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Abstract

Many NLP datasets have been found to con-
tain shortcuts: simple decision rules that
achieve surprisingly high accuracy. However,
it is difficult to discover shortcuts automati-
cally. Prior work on automatic shortcut de-
tection has focused on enumerating features
like unigrams or bigrams, which can find
only low-level shortcuts, or relied on post-hoc
model interpretability methods like saliency
maps, which reveal qualitative patterns with-
out a clear statistical interpretation. In this
work, we propose to use probabilistic gram-
mars to characterize and discover shortcuts in
NLP datasets. Specifically, we use a context-
free grammar to model patterns in sentence
classification datasets and use a synchronous
context-free grammar to model datasets in-
volving sentence pairs. The resulting gram-
mars reveal interesting shortcut features in a
number of datasets, including both simple and
high-level features, and automatically identify
groups of test examples on which conventional
classifiers fail. Finally, we show that the fea-
tures we discover can be used to generate di-
agnostic contrast examples and incorporated
into standard robust optimization methods to
improve worst-group accuracy.1

1 Introduction

Many NLP datasets have been found to contain
shortcuts: simple decision rules that achieve sur-
prisingly high accuracy. For example, it is possible
to get high classification accuracy on paraphrase
identification datasets by predicting that sentences
with many common words are paraphrases of each
other (Zhang et al., 2019). Such classifiers are said
to be “right for the wrong reason” (McCoy et al.,
2019). Shortcuts are a problem if they do not gen-
eralize to the intended test distribution (Geirhos

1Our code for inducing grammars and finding dataset
shortcuts is available at https://github.com/princeton-
nlp/ShortcutGrammar.

et al., 2020). For example, paraphrase identifica-
tion models might misclassify non-paraphrases that
have many overlapping words.

Shortcuts have been reported in many estab-
lished datasets (e.g., McCoy et al., 2019; Guru-
rangan et al., 2018; Niven and Kao, 2019; Schuster
et al., 2019), as a consequence of annotation arti-
facts or so-called spurious correlations. Typically,
these discoveries are the result of human intuition
about possible patterns in a particular dataset. Our
goal in this paper is to discover shortcuts automat-
ically. If we can identify shortcuts, we can iden-
tify categories of examples on which conventional
classifiers will fail, and try to mitigate these weak-
nesses by collecting more training data or using
robust optimization algorithms.

The main challenge to automatically identify-
ing shortcuts is to develop a formal framework for
describing patterns in language data that can cap-
ture both simple and high-level features and that
makes it possible to search for these patterns ef-
ficiently. Prior work has addressed only simple
features like unigrams and bigrams (Wang and Cu-
lotta, 2020; Wang et al., 2022; Gardner et al., 2021),
and it is difficult to extend this approach to more
sophisticated patterns, like lexical overlap, without
knowing the pattern in advance. Other model-based
approaches use black-box interpretability methods,
by using gradient-based techniques to identify to-
kens or training instances that influence a particular
prediction (Han et al., 2020; Pezeshkpour et al.,
2022; Bastings et al., 2021). These methods of-
fer local, qualitative hints about the decision of a
classifier on a particular test instance, but do not
identify dataset-level features nor provide a way of
measuring the strength of correlation.

Our approach is to use grammar induction to
characterize and discover shortcut features (§2).
Probabilistic grammars provide a principled frame-
work for describing patterns in natural language,
allowing us to formally model both simple fea-
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Top subtrees for entailment

A man/A person walking/walking in the grass/outside

A man/A human walk/walking down the street/outside

Top subtrees for contradiction

A man/A woman ε/sitting at night/during the day

A woman/A man stand/sit in the air/down

Top subtrees for neutral

A man/A tall human ε/competes down the street/home

A man/An old man running/running in the sand/on the beach

Figure 1: Left: The most likely parse tree for an example from the SNLI validation set according to our syn-
chronous grammar. The numbered nodes index non-terminal symbols and ε denotes an empty symbol. We high-
light the subtrees that provide the strongest evidence in favor of the label contradiction, and show alternative spans
generated by these non-terminals after conditioning on the class labels (Right).

tures and more sophisticated patterns. They admit
tractable search algorithms and provide a natural
way to measure statistics about the correlation be-
tween text patterns and labels. Grammars also offer
a mechanism for identifying contrastive features,
templates that appear in similar contexts across
classes, but take on different values, which can
be used to construct diagnostic test examples (see
examples in Figure 1).

In this work, we focus on both single-sentence
(e.g., sentiment analysis) and sentence-pair classi-
fication datasets (e.g., NLI, paraphrase detection).
While we can use context-free grammars to model
features in sentences, sentence-pair datasets present
a particular challenge, as it is difficult to enumer-
ate interactions between the pair of sentences. We
propose to use synchronous context-free grammars,
which formally model insertion, deletion, and align-
ment. We find that we can extract meaningful,
dataset-specific structures that describe latent pat-
terns characterizing these classification tasks.

We apply our approach to four classification
datasets: IMDb, SUBJ, SNLI and QQP. After il-
lustrating the shortcut features (§3), we explore
whether state-of-the-art classifiers exploit these
shortcuts by identifying minority examples in the
datasets and then generating contrastive examples
(§4). Then we demonstrate that these features can
be used in robust optimization algorithms to im-
prove generalization (§5). Finally, we compare this
approach with model-based interpretability meth-
ods and n-gram features, which do not explicitly
model syntax (§6). Overall, we find that grammar

induction provides a flexible and expressive repre-
sentation for modeling features in NLP datasets.

2 Method

2.1 Overview
We focus on text classification datasetsD ⊆ X×Y ,
where y ∈ Y is a categorical label and x ∈ X
is either a sentence or a pair of sentences, each
consisting of a sequence of words from a discrete
vocabulary V . When x is a sentence pair, we will
write x = (xa, xb) and refer to xa and xb as the
source and target sentences, respectively.

We aim to automatically extract a description of
the features that characterize the relationship be-
tween x and y, and our key idea is to define the
features in terms of a dataset-specific grammar.
Compared to a grammar extracted from a standard
treebank, the grammars we induce serve as inter-
pretable models for the distribution of sentences in
the dataset. Our approach consists of two steps:

1. Grammar induction: First, we induce a
grammar for (unlabeled) training instances
x1, . . . , xN and get the maximum likelihood
trees t1, . . . , tN .

2. Finding features: We define features in
terms of subtrees in the grammar, which de-
scribe patterns in the input sentences, and we
search for features that have high mutual in-
formation with the class labels.

We induce one shared grammar for all classes rather
than incorporating labels during grammar induc-
tion, so that the non-terminal symbols have a con-
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sistent meaning across classes. This facilitates find-
ing contrastive features. For example, in Figure 1
(right), the nonterminal symbol 77 always gener-
ates pairs of verbs, but the distribution changes
according to the class label: 77 is more likely to
generate walk/walking when the class label is en-
tailment and more likely to generate stand/sits
when the class label is contradiction.

2.2 Grammar Induction

In this section, we describe the two grammars we
use and the training procedure.

Context-free grammar A context-free grammar
(CFG) consists of an inventory of terminal symbols
V (words), non-terminal symbols N , and produc-
tion rules of the form α→ β ∈ R, where α ∈ N
and β ∈ (V ∪ N )∗. A probabilistic CFG (PCFG)
defines a distribution over trees by assigning ev-
ery non-terminal symbol a categorical distribution
over production rules, with the probability of a tree
defined as the product of the probability of the pro-
duction rules used to generate it. A PCFG defines
a distribution over sequences of words x ∈ V∗
by marginalizing over all trees which generate the
sentence x (denoted by yield(t)):

p(x) =
∑

t:yield(t)=x

p(t).

Synchronous grammar Many NLP shortcuts
have been found in datasets involving pairs of
sentences x = (xa, xb). We model patterns in
these datasets using a Synchronous PCFG (SCFG;
Lewis and Stearns, 1968; Wu, 1997), a grammar
for defining probability distributions over pairs
of sequences. An SCFG assumes that both se-
quences were generated from a single context-
free parse tree, whose terminal symbols have the
form wa/wb, where wa and wb are either words
in xa or xb respectively, or an empty symbol, de-
noted by ε, which represents a null alignment (Fig-
ure 1). SCFG productions can also be thought of as
translation rules: the emission wa/wb represents
a substitution—replacing word wa with wb—and
null alignments represent insertion or deletion. An
SCFG makes strong simplifying assumptions about
the possible relationships between sentences, but,
as we will show, it is still capable of modeling inter-
esting, hierarchical structure in real-world datasets.

