to generate
semi-supervised data due to the lack of labeled
entities. Some EA methods propose that introduc-
ing literal information (e.g., entity names) could
provide a multi-aspect view for alignment mod-
els. However, it should be noted that not all KGs
contain literal information, especially in practical
applications. Table 1 categorizes some popular EA
methods based on their encoders and whether using
iterative strategies or literal information.

3.2 Label Propagation and GCN

Label Propagation (LP) (Zhu and Ghahramani,
2002) is a classical graph algorithm for node classi-
fication and community detection. It assumes that
two connected nodes are likely to have the same

label, and thus it propagates labels along the edges.
Let A € RI€IXI€l be the graph adjacency matrix,
D e RI€IXI€] be the diagonal degree matrix of A,
L*) ¢ RI€IX¢ e the label matrix after & rounds of
label propagation, where c is the number of classes.
Each column of L(%) is a one-hot vector, initialized
by the input labels of the known nodes, while the
label vectors of unknown nodes remain zeros. The
propagation process of the random LP algorithm
could be formulated as follow:

L*+) = p=tAL® (1)

Graph Convolutional Network (GCN) (Kipf and
Welling, 2016) is a multi-layer neural network that
propagates and transforms node features across the
graph. Let H*) ¢ RI€I*din be the input features
of layer k, and W (#) ¢ R%in*dout be the transfor-
mation matrix. The layer-wise propagation process
of GCN could be summarized as follow:

H(k+1) — O_(D—l/QAD—l/ZH(k?)W(k‘)) (2)

Equations (1) and (2) indicate that the common
intuition behind both LP and GCN is smoothing
the labels or features. Wang and Leskovec (2020)
notice this kind of inner correlation and unify them
into one framework. Huang et al. (2021) combine
shallow neural networks with the LP algorithm,
achieving comparable performances to state-of-the-
art GNNs, but with a small fraction of the parame-
ters and time consumption. These excellent works
inspire us that the LP algorithm, neglected by the
EA community, deserves further investigation.

4 The Proposed Method

LightEA is a non-neural EA framework consisting
of three components: (i) Random Orthogonal Label
Generation, (ii) Three-view Label Propagation, and
(iii) Sparse Sinkhorn Iteration. We will describe
each component of LightEA in this section.

4.1 Random Orthogonal Label Generation

Different from the node classification and commu-
nity detection tasks, the entities in EA do not have
explicit class labels. LightEA borrows a common
idea from face recognition (Wang et al., 2018a;
Deng et al., 2019) that regards each pair of pre-
aligned entities as a independent class. Assume
that (e;,e;) € P is the x-th pre-aligned entity
jpair, the input label matrix of entities Léo) =

1) 4(0) 1O

er s les sl is initialized as follows:

lg?) = lg?) = onehot(z) V(e e;) € P (3)

827



-

—_—

€]

A € RIEXIEXIR]

(@)

Ator ¢ RIRIXIE]

Figure 2: Illustrations of Three-view Label Propagation.

where onehot(z) € RIP! represents the one-hot
vector that only the z-th element equals one. The
input label vectors of remaining unaligned entities
are initialized to all-zero. Besides, since existing
EA datasets do not provide pre-aligned relation
pairs, the input label matrix of relations L&O) S
RIRIXIPl is also initialized to all-zero.

However, this initialization strategy will cause
the input label matrices of entities and relations
overly large and extremely sparse. To ensure that
LightEA runs well on large-scale datasets, we have
to seek a solution that could reduce the dimension
of input label matrices while the loss of orthogonal-
ity is slight. Fortunately, independent random vec-
tors on the high-dimensional hyper-sphere could
satisfy our requirement.