Parameterization and training The parameters
of grammar consist of a vector θ with one entry

θα→β for every rule α→ β ∈ R. Following Kim
et al. (2019), we parameterize the grammars using
a neural network. We use the neural CFG param-
eterization from Kim et al. (2019) and develop a
similar parameterization for our SCFG, with exten-
sions for the terminal production rules. We defer
the full details to the appendix (Section A).

Given a training set D = {(xi, yi)}Ni=1 and a
grammar G = (V,N ,R), we find a maximum
likelihood estimate θ∗ by maximizing the marginal
likelihood of the (unlabeled) training sentences:

θ∗ = argmax
θ

N∑

i=1

log p(xi | G, θ).

We optimize the parameters using gradient descent.
After training, we calculate the maximum likeli-
hood trees t1, . . . , tN for the training data, and use
these trees as the basis of further analysis.

Complexity Training and parsing require enumer-
ating the trees consistent with the input, which is
calculated with the inside algorithm for CFGs (Lari
and Young, 1990) and the bitext inside algorithm
for SCFGs (Wu, 1997). The inside algorithm has
space and time complexity of O(|x|3|G|) and the
bitext inside algorithm has space and time com-
plexity of O(|xa|3|xb|3|G|), where |G| is a gram-
mar constant determined by the number of rules
in the grammar. We use a vectorized GPU im-
plementation of the inside algorithm provided by
Torch-Struct (Rush, 2020) and we implement a vec-
torized version of the bitext inside algorithm. The
cost of the bitext parsing algorithm imposes a prac-
tical limitation on the length of the sentences we
consider (Section 3.1). We also discuss possible
efficient approximations in the Limitations section,
which we leave as an avenue for future work.

2.3 Finding Features

The tree-annotated corpus provides a structured rep-
resentation of the dataset that we can now query to
find discriminative patterns at various levels of ab-
straction. We follow a simple procedure for finding
dataset-level patterns using our tree annotations.

First, given a set of trees t1, . . . , tN with class
labels y1, . . . , yN , we extract the set of complete
subtrees, which are subtrees whose leaves are all
terminal symbols. There is at most one unique
subtree for each non-terminal node in each tree, so
the number of complete subtrees is roughly on the
order of the number of words in the training data.
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Next, we calculate the mutual information be-
tween each subtree and the class labels. We treat
each subtree s as a boolean-valued feature function
on trees, φs(t) = 1[s ∈ t]. Let Zs be a random
variable denoting the output of φs and let Y be a
random variable over Y . The mutual information
is defined as:

I(Zs;Y ) =
∑

zs∈{0,1}

∑

y∈Y
p(y, zs) log

p(y, zs)

p(y)p(zs)
.

We estimate the mutual information between Zs
and Y using p̂(y, zs) ∝ 1 +

∑N
i=1 1[yi = y ∧

φs(ti) = zs]. Mutual information measures the
expected amount of information we learn about Y
by learning the value of φs. While we use mutual
information in this paper, we could also score the
features using other feature-importance metrics,
such as z-score (Gardner et al., 2021).

To visualize the most discriminative patterns,
we group the highest-ranked subtrees according
to their root label and majority class label. Let
S(α, y) denote the set of subtrees with root label α
and majority class label y. We define a composite
feature, Zα,y =

∨
s∈S(α,y) Zs as the union of fea-

tures in S(α, y). The result of this procedure is a
concise list of class-conditional non-terminal fea-
tures, which we can inspect to identify the patterns
that are broadly discriminative across the dataset.

3 Finding Shortcuts

3.1 Experimental Setup

Datasets We apply our approach to two single-
sentence and two sentence-pair classification
datasets. IMDb (Maas et al., 2011) is a binary
sentiment analysis dataset consisting of paragraph-
length movie reviews. SUBJ (Pang and Lee, 2004)
is a subjectivity classification dataset, containing
sentences labeled as either subjective or objec-
tive. SNLI (Bowman et al., 2015) is a three-way
classification task; given two sentences, xa and
xb, the objective is to determine whether xa en-
tails xb, contradicts xb, or is neutral. QQP (Iyer
et al., 2017) consists of pairs of questions from
quora.com labeled as being either paraphrases or
not paraphrases.

For all experiments, we fix the size of the
grammar to be 96 non-terminals symbols, divided
into 32 internal non-terminal symbols and 64 pre-
terminal symbols, similar to Kim et al. (2019),
and use a lowercase word-level tokenizer with a

maximum vocabulary size of 20,000 words. For
the sentence-pair datasets, we randomly sample
65K/16K class-balanced sets of training/validation
examples that fit within the length limit imposed by
the bitext inside-outside algorithm (|xa| × |xb| <
225). This length limit covers approximately 80%
of SNLI and 70% of QQP. For IMDb, we split
the movie reviews into sentences for the purposes
of training the PCFG, but compute feature statis-
tics using the full reviews. More implementation
details are in Appendix B.

3.2 A Look at the Top Features

In this section, we qualitatively explore some of the
dataset-level shortcuts we find. Our procedure for
each dataset is the same: given a set of trees, we
enumerate all complete subtrees and sort them by
mutual information, treating each subtree as a bi-
nary indicator variable. Then we group the subtree
features by root label and majority class label and
inspect the most informative groups of subtrees.
The majority class label for a feature Z is defined
as the most common class label among training
examples for which Z = 1. For each feature Z, we
report the number of training examples for which
Z = 1 (Count) and the percentage of these having
the majority class label (% Majority). We present
the most interesting results here and include ex-
tended results in Appendix D.1.

IMDb Not surprisingly, we find that the most in-
formative features in IMDb include adjectives, ad-
verbs, and nouns with high sentiment valence. We
highlight some of the more interesting patterns in
Table 1. For example, we discover that negative
reviews are almost three times as likely as positive
reviews to mention the length of the film (node 8 ),
and we find that the grammar has learned a clear
category corresponding to names (node 5 ).

We also confirm that the grammar recovers a
known shortcut in IMDb, numerical ratings (Ross
et al., 2021; Pezeshkpour et al., 2022). We find that
a single non-terminal (node 29 ) is responsible for
generating ratings, including both simple, numeri-
cal ratings, which have been documented in earlier
work, as well as letter grades and ratings on a star
system (Table 2).

SUBJ In the SUBJ dataset (Table 3), the most
informative features reflect how this dataset was
constructed (Pang and Lee, 2004): the subjective
class consists of movie reviews from Rotten Toma-
toes and the objective class consists of movie sum-
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Root Description Patterns Count % Majority

N 5 Negative actors ed wood , steven seagal , uwe boll , van damme , tom savini 174 95.5
29 Negative ratings 4 / 10 , 3 / 10 , 1 / 10 , 2 / 10 , 1 / 2 from * * * * 429 96.8
8 Negative durations 30 minutes , 10 minutes , five minutes , 90 minutes , 2 hours 1,412 76.7

P 5 Positive actors walter matthau , jon voight , james stewart , william powell , philo vance 751 88.6
29 Positive ratings 10 / 10 , 8 / 10 , 7 / 10 , highly recommended . , 9 / 10 486 98.8
8 Positive durations many years 95 69.1

Table 1: Six high-scoring features in IMDb, grouped by majority class (N: Negative, P: Positive) and showing at
most five spans per row, with our own descriptions of the pattern reflected in each row.

Patterns Count % Majority

N 3 out of 10 . , 4 out of 10 . ,
1 out of 10 .

41 100.0

my grade : d , my grade : f ,
my grade : c

33 100.0

1 / 2 from * * * * 44 93.2

P 10 out of 10 . , 7 out of 10 . ,
8 out of 10.

51 100.0

my vote is eight . ,
my vote is seven .

40 100.0

Table 2: Additional realizations of the “movie rating”
pattern in IMDb (N: negative, P: positive). All of these
spans correspond to subtrees for root 29 .

Root Patterns Count % Majority

S 27 a movie , the film ,
the movie , this movie

980 86.3

3 comes off , ’ s hard ,
makes up , ’ d expect

460 87.4

O 27 his life , his wife ,
his father , his mother

1,628 80.1

3 finds himself , finds out ,
falls in love , is [UNK]

205 85.5

Table 3: Four high-scoring features in SUBJ, filtering
to subtrees with depth of at least 2, grouped by majority
class (S: subjective, O: objective).

maries from IMDb. A similar observation was
made by Zhong et al. (2022), who trained a neural
network to generate natural language descriptions
of the differences between text distributions. Our
method points us to the same conclusion, but by
modeling the statistics of the dataset rather than
querying a black-box neural network.