Lemma 1 If x and y are independent random unit
vectors on the d-dimensional hyper-sphere, (-) rep-
resents the inner-product operation, then we have:

P((zy)>e) < (1—)D2 (@

Lemma 1 (Ball, 1997) states that any two inde-
pendent random vectors on the high-dimensional
hyper-sphere are approximately orthogonal. For
example, when d > 2048, the probability upper
bound of (z,y) > 0.1 is less than 3.37 x 107°.
Therefore, LightEA independently samples ran-
dom vectors on the d-dimensional hyper-sphere
to approximate the one-hot label vectors for better
space-time complexity:

lé?) = lé?) = random(d) V(ej,ej) € P (5)

With this approximation strategy, the dimensions
of L,(go) and L,(no) are reduced to RI€1*d and RIRI*4,

One of the significant differences between LP
and GCN is that one propagates labels, and the
other propagates features. However, the above dis-
cussion indicates that randomly initialized features
could be regarded as an approximation to one-hot
labels. From this perspective, the propagation pro-
cesses of GCN and LP are equivalent.

4.2 Three-view Label Propagation

Both LP algorithm and vanilla GCN were origi-
nally designed for homogeneous graphs. However,
KG is a kind of typical heterogeneous graph that
requires a third-order tensor A € RIEXIEIXIR] o
fully describe its adjacency relations. Some early
EA methods (Wang et al., 2018b; Xu et al., 2019)
crudely treat all relations as equivalent, resulting
in information losses. Follow-up studies usually
address this problem by adopting the relational at-
tention mechanism (Wu et al., 2019; Mao et al.,
2020a) to learn attention parameters and assign
different weights for different relations and triples.
Besides the above methods, an intuitive solution
for generalizing LP on KGs is to use the tensor-
matrix product to replace the matrix product:

LUHD = A sy LW x5 L) (6)
LD = A x; LW x, LR (7)

where X ; represents the ¢-mode tensor-matrix prod-
uct (i.e., along the i-th axis). Unfortunately, this
solution has two fatal defects: (i) The tensor-matrix
product leads to a squared increase in the dimen-
sion after each round of propagation. (ii) Existing
tensor computing frameworks (e.g., Tensorflow) do
not provide the tensor-matrix product operator for
sparse tensors.
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Inspired by the three-view drawing of engineer-
ing fields, we propose a Three-view Label Propaga-
tion mechanism that compresses the adjacency ten-
sor A along three axes to retain maximum informa-
tion from the original tensor while reducing com-
putational complexity. As shown in Figure 2(a),
we first separately sum the original tensor A along
three axes to obtain the top view AP ¢ RIRIXIE]
the side view A%de ¢ RIEIXIEl and the front view
Afront ¢ RIEXIRI From the perspective of inside
meaning, Aside - gfront a4 Atop represent the
adjacency relations from head entity to tail entity,
head entity to relation, and relation to tail entity, re-
spectively. Then, the labels of entities and relations
are propagated according to the three views:

L((ik-i-l) — AsideL((ak) _‘_Afrontngk) 8)
L$k+1) — AtOpLék) (9)

Intuitively, LightEA transforms the propagation
process on triples into a triangular process, where
each side of the triangle represents a different view
(as shown in Figure 2(b)). In this way, labels could
be effectively propagated on KGs without any train-
able parameters while keeping the complexity con-
sistent with the classical LP algorithm O(|T|d).
Finally, for each entity e;, we concatenate the label
vectors of all time-steps as the outputs:

]
12 = 1OD)...[ |1

(10)

4.3 Sparse Sinkhorn Iteration

Early EA studies (Wang et al., 2018b; Sun et al.,
2017) simply calculate the Euclidean distances or
cosine similarities of all entity pairs and select the
closest one as the alignment result. In this way, one
entity could be aligned to multiple entities simulta-
neously, which violates the one-to-one constraint
of EA. To address this problem, some studies (Xu
et al., 2020; Mao et al., 2021b) transform the de-
coding process of EA into an assignment problem
and achieve significant performance improvement:

arg maz (P, S)p (11)

PEP‘g‘

S € RIEIXIEN ig the similarity matrix of entities,
and s;; = cosine(I2", lg;”) in LightEA. P is a
permutation matrix denoting the alignment plan,
where exactly one entry of 1 in each row and col-
umn and Os elsewhere. P ¢ represents the set of all
|€]-dimensional permutation matrices. (-) r repre-
sents the Frobenius inner product.