SNLI Now we consider the synchronous grammar
features for SNLI (Table 4). Prior work has docu-
mented the presence of hypothesis-only shortcuts
in SNLI as well as shallow cross-sentence features
like lexical overlap (McCoy et al., 2019; Gururan-
gan et al., 2018; Poliak et al., 2018). The SCFG
features reveal a number of more sophisticated pat-
terns and clusters them in clear categories. The
contradiction class has the most highly discrimina-

tive shortcut features, which mainly involve replac-
ing a subject or verb word with a direct antonym.
The most informative neutral features involve ad-
ditions, such as adding adjectives or prepositional
phrases. The highest scoring entailment examples
include hypernyms, such as changing “man” to
“human”. These features explicitly model the align-
ment between grammatical roles, as well as in-
sertion and deletion, giving a high-level view of
some of the common strategies employed by crowd-
workers in creating this dataset.

Additional, higher-level features are presented
in Appendix Table 15, which lists the internal pro-
duction rules with the highest mutual information.
In general, these features are less discriminative
than lexicalized features, but they describe more
abstract properties, such as removing prepositional
phrases from xa to create an entailment.

QQP The highest scoring features in QQP are
listed in Table 5. The best known shortcut in
QQP is lexical overlap, which is more likely to
be high between paraphrases, and the SCFG fea-
tures echo this fact: most of the highest ranking
paraphrase features are pairs of aligned words or
phrases, and the highest ranking no paraphrase fea-
tures are function words that have no alignment in
the corresponding question. Other prominent fea-
tures involve changes to the question structure, as
well as a number of specific topics that are surpris-
ingly prevalent in the dataset and provide strong
evidence that a pair of questions are paraphrases, in-
cluding open-ended discussion topics such as New
Year’s resolutions, World War 3, and the 2016 pres-
idential election, as well as lifestyle advice about
how to make money or lose weight.

4 Do Models Exploit These Shortcuts?

In this section, we explore how the shortcuts we
have discovered affect the generalization behav-
ior of conventional classifiers that are trained on
the same data. We train BERT-base (Devlin et al.,
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Root Description Patterns Count % Majority

E 44 Copy verb walking/walking , running/running , playing/playing , sitting/sitting , jumping/jumping 1,326 68.4
14 Subject phrase hypernym a man/a person , a man/a man , a woman/a person , man/a man , a man/a human 9,009 45.7
4 Expletive construction a /there is , ε/there are , two /there are , a /there are , ε/there is 1,725 63.0

C 32 Subject antonym man/woman , woman/man , boy/girl , dog/cat , girl/boy 1,235 91.1
14 Subject phrase antonym a man/a woman , a woman/a man , a man/ nobody , a boy/a girl , a dog/a cat 1,351 82.5
78 Verb antonym standing/sitting , walking/sitting , sitting/standing , walking/running , running/sitting 695 92.6
41 Definite article a/the , ε/the 15,436 39.2
85 Adjective antonym black/white , red/blue , ε/empty , ε/living , white/black 560 76.9

N 49 Added function word ε/to , ε/for , ε/a , ε/the , ε/his 14,478 50.5
35 Added object ε/[UNK] , ε/work , ε/get , ε/friends , ε/park 4557 59.8
85 Added adjective ε/tall , ε/sad , ε/[UNK] , ε/new , ε/big 1,945 72.1
17 Added PP phrase ε/to work , ε/to get , ε/to buy , ε/the park , ε/on vacation 1,411 71.4

Table 4: Twelve of the highest scoring features in SNLI, grouped by majority class (E: Entailment, C: Contradic-
tion, N: Neutral) with our own descriptions of the pattern reflected in each row. ε stands for the empty string. For
each feature, we report the number of training examples and the percentage having the majority class label.

Root Description Patterns Count % Majority

N 70 Additions ε/[UNK] , ε/in , ε/a , ε/- , ε/for 23,987 60.7
49 Deletions [UNK]/ε , in/ε , a/ε , like/ε , of/ε 21,299 61.6
59 Change question word why/how , why/what , how/why , why/can , what/is 3,348 70.8

P 14 How-to questions how can/how can , how do/how can , how can/how do , how do/how do ,
how can /what is the

9,684 66.2

25 Discussion topics new year/new year , world war/world war , donald trump/donald trump ,
hillary clinton/hillary clinton , long distance/long distance

2,179 82.9

59 Same question word how/how , why/why , when/when , how/what 17,264 60.3

Table 5: Six of the highest scoring features in QQP, grouped by majority class (N: non-paraphrase, P: paraphrase)
with our own descriptions of the pattern reflected in each row. ε stands for the empty string. For each feature, we
report the number of training examples and the percentage having the majority class label.

2019) and RoBERTa-base (Liu et al., 2019) classi-
fiers on our SNLI and QQP training splits and ex-
amine the performance by finding minority groups
of counter-examples in the dataset, and then by
designing contrastive examples using the grammar.

Observational counter-examples First, for each
shortcut feature Z, let yZ=1 denote the majority
label for training instances that contain the shortcut
feature (Z = 1). We take the validation examples
xi, yi for which Z = 1 and partition them into
supporting examples and counter-examples accord-
ing to whether or not yi = yZ=1. We report the
accuracy of the BERT and RoBERTa models on
supporting and counter-examples in Table 6. Both
models consistently perform higher than average
on the supporting examples and much worse on
the counter-examples, indicating that the grammar
feature are at least correlated with the features used
by these classifier. This trend is consistent for all
the features, perhaps suggesting that these models
exploit every available feature to some extent.

Creating contrastive examples In the previous
section, we established that there is a correlation
between shortcut features and BERT error rates

using counter-examples that appear in the training
data. In this section, we generate controlled con-
trasting examples to test specific hypotheses about
what function the model has learned. Our proce-
dure in this section is similar to counter-factual data
augmentation (Kaushik et al., 2020) and contrast
sets (Gardner et al., 2020). The difference is that
our edits are based on explicit feature representa-
tions derived from the dataset, allowing us to better
control for confounding features.

We focus on the three patterns we highlighted in
SNLI: simple hypernyms, antonyms, and additions.
For each feature Z with majority label yZ=1, we
design a rule-based edit that will select and per-
turb existing validation instances (x, y) to obtain
instances (x∗, y∗) for which Z = 1 but y∗ 6= yZ=1.
Hypernyms: We select neutral or contradiction
examples that have an aligned subject word (e.g.
man/man ), replace the hypothesis subject word

with a hypernym, and expect the label to stay the
same. Antonyms: Pick entailment or neutral ex-
amples with an adjective modifying the subject
noun, add an antonym adjective to an object noun,
and expect the label to become neutral. Add adjec-
tive: Pick contradiction examples, add an adjective
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BERT RoBERTa
S C S C

SNLI Entailment
Copy verb 98.6 83.6 98.6 83.6
Subj. phrase hypernym 92.5 80.3 92.4 83.8
Expletive construction 97.2 77.8 96.4 79.1

Contradiction
Subj. antonym 96.9 61.5 97.3 76.9
Subj. phrase antonym 98.2 77.8 98.2 82.5
Verb antonym 99.4 55.6 98.8 66.7
Definite article 86.2 82.2 88.9 82.9
Adjective antonym 91.7 71.4 95.8 78.6

Neutral
Added function word 86.6 81.0 89.3 81.6
Added object 89.0 76.1 93.0 76.1
Added adjective 94.4 69.2 94.2 74.1
Added PP phrase 92.9 77.0 95.0 77.0

QQP Non-paraphrase
Deletion 85.4 86.8 86.9 86.9
Addition 86.8 85.1 87.8 85.5
Change question word 87.4 81.2 89.6 78.8

Paraphrase
How-to questions 90.3 71.2 92.3 73.0
Discussion topics 98.4 56.9 96.2 66.7
Same question word 90.3 75.0 91.1 76.9

Table 6: We find the validation examples in SNLI and
QQP containing each shortcut and partition them into
Supporting examples (S) and Counter-examples (C)
according to whether or not they have the training ma-
jority class label, and report the accuracy of BERT and
RoBERTa models on each split. (See Section 4.)

modifying the subject noun, and expect the label to
stay the same. In each case, we use the grammar to
identify the set of possible edits. That is, we select
antonyms like white/black or small/large and
add adjectives like ε/tall and ε/sad .

For each validation example (xi, yi), we create
a contrast set Si consisting of one or more per-
turbations of xi. For example, if xi contained
man/man , Si will include examples containing
man/person and man/human . We report the er-

ror rate, defined as the percentage of the contrast
sets Si for which the model predicts yZ=1 for any
x∗ ∈ Si, restricted to sets such that the model clas-
sified the original (xi, yi) correctly.

The results of this experiment are in Table 7,
along with an example of each edit. On each test
set, we find many perturbations that lead the model
to change its prediction. The model performs worst
on the Antonyms test set, suggesting that the pres-
ence of contradicting adjectives may be a strong
signal to the model, regardless of whether the ad-
jectives are attached to the same entity.

Edit # Sets Error

Hypernyms 389 21.8±0.8
A man is smoking at sunset.
A man +person smoking a cigarette.
Antonyms 281 71.1±3.8
Two black dogs splash around on the beach.
The dogs are playing with a +white ball.
Add adjective 1,470 45.6±8.4
A man taking photos of nature.
A +sad man is taking photos of a wedding.

Table 7: Examples of the contrastive edits we create
for three shortcut features, the number of contrast sets
(each consisting of one or more perturbations of a sin-
gle validation instance), and the error rate (Section 4).
We report the average and standard deviation of BERT
models trained with three random seeds.

Method Hypernyms Antonyms Add adj.

BERT 21.8±0.8 71.1±3.8 45.6±8.4

JTT 21.5±0.8 69.7±3.4 39.3±7.8
DRiFt 13.0±4.1 68.7±6.8 29.4±4.5

Table 8: Evaluating robust training methods on the test
sets described in Table 7. We report the mean error rate
(↓) and standard deviation from three runs (Section 5).

5 Remedying Shortcuts

Once we have found shortcuts, to what extent can
we can mitigate them using standard robust opti-
mization algorithms? We conduct a small-scale
experiment, focusing the contrasting examples we
created for SNLI. We compare two methods: Just
Train Twice (JTT; Liu et al., 2021) and DRiFt (He
et al., 2019). Note that JTT does not assume known
shortcut features while DriFT does. Specifically,
JTT upsamples the subset of training examples that
are misclassified by a weak model (we use BERT-
base trained for one epoch). DRiFT takes as input a
biased model and trains a new model with a regular-
ization term that effectively upweighs the reward
for instances that the biased model misclassifies
(we set the biased model to be a logistic regression
classifier trained on feature vectors indicating the
set of SCFG production rules that appear in each
tree). Full details are provided in Appendix B.

Results Table 8 shows that the robust tuning meth-
ods improve performance on all the test sets, with
DRiFt achieving a lower error rate than JTT. How-
ever, the improvements on the Antonyms test set
are less substantial, which could be explained by
the fact that this shortcut has few counter-examples
in the training data. These results suggest that the
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Saliency map Tree parse Label Prediction

A woman pushing a coffee cart
through a plaza. A coffee worker
pushes a cart.

1

14

A woman/
A coffee worker

30
21

pushing a coffee cart/
pushes a cart

10

through a plaza/
ε

Neutral Entailment

A man kneels next to a colorful dis-
play outside. The man is planting a
backyard garden during spring .

1

1

A man kneels next to a colorful display outside/
The man is planting a backyard garden

17
49

ε/
during

30

ε/
spring

Contradiction Neutral

Table 9: Saliency maps and SCFG parse trees for two SNLI validation instances that are misclassified by a fine-
tuned BERT model (Section 6). For each tree, we highlight the production rule most strongly correlated with the
predicted label, which is associated with the pattern of either deleting or inserting a prepositional phrase. In both
cases, when we delete the prepositional phrase, the model predicts the correct label.

best solution to addressing highly correlated short-
cuts may be to collect additional training data.

6 Comparing Existing Methods for
Finding Shortcuts

Saliency methods In Table 9, we compare our
grammar-based approach with saliency heatmaps,
as a method for identifying the discriminative fea-
tures in an individual example. We show two vali-
dation examples that a BERT-based classifier fails
to classify. Following Bastings et al. (2021), we use
the L2 norm of the Integrated Gradient score (Sun-
dararajan et al., 2017) and highlight the five tokens
with the highest score. The heatmap highlights in-
put words but does not provide information about
how different input words are connected.

To find locally important features using the
grammar, we find the maximum likelihood parse
trees and list the production rules in order of
p̂(ŷ | r)/p̂(y∗ | r), where y∗ is the true label, ŷ
is the predicted label, and p̂(y | r) is proportional
to the number of training trees with label y that
contain production rule r. The most discrimina-
tive rules include production rules associated with
deleting a prepositional phrase (which appear twice
as often in entailment examples) and inserting a
prepositional phrase (more common in neutral ex-
amples). In both cases, when we delete the preposi-
tional phrase, the model predicts the correct label.

N-gram-based methods The grammar features
can capture information that cannot be expressed
with n-gram features, such as alignment and syn-
tactic roles, but how relevant is this information for
diagnosing dataset shortcuts? We explore this ques-
tion in Figure 2 by comparing the SNLI features

described in Table 4 to simpler n-gram features
created by discarding information about syntax and
alignment. For example, the Subject hypernym fea-
ture appears in sentence pairs like “A man is walk-
ing/A human is walking.” We compare this feature
to the corresponding n-gram pair feature, which
has a value of true whenever “man” appears in the
premise and “human” appears in the hypothesis,
and would include sentences like “A man is feeding
ducks/A man is feeding a human.” Finally, prior
work has reported that individual premise words
are correlated with labels in NLI datasets (Poliak
et al., 2018; Gururangan et al., 2018), so we also
compare these features with the hypothesis-only
feature, which is true whenever “human” appears
in the second sentence. Empty alignments, e.g.
ε/wb, are less straightforward to compare; we de-
fine the equivalent n-gram pair feature as wb ∈ xb.

Figure 2 shows that, as we consider increasingly
simple features, we identify more examples that
contain the shortcut, but the shortcut becomes less
discriminative, and has a weaker correlation with
the BERT classifier’s accuracy: BERT performs rel-
atively worse on the supporting examples, and bet-
ter on the counter-examples, indicating that these
features may be less useful for diagnosing classifier
errors. More details are in Appendix C.

7 Related Work
Finding shortcuts Prior work has identified short-
cuts in NLP datasets by developing diagnostic eval-
uation datasets (McCoy et al., 2019; Niven and
Kao, 2019; Rosenman et al., 2020), training partial
input baselines (Gururangan et al., 2018; Poliak
et al., 2018), or calculating statistics of simple fea-
tures, like n-grams, that can be enumerated explic-

4352



0 2,000 4,000 6,000 8,000 10,000

Subj. hypernym

Expletive construction

Verb antonym

Adj. antonym

Add adj.

Add PP phrase

Number of examples

50% 60% 70% 80% 90% 100%

BERT accuracy

Feature (Subset)

SCFG (Supporting)

N-gram pairs (Supporting)

Hypothesis only n-grams (Supporting)

SCFG (Counter)

N-gram pairs (Counter)

Hypothesis only n-grams (Counter)

Figure 2: We compare the SCFG features from SNLI with equivalent n-gram feature that discard the alignment
information provided by the grammar (Section 6). As we consider simpler features, the features appear in more
examples but become less discriminative, and tend to have a weaker correlation with BERT accuracy.

itly (e.g. Schuster et al., 2019; Gardner et al., 2021).
Han et al. (2020) use influence functions (Koh and
Liang, 2017) to retrieve training instances that are
relevant to a model’s prediction. Pezeshkpour et al.
(2022) combine instance attribution with feature
attribution, which highlights salient input tokens.
In contrast, our aim is to find dataset-level shortcuts
that can be expressed as explicit feature functions.

Defining spurious correlations A related line of
work has addressed the question of which corre-
lations should be considered spurious. Gardner
et al. (2021) suggest that all correlations between
labels and low-level features, such as unigrams, are
spurious. Eisenstein (2022) argues that such corre-
lations will arise naturally in most language clas-
sification settings, and domain expertise is needed
to determine which correlations might be harmful.
Our aim is to provide a summary of the shortcuts
in a dataset, so that a practitioner can determine
which are undesirable and remedy them if needed.