"

Sinkhorn

Sparse Sinkhorn

Figure 3: Sinkhorn and Sparse Sinkhorn Iteration.

Although the Hungarian algorithm (Lawler,
1963) could solve assignment problems accurately,
its high complexity O(|€]3) makes it impossible
to apply in large-scale datasets. Therefore, recent
studies (Ge et al., 2021b; Mao et al., 2021b) pro-
pose to use the Sinkhorn iteration > (Cuturi, 2013)
to obtain an approximate solution:

arg maz (P, S)p
P€P|g‘

= lim Sinkhorn(S/7)
70T

(12)

The space-time complexity of the Sinkhorn itera-
tion is O(q|€|?), where q is the number of iteration
rounds. Even though the Sinkhorn iteration is sig-
nificantly faster than the Hungarian algorithm, it
still becomes the main bottleneck of LightEA.

In LightEA, we adopt the decoding algorithm
proposed by Mao et al. (2022) and utilize Sparse
Sinkhorn Iteration to reduce the computational
complexity. Specifically, we notice that the ex-
ponential normalization of the Sinkhorn iteration
causes most smaller values in the similarity ma-
trix S to be infinitely close to zero. Even if these
smaller values are removed initially, it does not sig-
nificantly affect the alignment results. Therefore,
instead of calculating the similarities between all
entities, LightEA only retrieves the top-k nearest
neighbors for each entity by Approximate Nearest
Neighbor algorithms 3, such as Inverted Index Sys-
tem and Product Quantizer (Jégou et al., 2011). As
shown in Figure 3, the similarity matrix S will be-
come sparse. There are only k non-zero elements
in each row, while the others are set to zeros. In
this way, the complexity of the Sinkhorn iteration
could be reduced to O(gk|E|).

*The implementation details of the Sinkhorn iteration are
listed in Appendix A.

3In LighEA, we use the FAISS framework (Johnson et al.,
2019) for approximate vector retrieval.

829



Method DBPzu-EN DBPja-Ex DBPFrr-EN SRPRSFRr-EN SRPRSpE-EN

H@l H@lI0 MRR | H@l H®@I0 MRR | H@l H@I10 MRR | H@l H@10 MRR | H@l H@10 MRR
MTransE | 0.209 0.512 0.310 | 0.250 0.572 0.360 | 0.247 0.577 0.360 | 0.213 0.447 0.290 | 0.107 0.248 0.160
GCN-Align | 0434 0.762 0.550 | 0.427 0.762 0.540 | 0.411 0.772 0.530 | 0.243 0.522 0.340 | 0.385 0.600 0.460
RSNs 0.508 0.745 0.591 | 0.507 0.737 0.590 | 0.516 0.768 0.605 | 0.350 0.636 0.440 | 0.484 0.729 0.570