Feature importance Our approach is related to
methods for identifying important input features,
like LIME (Ribeiro et al., 2016) . Lundberg and
Lee (2017) present a framework for measuring
local feature importance based on Shapley val-
ues (Shapley, 1953), which can be applied to both
model-specific and model-agnostic notions of im-
portance, and Covert et al. (2020) extend this ap-
proach to global importance scores. These methods
require first identifying the set of features, while
our focus is on inducing a richer set of features.
We use a simple metric for feature importance, and
leave more sophisticated metrics to future work.

Grammar induction Grammar induction has been
a long-standing subject of research in artificial in-
telligence. Prior work has used grammar induction
for linguistic analysis (Johnson, 2008; Dunn, 2018)
and feature extraction (Hardisty et al., 2010; Wong
et al., 2012). Synchronous and quasi-synchronous
grammars (Smith and Eisner, 2006) have been used
in machine translation and applied to a variety of
other NLP tasks (e.g. Wang et al., 2007; Blunsom
et al., 2008; Yamangil and Shieber, 2010), but have
largely been supplanted by end-to-end neural net-
work approaches. Kim (2021) develop a neural
quasi-synchronous grammar as an interpretable,
rule-based model for sequence transduction tasks.
Our work shares a similar motivation, but applied
to a different goal, modeling dataset shortcuts.

8 Conclusion

We have developed an approach for automati-
cally finding dataset shortcuts by inducing dataset-
specific grammars. We demonstrated that it reveals
interesting shortcut features in four classification
datasets and can be used as a diagnostic tool to iden-
tify categories of examples on which classifiers are
more likely to fail. Future work will explore ap-
proximate inference methods to scale this approach
to datasets with longer sequences, and extensions
to more expressive grammar formalisms.
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Limitations

Our method has several limitations that raise inter-
esting challenges for future work.

Grammar scalability First is the scalability of the
synchronous parsing algorithm, which limits us in
practice from applying this approach to datasets
with long sentence pairs. One direction for fu-
ture work is to explore approximate inference tech-
niques that will allow these methods to scale to
large datasets with longer sequences and use fewer
computational resources.

Grammar expressiveness Second is the expres-
siveness of the grammar, which assumes that pairs
of sentences can be modeled with a single parse
tree. This assumption works well for relatively sim-
ple datasets like SNLI, but is less reasonable for
sentences that have very different syntactic struc-
ture. An interesting direction for future work is to
explore more expressive grammar formalisms, such
as synchronous tree substitution grammars (Shieber
and Schabes, 1990).

Comparing shortcut finding methods There are
many existing approaches to finding shortcuts as
we discussed in the paper, but it is difficult to
have an apples-to-apples comparison. In partic-
ular, attribution-based methods (Han et al., 2020;
Pezeshkpour et al., 2022) do not provide explicit
feature representation of shortcuts, and so it is dif-
ficult to say whether these methods are capable
of identifying the same patterns. We have shown
qualitative comparisons of the kinds of features pro-
vided by different methods but leave the question
of better quantitative evaluation to future work.

Applications to other languages and tasks We
only apply our approach to four English-language
datasets. In particular, the sentence pair datasets
we consider are based on sentence similarity judg-
ments, where synchronous grammars are a good
choice. We hope to apply the approach to other
tasks and other languages in the future and explore
formalisms that are better suited to modeling more
diverse relationships between strings.

Out-of-domain generalization We conducted one
set of experiments with robust optimization and
showed some improvements on in-domain minor-
ity examples. In future work, we are also interested
in exploring whether our shortcut-finding methods
can be useful for improving performance in gener-
alization to other out-of-domain distributions.
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A Grammar Parameterization

Let N ,V,R denote the set of non-terminal sym-
bols, terminal symbols, and production rules in the
grammar. We only consider grammars in binary
normal form. Following Kim et al. (2019), we des-
ignate a subset P ⊆ N as pre-terminals. R is then
defined as all rules of the form α → w, where
α ∈ P and w ∈ V , or α→ β γ, where α ∈ N \P
and β, γ ∈ N , as well as s → α, where α ∈ N
and S is the start symbol.

We parameterize our grammars using neural net-
works, following Kim et al. (2019) and Kim (2021).
For the PCFG, we use the parameterization from
the neural PCFG of Kim et al. (2019):

p(S → α) ∝ exp(f1(vS)
>uS→α)

p(α→ β γ) ∝ exp(f2(vα)
>uβγ)

p(α→ w) ∝ exp(f3(vα)
>uw),

where v∗,u∗ ∈ Rd are embeddings and f1, f2, f3
are multilayer perceptrons with two hidden layers
and residual connections.

For the SPCFG, we parameterize the the start-
ing rules S → α and the binary productions
α → β γ the same as in the PCFG. We param-
eterize the terminal productions α → w by fac-
toring according to the kind of emission, k ∈
{wa/wb, wa/ε, ε/wb, copy}, where ε is the empty
symbol and copy is a production with wa/wb with
wa = wb. The emission distribution is then fac-
tored as:

p(α→ wa/wb) = p(k | α)× p(wa | α, k)
× p(wb | α, k, wa).

We parameterize these rules as in the PCFG:

p(k | α) ∝ exp(f3(vαk)>uk)

p(wa | k, α) ∝ exp(f4(vαa)>uwa)

p(wb | k, α,wa) ∝ exp(f5(vαb + vwa)>uwb),

with restrictions to ensure that the distribution is of
the emission kind k.

B Training Details

Grammar induction For all of our experiments,
we fix the size of the grammar at 64 pre-terminal
symbols and 32 non-terminal symbols. We set the
hidden dimension d of the grammar embeddings

to be 256 and define every fi to be a ReLU net-
work with two hidden layers, following Kim et al.
(2019). We use a learning rate of 1e-3 and the
Adam optimizer. For the PCFGs, we train for up
to 40 epochs, evaluating on validation data every
4096 steps and stopping early after five checkpoints
with no improvement in validation loss (negative
log likelihood). For the SCFGs, we train for up to
10 epochs and use the same early stopping policy.

We run our main experiments on four RTX 3090
Ti GPUs with 24GB of memory each, but also test
our SCFG implementation on RTX 2080 GPUs
with 12GB of memory. With four GPUs, and train-
ing on 64,000 examples with |xa|×|xb| ≤ 225, run-
ning SCFG grammar induction until convergence
and then parsing all of the training and validation
examples takes between 12 and 24 hours hours.
For the PCFGs, we use a mini-batch size of four
sequences per GPU, and for the SCFG we use a
mini-batch size of one pair of sequences per GPU.
Consistent with the report of Kim (2021), we find
that GPU memory is the main bottleneck to scaling
the SCFG.

Classification experiments We train BERT and
RoBERTa classifiers using a learning rate of 1e-
5 and do not tune any hyperparameters. The bi-
ased model for DRiFt is a logistic regression model
trained with L1 regularization using the default
implementation in scikit-learn (Pedregosa et al.,
2011), and the identification model for Just-Train-
Twice is a BERT model trained for one epoch. We
use a mini-batch size of 16 and training these mod-
els for up to 20 epochs, evaluating on the validation
set every 4096 steps, stopping early after five check-
points with no improvement in validation accuracy.

C Comparing Simple Features

In Table 10, we compare our SCFG features to cor-
responding n-gram features in terms of prevalence,
accuracy, and the correlation with BERT’s error
rate on SNLI and QQP. The aim of this experiment
is to estimate the extent to which the BERT classi-
fiers exploit the type of syntactic patterns identified
by the grammar or, for example, discard positional
information.

D Additional Analysis

D.1 Additional Features

We list additional features for IMDb (Table 11),
SUBJ (Table 12), SNLI (Table 13), and QQP (Ta-
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Number of examples BERT accuracy
SCFG N-gram pairs Hyp. only SCFG N-gram pairs Hyp. only
S C S C S C S C S C S C

SNLI Entailment
Subj. phrase hypernym 4,115 4,894 5,204 6,149 8,698 11,427 92.5 80.3 92.0 80.8 93.0 81.8
Copy verb 908 418 3,151 2,990 6,224 9,884 98.6 83.6 95.5 81.5 92.7 82.0
Expletive construction 1,087 638 1,682 1,112 1,782 1,368 97.2 77.8 96.7 73.9 96.4 74.2

Contradiction
Subj. antonym 1,127 108 2,178 1,121 10,243 18,129 96.9 61.5 95.5 81.1 88.2 84.2
Subj. phrase antonym 1,116 235 1,784 1,148 9,156 15,327 98.2 77.8 94.0 83.8 88.8 84.7
Verb antonym 645 50 1,107 215 6,104 7,188 99.4 55.6 97.8 68.2 93.1 82.6
Definite article 6,055 9,381 10,803 17,470 10,803 17,470 86.2 82.2 80.3 85.7 80.3 85.7
Adj. antonym 432 128 1,565 1,099 2,262 2,658 91.7 71.4 92.3 80.1 90.1 84.1

Neutral
Add function word 7,317 7,161 21,024 40,092 86.6 81.0 78.9 87.7
Add object noun 2,964 1,711 16,343 29,792 89.0 76.1 80.1 86.9
Add adjective 1,404 541 6,044 7,298 94.4 69.2 84.1 83.1
Add PP phrase 1,009 402 2,186 1,473 92.9 77.0 89.7 77.5

QQP Paraphrase
Discussion topic 1,806 373 2,210 480 2,891 963 98.4 56.9 98.3 58.1 98.2 68.3
How-to question 6,415 3,269 6,964 3,587 17,123 14,370 90.3 71.2 90.5 71.7 90.6 78.5
Same question word 10,403 6,861 11,485 7,634 25,302 24,279 90.3 75.0 90.3 75.1 89.5 80.6

Table 10: We compare the SCFG features from SNLI (top) and QQP (bottom) with an equivalent pair-of-n-gram
feature that discards the alignment information provided by the grammar (see Section 6). For example, let xa, xb

denote the first and second sentence in a pair, and t denote the maximum likelihood SCFG tree. In the first row, the
SCFG feature represents the indicator 1[(14 a man/a person) ∈ t∨(14 a woman/a human) ∈ t∨. . .]; the N-gram
pair feature represents the indicator 1[(a man ∈ xa ∧ a person ∈ xb) ∨ (a woman ∈ xa ∧ a human ∈ xb) ∨ . . .];
and the Hypothesis-only n-gram feature (Hyp. only) represents 1[(a person ∈ xb) ∨ (a human ∈ xb) ∨ . . .].
In the case of an empty alignment, e.g. wa/ε, the equivalent n-gram feature is defined as wa ∈ xa. For each
feature Z, we find the examples for which Z = 1 and partition them into supporting examples (S) and counter-
examples (C) according to whether or not they have the class label y that appears most often in the training
example for which Z = 1. We report the number of training examples in each subset and the accuracy of a BERT
classifier on corresponding validation examples. The simpler features appear in more examples but tend to be less
discriminative and to have a weaker correlation with the BERT classifier’s accuracy: BERT performs relatively
worse on the supporting examples, and better on the counter-examples, indicating that these features may be less
useful for diagnosing classifier errors. In QQP, the grammar features do not convey much more information than
n-gram pairs, perhaps indicating that syntactic alignment is relatively unimportant for identifying paraphrases in
this dataset.

ble 14). For each table, we pick the 1,000 sub-
trees with the highest mutual information scores
(restricted to subtrees with two or more leaves)
and group them by root label α and majority class
label y. For each subtree s, the corresponding fea-
ture Zs is the boolean feature defined as 1 if sub-
tree s appears in the maximum likelihood parse
tree and 0 otherwise, and we calculate the mu-
tual information using the empirical likelihoods,
p̂(y, s) ∝ 1 +

∑
ti,yi

1[yi = y ∧ s ∈ ti], where
ti represents the parse for input xi. Each row rep-
resents a composite feature Zα,y =

∨
s∈S(α,y) Zs,

where S is the subset of the top 1,000 subtrees
that have root label α and majority class label y.
We list the rows in decreasing order of I(Zα,y;Y ).
For each row, we report the number of training
examples with Zα,y = 1 for each class label, and
list the spans corresponding to up to five subtrees
s ∈ S(α, y), in decreasing order of I(Zs;Y ).

D.2 Higher Level Features

Table 15 lists the twelve binary production rules
α → β γ that have the highest mutual informa-
tion in SNLI. For each rule r, the corresponding
feature Zr is the boolean feature defined as 1 if
production rule r appears in the maximum likeli-
hood parse tree and 0 otherwise, and we calculate
the mutual information using the empirical likeli-
hoods, p̂(y, r) ∝ 1 +

∑
ti,yi

1[yi = y ∧ r ∈ ti],
where ti represents the parse for input xi. The most
informative features include removing a preposi-
tional phrase (entailment) and adding an object or
prepositional phrase (neutral).

D.3 Contrast Sets

In addition to creating rule-based contrast sets, we
also create a set of contrasting examples manually
according to the following procedure, illustrated in
Table 16. For a given shortcut feature Z associated
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Root Examples N P

25 so bad , waste your time , not funny , even worse , the worst movie 5,448 1,562
25 highly recommended , a must see , a great movie , a great job , a great film 1,484 4,176
10 waste of time , bad movie , good thing , terrible movie , horror movie 1,904 297
10 must see , great job , great movie , great film , wonderful movie 678 2,530
18 at all , at all costs , at least , at best , than this 5,272 2,710
31 don ’ t waste your time , i mean , don ’ t bother , it fails , it was so bad 2,107 463
21 worst movie , worst film , worst movies , piece of crap , worst films 2,368 646
31 i loved it , i recommend it , i love this movie , i loved this movie , i highly recommend it 191 1,377
18 on dvd , as well , in love , at the same time , for everyone 1,471 3,337
15 your time , your money , all costs , the worst movies , this crap 7,836 5,567
15 the same time , all ages , the best movies , the best , the show 2,413 4,383
30 well - , must - , heart - , fun , , fun and 647 2,039
30 really bad , boring , , dull , , low budget , so - 2,700 1,069
16 3 / , 4 / , 2 / , 1 / , 1 out of 1,673 450
9 don ’ t , i ’ m , there was , the acting is , i could 9,203 7,415
7 loved it , love this movie , loved this movie , recommend it , enjoyed it 906 2,229
24 of time , of crap , of the worst movies , of my life , of the worst films 3,306 1,692
17 at all . , at all costs . , instead . , whatsoever . , ? ? ? 2,333 976
29 10 / 10 , 8 / 10 , 7 / 10 , highly recommended . , 9 / 10 5 481
7 be funny , work with , sit through , be a comedy , waste your time 1,525 468
19 the acting , this movie , the plot , the script , it just 5,849 3,993
16 10 / , 8 / , 7 / , 9 / , 7 out of 396 1,304
13 bad acting , bad movies , special effects , poor acting , terrible acting 1,623 572
0 don ’ , couldn ’ , didn ’ , wasn ’ , can ’ 6,426 4,611
5 walter matthau , james stewart , jon voight , william powell , philo vance 85 666
29 4 / 10 , 3 / 10 , 1 / 10 , 2 / 10 , 1 / 2 from * * * * 416 13
8 30 minutes , five minutes , 10 minutes , 90 minutes , 2 hours 1,083 329
21 same time , best movies , first time , best movie , best film 288 966
24 of life , of the best , of the best movies , of fun , of my favorites 579 1,424
9 it is , i highly , i first , you will , this is 5,595 6,748
1 my favorite , his best , today ’ s , my only , my all time 655 1,386
17 together . , as well . , today . , very well . , too . 392 978
28 ’ m , ’ re , ’ t , ’ d , ‘ s 3,283 2,200
22 avoid this movie , first of all , i have ever seen , save your money , skip this one 689 248
13 great performances , great acting , excellent performances , twists and turns , great fun 100 410
14 and enjoy , and sad , 10 / 10 , , as always , worth watching 47 277
11 " film , " movie , " plot , " comedy , " so bad it ’ s good 207 19
5 ed wood , steven seagal , van damme , uwe boll , tom savini 167 7
14 or something , . . . , and boring , , right , and pointless 989 501
6 . . , . . . , . . well , . . no , . . oh 2,753 1,935
19 this game , the series , my only complaint , the film , it also 1,435 2,024
1 their right , your time or , someone ’ s , your time and , your local 174 31
23 it off , me wrong , it up , through the whole thing , down the toilet 465 205
22 a must see , highly recommended , as always , i think , of course 504 793
23 out on dvd , me away , - on 12 81
20 ’ n 6 29
8 many years 29 66
0 you don ’ 212 282