HyperKA | 0.572 0.865 0.678 | 0.564 0.865 0.673 | 0.597 0.891 0.704 - - - - - -
LightEA-B | 0.756 0.905 0.811 | 0.762 0919 0.819 | 0.807 0.943 0.857 | 0.466 0.746 0.560 | 0.594 0.814 0.670
BootEA 0.629 0.847 0.703 | 0.622 0.853 0.701 | 0.653 0.874 0.731 | 0.365 0.649 0.460 | 0.503 0.732 0.580
TransEdge | 0.735 0919 0.801 | 0.719 0932 0.795 | 0.710 0941 0.796 | 0.400 0.675 0.490 | 0.556 0.753 0.630
MRAEA 0.757 0930 0.827 | 0.758 0.934 0.826 | 0.781 0.948 0.849 | 0.460 0.768 0.559 | 0.594 0.818 0.666
Dual-AMN | 0.808 0.940 0.857 | 0.801 0.949 0.855 | 0.840 0.965 0.888 | 0.481 0.778 0.568 | 0.614 0.823 0.687
LightEA-I | 0.812 0915 0.849 | 0.821 0.933 0.864 | 0.863 0.959 0.900 | 0.484 0.769 0.570 | 0.615 0.817 0.685
GM-Align | 0.679 0.785 - 0.739 0.872 - 0.894 0.952 - 0.574 0.646 0.602 | 0.681 0.748 0.710
RDGCN 0.697 0.842 0.750 | 0.763 0.897 0.810 | 0.873 0.950 0.901 | 0.672 0.767 0.710 | 0.779 0.886 0.820
EASY 0.898 0979 0930 | 0943 0990 0960 | 0.980 0.998 0.990 | 0.965 0.989 0.970 | 0.974 0.992 0.980
SEU 0.900 0.965 0.924 | 0.956 0.991 0.969 | 0.988 0.999 0.992 | 0.982 0.995 0.986 | 0.983 0.996 0.987
LightEA-L | 0952 0984 0964 | 0981 0.997 0.987 | 0.995 0.998 0.996 | 0.986 0.994 0.989 | 0.988 0.995 0.991

Table 2: Performances on DBP15K and SRPRS. Baselines’ results are from original papers or Zhao et al. (2020).

5 Experiments

All experiments are conducted on a PC with an
Nvidia RTX3090 GPU and an EPYC 7452 CPU.

5.1 Datesets and Metrics

To comprehensively verify the scalability, robust-
ness, and interpretability of our proposed meth-
ods, we conduct experiments on the following four
groups of datasets:

(1) DBP15K (Sun et al., 2017) is the most com-
monly used EA dataset, consisting of three small-
sized cross-lingual subsets. Each subset contains
15, 000 pre-aligned entity pairs.

(2) SRPRS (Guo et al., 2019) is a sparse dataset
that includes two small-sized cross-lingual subsets.
Each subset of SRPRS also contains 15, 000 pre-
aligned entity pairs but with much fewer triples.

(3) DWY100K (Sun et al., 2018) comprises two
medium-sized mono-lingual subsets, each contain-
ing 100, 000 pre-aligned entity pairs and nearly one
million triples.

(4) DBP1IM (Ge et al., 2021a) is one of the
largest EA datasets so far, consisting of two cross-
lingual subsets with more than one million entities
and nearly ten million triples. In this paper, we use
the strict version of DBP1M.

The detailed statistics are listed in Table 6. Con-
sistent with the previous studies (Sun et al., 2017;
Wu et al., 2019; Mao et al., 2020a), we randomly
split 30% of the pre-aligned entity pairs for training
and the remaining 70% for testing. Following con-
vention (Chen et al., 2017; Wang et al., 2018b), we
use Hits@k and Mean Reciprocal Rank (MRR) as
our evaluation metrics. The reported performances
are the average of five independent runs.

5.2 Baselines

According to the categorization in Table 1, we com-
pare LightEA against the following three groups of
advanced EA methods: (1) Basic: MtransE (Chen
et al., 2017), GCN-Align (Wang et al., 2018b),
RSNs (Guo et al., 2019), HyperKA (Sun et al.,
2020a). (2) Iterative: BootEA (Sun et al., 2018),
TransEdge (Sun et al., 2020b), MRAEA (Mao et al.,
2020a), Dual-AMN (Mao et al., 2021a), LargeEA
(Ge et al., 2021a), ClusterEA (Gao et al., 2022).
(3) Literal: GM-Align (Xu et al., 2019), RDGCN
(Wu et al., 2019), SEU (Mao et al., 2021b), EASY
(Ge et al., 2021b).