Table 11: Additional IMDb features (see Section D.1). We report the number of positive (P) and negative (N)
training examples associated with each feature and highlight the features according to the most common class.
Many features are related to clear sentiment markers like adjectives, but it is also easy to identify features corre-
sponding to numerical ratings and other patterns, like actor names, that we might not expect to be correlated with
class labels.
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27 his life , his wife , his father , his mother , their lives 323 1,305
27 a movie , the film , the movie , this movie , the screen 846 134
13 the movie , but it , the film , if you , if it 624 78
28 decides to , order to , " " , has been , begins to 133 614
2 " " , best friend , young man , young [UNK] , [UNK] girl 48 423
3 finds himself , finds out , falls in love , is [UNK] , is sent 57 403
28 ’ t , ’ s , ’ re , ’ ll , ’ s not 1,396 753
2 [UNK] movie , [UNK] film , running time , romantic comedy , [UNK] plot 279 14
13 the two , when he , where he , the gang , the girls 16 234
1 . . , as [UNK] , , too , in a way , in the right place 359 85
8 [UNK] [UNK] , [UNK] [UNK] , [UNK] [UNK] , [UNK] [UNK] [UNK] , ’ s mother 22 204
1 in love , " " , with him , with her , for her 61 291
3 comes off , ’ s hard , makes up , ’ d expect , doesn ’ t 176 29
31 . . . , . ’ , of life . , in its [UNK] . , in years . 203 50
6 ’ s ] , ’ ve seen , ’ s also , ’ t [UNK] , ’ t seen 160 34
8 - - , ’ s film , and [UNK] , or [UNK] , - [UNK] [UNK] 428 209
12 of the film , of a movie , of the year , of a [UNK] , of the plot 82 5
12 of his father , of their own , of his life , of the world , of the [UNK] 31 128
25 one day , he is [UNK] , along the way , at the same time , in the meantime 1 40
25 it ’ s [UNK] , it ’ s , that ’ s , for the most part , the film [UNK] 33 1
6 " " [UNK] , ’ s got , order to [UNK] , struggle to find , " " tells 5 43
31 " " . , on him . , of it . , for [UNK] . , in the [UNK] . 2 34
29 the [UNK] , her [UNK] , his [UNK] , their [UNK] , two [UNK] 61 112
29 its [UNK] , this [UNK] 27 5
15 sang - woo , daniel [UNK] , played by [UNK] 0 12
23 [UNK] [UNK] , - and 33 13
10 - [UNK] [UNK] 6 1
22 the most part 4 0
11 silence of the lambs 4 0
0 [UNK] of a movie 4 0
21 [UNK] [UNK] , 0 4
70 daniel [UNK] 0 4
23 year - old 0 4
22 this " " 0 4
18 &̂ # 214 0 4
0 [UNK] of [UNK] [UNK] 0 4
11 death of his father 0 3
26 dickens ’ 3 0

Table 12: Additional SUBJ features (see Section D.1). We report the number of subjective (S) and objective
(O) training examples associated with each feature and highlight the features according to the most common class.
These features reflect how this dataset was constructed (Pang and Lee, 2004): the subjective class consists of movie
reviews from Rotten Tomatoes and the objective class consists of movie summaries from IMDb.
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14 a man/a woman , a woman/a man , a man/ nobody , a boy/a girl , a dog/a cat 235 1,690 307
17 ε/to work , ε/to get , ε/to buy , ε/the park , ε/on vacation 252 467 1,715
14 a man/a person , a man/a man , a woman/a person , man/a man , a man/a human 6,212 3,354 3,833
0 in a/on the , on a/in a , on the/in the , on a/in the , on the/in a 555 1,810 793
4 a /there is , ε/there are , two /there are , a /there are , ε/there is 1,356 449 402
0 on a/on a , at a/at a , in a/in a , on the/on the , in a/wearing a 3,074 1,703 1,696
17 ε/at home , ε/in bed , ε/’ t , ε/ice cream , ε/watching tv 56 597 210
2 in the grass/ outside , down the street/ outside , in the snow/ outside , on the sidewalk/ outside ,

in the snow/in the snow
689 107 230

0 on a/for a , in a/for a , on the/for a , in the/ a , of a/for a 157 222 752
14 a man/the man , a man/a tall human , a man/a couple , a woman/the woman ,

a woman/a tall human
1,214 1,765 2,375

24 black dog/ cat , little girl/a boy , young woman/a man , man/naked man , brown dog/ cat 34 278 35
24 man/tall human , woman/tall human , man/old man , man/tall person , man/construction worker 83 135 368
24 group of people/there are people , little boy/a boy , black dog/ animal ,

group of people/several people , young boy/a child
836 367 446

16 in the/ε , on a/ε , down a/ε , through a/ε , through the/ε 9,099 7,829 7,798
10 towards the camera/ε , in the sand/ε , down a road/ε , with red - hair/ε , on the street/ε 1,048 621 573
19 in the snow/ outside , sitting on a bench/sitting on a bench , in the snow/ outdoors ,

in the air/ jumping , in the grass/ outside
78 2 5

21 in front/in front , wearing hats/wearing hats , wearing glasses/wearing glasses ,
upside down/upside down , wearing a hat/wearing a hat

97 12 21

10 in his hands/ε , ’ s hair/ε , wearing a brown/ε , with a bag/ε , on the road/ε 28 86 20
11 - hair/ε , green shirt/ε , striped shirt/ε , street vendor/ε , crowded street/ε 160 81 64
5 in front/ε , and shorts/ε , and smiling/ε , while people/ε , near water/ε 572 396 383
4 two young/the , two/the two , four young/the , ε/one of , ε/a man and 91 147 204
2 down the street/ home , in the sand/on the beach , at a table/ lunch , on a bench/in a park 1 1 28
17 ε/at least , ε/a woman , ε/and child 39 4 14
16 climb a/ε , playing a/ε , over their/ε , , "/ε , into the/ε 249 304 180
11 brown jacket/ε , blue plaid/ε , blue dress/ε , baseball uniform/ε , dark shirt/ε 17 10 48
27 of people/ person , of people/ is , of men/of women 28 81 48
31 is walking/is walking , is smiling/is smiling , are dancing/are dancing 21 1 2
4 two /there is , two /there is only , three/the three , three young/the , two young/two old 21 67 38
27 of people/are people , of people/of people 210 138 129
8 laughing /laughing at , crying /crying because 0 0 14
10 down a city/ε , in an office/ε , and hard hats/ε , wearing a black/ε 31 20 60
27 of people/of friends , of dogs/ dogs 3 0 17
5 wearing glasses/ε , around her/ε , in red/ε , of corn/ε , of volleyball/ε 71 128 95
2 at night/during the day 0 8 0
16 on two/ε , in red/ε , and hard/ε 56 67 92
5 with black/ε , of young/ε 38 28 54
11 brown hat/ε 0 7 1
15 soccer ball/playing soccer 13 3 7
15 tennis ball/playing fetch 0 0 5
6 man and a/ε 2 8 1
6 man ’ s/ε 9 2 2
21 playing soccer/playing soccer 11 4 14
6 side of a/ε 17 11 25
21 hanging out/hanging out 0 6 2

Table 13: Additional SNLI features (see Section D.1). We report the number of entailment (E), contradiction (C),
and netural (N) training examples associated with each feature and highlight the features according to the most
common class. Contradiction features tend to involve antonyms, neutral features tend to involve additions, and
entailment features involve copied clauses and hypernyms.
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25 new year/new year , world war/world war , donald trump/donald trump 538 2,813
14 how can/how can , how do/how can , how can/how do 4,072 7,952
31 improve my/improve my , earn money/earn money , make money/make money 622 2,529
27 candy imported/candy imported , lose weight/lose weight , writing skills/writing skills 93 1,257
14 is /what is , is /how do , is /what are 1,759 410
3 candy imported in/candy imported in , not be/not be , traffic to/traffic on 76 839
10 i improve my/i improve my , you have/you have , i earn money/i earn money 316 1,336
7 saltwater taffy/saltwater taffy , way to/way to , purpose of/purpose of 251 1,097
24 do to/ε , to learn/to learn , is //ε 231 897
4 ε/do to , ε/way to , ε/and why 742 1,673
3 [UNK] ./[UNK] . , mean in/mean in , politics and/politics and 349 16
2 ε/it like , ε/" " , ε/like to 642 154
4 ε/" " , ε/’ t , ε/in [UNK] 740 218
24 " "/ε , [UNK] in/ε , [UNK] [UNK]/ε 558 127
25 the word/the word , the lewis/the lewis , a sentence/a sentence 335 41
19 hollywood movies/hollywood movies , day of your life/day of your life , company in delhi/company in delhi 5 158
27 [UNK] . com/[UNK] . com , politics and government/politics and government , blood pressure/blood pressure 128 1
2 ε/? what are , ε/? what , ε/if yes 74 311
10 the word ‘/the word ‘ , you determine the lewis/ is the lewis , i watch/i watch 103 8
8 ε/? what are some examples , ε/from your perspective , ε/? how do they 18 108
19 [UNK] . com/[UNK] . com , college in singapore/college in singapore 52 0
18 time travel to/time travel , life ?/life , spotify is/spotify 0 49
11 will win/will win , i can/ do , music do/music do 8 75
5 best day of your life/best day of your life , purpose of life/purpose of life , meaning of life/meaning of life 1 53
31 solve this/solve this , determine the lewis/is the lewis , calculate the/calculate the 60 3
7 review of/review of , kind of/kind of , aspects about/aspects about 515 303
8 ε/it like to , ε/it like to be , ε/like to be 43 1
11 competitive is/competitive is , much does/much does , business can/business can 92 21
15 what is [UNK] . com/what is [UNK] . com , is [UNK] . com legit/is [UNK] . com legit ,