To make a fair comparison against the above
methods, LightEA also has three corresponding
versions: (1) LightEA-B is the basic version. (2)
LightEA-I adopts the bi-directional iterative strat-
egy proposed by Mao et al. (2020a). (3) LightEA-L
uses the pre-trained word embeddings of translated
entity names * as the inputs matrix and also adopts
the bi-directional iterative strategy. Same with SEU
and EASY, LightEA-L is an unsupervised method
that does not require any pre-aligned entity pairs.

5.3 Hyper-parameters

Except for DBP1M, we use the same setting: the
dimension of hyper-sphere d = 1, 024; the number
of Three-view Label Propagation rounds k = 2.
We reserve the top-500 nearest neighbors for each
entity in Sparse Sinkhorn Iteration. Following Mao
et al. (2021b), the number of Sinkhorn iteration
rounds ¢ = 10 and the temperature 7 = 0.05. Due
to the limitation of GPU memory, the dimension of
hyper-sphere d is reduced to 256 for DBP1M.

*The name translations and word embeddings are provided
by Xu et al. (2019), which is consistent with follow-up studies.
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DWYpBp-wbD
H@l H@10 MRR
0.238 0.507 0.330
0.494 0.756 0.590
0.607 0.793 0.673
0.604 0.894 0.701
0.861 0.962 0.898
0.748 0.898 0.801
0.788 0.938 0.824
0.794 0.930 0.856
0.869 0.969 0.908
0.907 0.978 0.934

DWYpgp-va
H@l H@10 MRR
0.227 0414 0.290
0.598 0.829 0.680
0.689 0.878 0.756
0.739 0937 0.810
0.884 0977 0918
0.761 0.894 0.808
0.792 0936 0.832
0.819 0951 0.875
0.907 0.981 0.935
0.902 0.980 0.929

Method

MTransE
GCN-Align
RSNs
MuGNN
LightEA-B
BootEA
TransEdge
MRAEA
Dual-AMN
LightEA-I

Table 3: Experimental results on DWY100K.

DBPH\V’IFR,EN
H@l H@l0 MRR
0.051 0.134  0.080
0.094 0.215 0.130
0.105 0.219 0.150
0.100  0.245 0.150
0260 0.456 0.320
0.281 0.474 0.350
0262 0450 0.318
0.285 0.468 0.345

DBP1MpE-_gN
H@l H@l0 MRR
0.034  0.095 0.050
0.064 0.150 0.090
0.066 0.147  0.090
0.069 0.177 0.110
0250 0.450 0.320
0.288 0.488 0.350
0.258 0.457 0.316
0.289 0479 0.347

Method

LargeEA-G
LargeEA-R
LargeEA-D
ClusterEA-G
ClusterEA-R
ClusterEA-D
LightEA-B
LightEA-I

Table 4: Experimental results on DBP1M?.

54

Table 2 lists the experimental results of LightEA on
DBP15K and SRPRS. Table 3 and Table 4 list the
results on DWY100K and DBP1M, respectively.
DBP15K. Compared to the basic EA baselines,
LightEA-B has significant improvements on all
metrics. The main reason is that these basic EA
methods were proposed earlier, while most ad-
vanced methods adopts iterative strategies for better
performance. For LightEA-I, the bi-directional it-
erative strategy improves the performance by more
than 5% on Hits@Q1 and 4% on MRR. Compared
to Dual-AMN, the state-of-the-art structure-based
EA method, LightEA-I achieves comparable re-
sults that are slightly better on Hits@1 and weaker
on Hits@10. Among literal-based EA methods,
LightEA-L consistently achieves the best perfor-
mances. Especially for DBPzy_gn, LightEA-L
beats SEU by more than 5% on HitsQ]1.

SRPRS. The performance rankings on SRPRS are
pretty similar to those on DBP15K. LightEA-B
and LightEA-L defeat all the competitors, while
LightEA-I achieves similar performances to Dual-
AMN. The main difference is that the impact of
iterative strategies is significantly weakened on
SPRPS, in which the performance gain is less than
2% on Hits@1 and 1% on MRR. That is mainly

Main Experiments

>The results of baselines are from ClusterEA(Gao et al.,
2022). To solve the name bias issue, ClusterEA removes parts
of entities and all literal information while retaining all the
triples. Therefore, LightEA-L cannot run on this dataset.
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Method DBP1SK SRPRS DWY100K DBPIM
Dual-AMN 69 57 2,237 -
LargeEA-D 26 23 227 2,119

ClusterEA-D 43 36 389 1,503
LightEA-B 2.8 22 154 97
LightEA-I 7.1 6.5 345 228
LightEA-L 14.8 11.2 - -

Table 5: Time costs on all datasets (seconds).

because the structural information of SRPRS is par-
ticularly sparse, causing iterative strategies to fail
to generate high-quality semi-supervised data.

DWY100K. For DWY100K, LightEA maintains
competitive performance. On DWYppp_wpD,
LightEA outperforms Dual-AMN by 4% on
Hits@Q1l and 3% on MRR while having a com-
parable result on DWYpgp_vg. According to
Zhao et al. (2020), the names of equivalent entities
in DWY100K are almost identical, and using the
edit distance could easily achieve the ground-truth
performance. Therefore, Table 3 does not list the
results of literal methods.

DBPIM. As one of the largest EA datasets so far,
DBPIM poses a severe challenge to scalability,
and most EA methods cannot directly run on this
dataset. As shown in Table 4, the experimental
results show that LightEA still achieves similar
performances to the state-of-the-art method on this
challenging dataset. LargeEA and ClusterEA are
two acceleration frameworks for GNN-based EA
methods, consisting of mini-batch graph samplers,
efficient losses, etc. "-G," "-R," and "-D" represent
using GCN-Align, RREA, and Dual-AMN as the
backbone networks, respectively.

Time cost. Table 5 reports the time costs of three
variants of LightEA. Due to the space limitation,
we only list out the time costs of Dual-AMN with
two acceleration frameworks as the baselines. For
the results of other EA methods, please refer to
Table 7 in Appendix C. LargeEA and ClusterEA
effectively accelerate Dual-AMN, achieving ten
times speedups on DBP1M. However, GNN-based
methods are still stuck with multiple rounds of for-
ward and backward propagation, while LightEA
only requires one round of label propagation and
no need for training. With similar performances,
the time consumption of LightEA-B is less than
one-seventh of Dual-AMN variants. Besides, intro-
ducing iterative strategies and literal features sig-
nificantly increases time consumption while also
improving performance.
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Figure 4: Hyper-parameter experiments of LightEA-I on DBP15K.

5.5 Hyper-parameters

We design extensive hyper-parameter experiments
to investigate the behaviors of LightEA in various
situations. Due to the space limitation, Figure 4
only shows the results of LightEA-I on DBP15K.
Appendix D shows the results on other datasets.
Dimension. To alleviate the problem that one-hot
label vectors being over-sparse, LightEA proposes
to replace them with independent random vectors
on high-dimensional hyper-spheres. Figure 4(a)
shows the HitsQ@Q1 curves with different dimen-
sions d. Clearly, there are significant diminishing
marginal effects on increasing dimensions. When
the dimension d > 1,024, the performance gain
becomes limited. Actually, the reason behind di-
minishing marginal effects has been told by Lemma
1 — the probability of two random drawn vectors
"conflicting" with each other (i.e., (x,y) > €) de-
creases exponentially as the dimension d increases.
Propagation Round. Figure 4(b) shows the per-
formances with different numbers of propagation
rounds. Similar to the network depth of GNNs,
more propagation rounds also lead to the over-
smoothing problem. When the number of rounds
q = 2, LightEA-I achieves the best performance
and then begins to decline. This phenomenon indi-
cates a high correlation between label propagation
and GNNs from the side.
Top-K. In Sparse Sinkhorn Iteration, LightEA only
retrieves the top-k nearest neighbors for each en-
tity instead of calculating the distances between
all pairs. As expected, Figure 4(c) shows that re-
moving smaller values from the similarity matrix
hardly affects the alignment performances. The
trick of Sparse Sinkhorn Iteration could reduce the
space-time complexity with limited losses.
Besides hyper-parameters, we further design
more auxiliary experiments, such as ablation exper-
iments. Due to the space limitation, these experi-
ments are listed in Appendix E, F, and G.