what is the meaning of marathi word ‘ [UNK] ’/what is the meaning of marathi word ‘ [UNK] ’
38 0

9 what is [UNK] . com ?/what is [UNK] . com ? , is [UNK] . com legit ?/is [UNK] . com legit ? ,
how is the word ‘ [UNK] ’ used in a sentence ?/how is the word ‘ [UNK] ’ used in a sentence ?

38 0

6 [UNK] . com/[UNK] . com , [UNK] [UNK]/[UNK] [UNK] 44 3
1 is [UNK] . com/is [UNK] . com , is [UNK] [UNK]/is [UNK] [UNK] 32 0
6 the best day of your life/the best day of your life , some examples/some examples ,

the point of life/the point of life
3 31

0 ε/from your perspective , , ε/we can remain satisfied in , ε/wanna ask someone please 0 21
12 [UNK] . com make money/[UNK] . com make money , [UNK] . com legit/[UNK] . com legit ,

the word ‘ [UNK] ’ used in a sentence/the word ‘ [UNK] ’ used in a sentence
21 0

21 long distance relationships/long distance relationship , your life ? what happened/your life ,
long distance relationships work/long distance relationship

0 19

20 spotify is not/spotify , new year ’ s/new year , your life ? what/your life 0 18
26 [UNK] /[UNK] and , [UNK] /" " 18 1
13 a person/i 2 16
0 ε/it like to be 9 0
15 what are some examples/what are some examples 3 15
1 are some examples/are some examples 3 15
12 trump win/trump win 0 8
18 [UNK] [UNK]/[UNK] [UNK] 25 10
13 " "/it 7 0
5 meaning of marathi word ‘ [UNK] ’/meaning of marathi word ‘ [UNK] ’ 6 0

Table 14: Additional QQP features (see Section D.1). We report the number of non-paraphrase (N) and para-
phrase (P) training examples associated with each feature and highlight the features according to the most com-
mon class. The paraphrase features tend to correspond to how-to questions (such as how to earn money) or
open-ended discussion questions—for example, about the 2016 presidential elections and the meaning of life. The
no paraphrase features include subtrees reflecting sequences that appear in both questions and differ only in one,
uncommon word, which is replaced with the unknown token. Training examples with this feature include “What
is instagramtop.com? What is bestmytest.com?”, or “How is the word ‘wry’ used in a sentence? How is the word
‘adduce’ used in a sentence?” This pattern appears exclusively in non-paraphrase examples.
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17 → 49 35 (17 (49 /to) (35 /work)) (17 (49 /to) (35 /get)) (17 (49 /to) (35 /buy)) 1,990 3,774 6,397
2 → 17 2 (2 (17 /the toy) (2 between his legs/between his legs)) (2 (17 /a picture) (2 in the snow/in

the snow)) (2 (17 /marco polo) (2 in the pool/in the pool))
627 1,495 2,415

2 → 0 83 (2 (0 at /during the) (83 night/day)) (2 (0 in the/in the) (83 snow/sand)) (2 (0 down a/down
a) (83 street/street))

7,704 10,499 10,112

2 → 8 17 (2 (8 /outside in) (17 /the summer)) (2 (8 /off to) (17 /some friends)) (2 (8 /music on an)
(17 /outside stage))

225 463 1,111

8 → 2 49 (8 (2 having a conversation/ talking) (49 /about)) (8 (2 an instrument/ music) (49 /for)) 260 595 1,200
19 → 78 2 (19 (78 walking/walking) (2 down the street/in the mall)) (19 (78 jumping/sitting) (2 in

the air/in a chair)) (19 (78 running/swimming) (2 through the snow/in a lake))
3,636 5,361 5,251

8 → 8 49 (8 (8 cheering /cheering for) (49 /their)) (8 (8 walking /walking down) (49 /a)) 161 265 772
19 → 44 10 (19 (44 walking/walking) (10 down the street/ )) (19 (44 running/running) (10 through the

water/ )) (19 (44 singing/singing) (10 into a microphone/ ))
1,232 543 416

8 → 21 49 (8 (21 playing soccer/playing soccer) (49 /in)) (8 (21 taking a picture/taking a picture) (49
/of)) (8 (21 for a picture/for a picture) (49 /after))

260 361 949

2 → 49 2 (2 (49 /to) (2 on the corner/cross the street)) (2 (49 /while) (2 reading a book/ reading)) (2
(49 /to) (2 down the street/ work))

369 685 1,130

19 → 8 17 (19 (8 laughing /laughing at) (17 /a joke)) 223 414 847
19 → 21 10 (19 (21 playing soccer/playing soccer) (10 on a field/ )) (19 (21 catching a football/catches

a football) (10 with both hands/ )) (19 (21 be towed/being towed) (10 by a aaa/ ))
1,690 1,004 797

15 → 92 2 (15 (92 cigarette/smoking) (2 in his mouth/ a pipe)) (15 (92 front/sitting) (2 of a building/
down))

957 1,943 1,627

4 → 89 43 (4 (89 a/there) (43 /is)) (4 (89 two/there) (43 /are)) (4 (89 a/there) (43 /are)) 1,071 503 427

Table 15: The highest ranked binary production rules by mutual information in SNLI, grouped by majority class
(Entailment, Contradiction, or Neutral). Each row shows up to three of the highest scoring subtrees that are
generated by that rule and have the same majority class label.

ID Premise Hypothesis y ŷ

x0 a white dog running down a path a black dog sitting on a bush C C

x1 a white dog running down a path a black dog running down a path C C
x2 a white dog running down a path a dog running down a path E E
x3 a dog running down a white path a dog running down a path E E
x4 a dog running down a path a black dog running down a path N N
x5 a dog running down a white path a black dog running down a path N C

Table 16: A set of manual contrastive edits we create for the “Adjective antonym” feature. y is the intended label
(Entailment, Contradiction, or Neutral) and ŷ is the prediction of a BERT classifier. See Section D.3.

with majority label yZ=1, we start by identifying
validation examples (x0, y0) for which Z = 1 and
y0 = yZ=1, and simplifying x0 by removing other
features that support yZ=1, getting a new instance
x1 with y1 = yZ=1, for which Z = 1 provides
the most evidence in favor of the label. Then we
make a series of small changes to get examples
x′, y′ with y′ 6= yz: first, several control examples
with Z 6= 0 to verify that our perturbations change
the model’s behavior as expected in the absence
of the feature (x2,...,4), and finally an instance with
Z = 1 (x5).

We apply this procedure to the “Adjective
antonym” feature, illustrated in Table 16. This
feature is associated with the pre-terminal label 85
and includes productions like white/black and
red/blue . Our test is to modify the premise by

moving the adjective from the subject noun to the
object noun, which changes the label from contra-
diction to neutral. We randomly select ten valida-
tion examples that contain the feature and have the
majority label, contradiction. For each example,
we create four control examples and one test ex-
ample, as in Table 16. The BERT model makes
the expected prediction for 40/40 control exam-
ples but misclassifies 9/10 test examples, in each
case predicting contradiction rather than neutral.
This indicates that the model predicts contradiction
when the premise and hypothesis contain contra-
dicting adjectives, even if the adjectives describe
different entities.
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