5.6 How to Interpret the Results

Existing GNN-based EA methods inherit poor in-
terpretability from neural networks. It is hard to
explain the inside meaning of each dimension of
entity features and why two entities are aligned.
Therefore, the output features are only used to cal-
culate the similarities. Different from GNN-based
methods, we could clearly interpret the alignment
results of LightEA by the following steps:

(1) Remove Random Orthogonal Label. After
removing this component, the meaning of each
dimension of label vectors becomes clear and real-
istic. The z-th dimension of lgf) represents the rel-
evance score between e; and the x-th pre-aligned
entity pair after k rounds of propagation. If two en-
tities are equivalent, their distributions of relevance
scores should also be similar.

(2) Trace the propagation: Since we have known
the meaning of each dimension, we could trace the
propagation process at each time-step to investigate
why two entities are aligned.

However, removing the Random Orthogonal La-
bel Generation will make the label matrices ex-
tremely large and sparse, and the Three-view La-
bel Propagation can only run on the small-sized
sub-graphs. Therefore, this strategy only fits for
interpreting a limited number of entities.

5.7 An Example of Tracing the Wrong Case

Figure 5 shows an example of tracing the propaga-
tion process and interpreting the alignment results.
In this case, United_States_Armed_Forces is in-
correctly aligned with US_Marine_Corps, and the
correct answer is US_Armed_Forces.

As described in last section, we first remove
the Random Orthogonal Label, run the Three-view
Label Propagation, and obtain the sparse label ma-
trices Lél) and ng). Then, we separately sort
the label vectors lg) and lg) of each entity to
get the dimension indexes of top-5 non-zero el-
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George_P._Shultz,
President_of_the_United_States,

X US_Marine_Corps

Virginia, United_States_Army
President_of the_United_States,
Ash_Carter, George_P._Shultz

Figure 5: An example of tracing the propagation process and interpreting the alignment results.

ements. Finally, we look up the corresponding
names of dimension indexes in the entity name
list and show them in Figure 5. Apparently, the
noise of graph structure causes this wrong case.
Compared to the correct entity, the incorrect en-
tity has a more similar neighborhood structure to
United_States Armed_Forces. There are five com-
mon elements between the wrong alignment pair,
while only three between the right alignment pair.

6 Conclusion

In this paper, we reinvent the Label Propagation
algorithm to effectively run on KGs and propose
a non-neural EA framework — LightEA. Accord-
ing to the experiments on public datasets, LightEA
has impressive scalability, robustness, and inter-
pretability. With a mere tenth of time consumption,
LightEA achieves comparable results to state-of-
the-art methods across all datasets.

Limitations

Although we have demonstrated that LightEA has
impressive scalability, robustness, and interpretabil-
ity on multiple public datasets with different scales,
there are still three limitations that should be ad-
dressed in the future:

(1) In LightEA, good interpretability and high
efficiency cannot coexist. If not removing the Ran-
dom Orthogonal Label, LightEA’s interpretability
will be significantly weakened. How to balance the
interpretability and efficiency is our future work.

(2) Theoretically, LightEA has high parallel effi-
ciency that could obtain linear speedup with mul-
tiple GPUs. However, we do not have enough de-
vices to verify this advantage, and all the exper-
iments in this paper run with a single RTX3090.
We will purchase more devices to complete these
missing experiments in the future.

(3) Currently, we implement LightEA via Ten-
sorflow. Since LightEA is a non-neural algorithm
without any trainable parameters, a complex deep
learning framework would be redundant and ineffi-
cient. In the future, we will refactor LightEA with
CUDA and C++ to further improve efficiency.
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