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Abstract

Entity typing aims to assign types to the en-
tity mentions in given texts. The traditional
classification-based entity typing paradigm has
two unignorable drawbacks: 1) it fails to assign
an entity to the types beyond the predefined
type set, and 2) it can hardly handle few-shot
and zero-shot situations where many long-tail
types only have few or even no training in-
stances. To overcome these drawbacks, we
propose a novel generative entity typing (GET)
paradigm: given a text with an entity mention,
the multiple types for the role that the entity
plays in the text are generated with a pre-trained
language model (PLM). However, PLMs tend
to generate coarse-grained types after fine-
tuning upon the entity typing dataset. In addi-
tion, only the heterogeneous training data con-
sisting of a small portion of human-annotated
data and a large portion of auto-generated but
low-quality data are provided for model train-
ing. To tackle these problems, we employ cur-
riculum learning (CL) to train our GET model
on heterogeneous data, where the curriculum
could be self-adjusted with the self-paced learn-
ing according to its comprehension of the type
granularity and data heterogeneity. Our exten-
sive experiments upon the datasets of different
languages and downstream tasks justify the su-
periority of our GET model over the state-of-
the-art entity typing models. The code has been
released on https://github.com/siyuyuan/GET.

1 Introduction

Entity typing aims to assign types to mentions of en-
tities from a predefined type set, which enables ma-
chines to better understand natural languages and
benefit many downstream tasks, such as entity link-
ing (Yang et al., 2019) and text classification (Chen
et al., 2019b). Traditional entity typing approaches
follow the classification paradigm to classify (as-
sign) the entity into a predefined set of types, which
have the following two unignorable drawbacks.

∗Corresponding authors.

In the early 1980s , P & G tried to launch 
here a concentrated detergent under the 

Ariel brand name that it markets in Europe.
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Figure 1: A toy example of entity typing through gener-
ation and classification paradigm, respectively.

1) Closed Type Set: The classification-based ap-
proaches fail to assign the entity to the types out
of the predefined set. 2) Few-shot Dilemma for
Long-tail Types: Although fine-grained entity typ-
ing (FET) and ultra-fine entity typing approaches
can classify entities into fine-grained types, they
can hardly handle few-shot and zero-shot issues.
In fact, there are many long-tail types only having
few or even no training instances in the datasets.
For example, more than 80% types have less than
5 instances and 25% types even never appear in the
training data from the ultra-fine dataset (Choi et al.,
2018).

To address these drawbacks, in this paper, we
propose a novel generative entity typing (GET)
paradigm: given a text with an entity mention,
the multiple types for the role that the entity
plays in the text are generated by a pre-trained
language model (PLM). Compared to traditional
classification-based entity typing methods, PLM-
based GET has two advantages. First, instead of
a predefined closed type set, PLMs can generate
more open types for entity mentions due to their
strong generation capabilities. For example, in Fig-
ure 1, fine-grained types such as “large detergent
company" and “large detergent manufacturer" can
be generated by PLMs for entity P&G, which con-
tain richer semantics but are seldom included by
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a predefined type set. Second, PLMs are capable
of conceptual reasoning and handling the few-shot
and zero-shot dilemma (Hwang et al., 2021), since
massive knowledge has been learned during their
pre-training.

However, it is nontrivial to realize PLM-based
GET due to the following challenges: 1) Entity typ-
ing usually requires generating fine-grained types
with more semantics, which are more beneficial to
downstream tasks. However, PLMs are biased to
generate high-frequency vocabulary in the corpus
due to their primary learning principle based on
statistical associations. As a result, a typical PLM
tends to generate high-frequent but coarse-grained
types even if we carefully finetune the PLM on the
fine-grained entity typing dataset (refer to Figure 5
in Section 4). Therefore, how to guide a PLM to
generate high-quality and fine-grained types for
entities is crucial. 2) It is costly for humans to an-
notate a great number of samples with fine-grained
types. Therefore, most existing works adopt het-
erogeneous data consisting of a small portion (less
than 10%) of human-annotated data and a large
portion (more than 90%) of auto-generated low-
quality data (e.g., by distant supervision), which
greatly hurts the performance of entity typing mod-
els (Gong et al., 2021). How to train a PLM to
generate desirable types on these low-quality het-
erogeneous data is also challenging.

The difficulty of using PLMs to generate high-
quality fine-grained types based on the low-quality
heterogeneous training data motivates us to lever-
age the idea from curriculum learning (CL) (Ben-
gio et al., 2009), which better learns heterogeneous
data by ordering the training samples based on their
quality and difficulty (Kumar et al., 2019). In this
paper, we propose a CL-based strategy to train our
GET model. Specifically, we first define a fixed
curriculum instruction and partition the training
data into several subsets according to the granular-
ity and heterogeneity of samples for model train-
ing. Based on the curriculum instruction, CL can
control the order of using these training subsets
from coarse-grained and lower-quality ones to fine-
grained and higher-quality ones. However, a fixed
curriculum ignores the feedback from the training
process. Thus, we combine the predetermined cur-
riculum with self-paced learning (SPL) (Kumar
et al., 2010), which can enforce the model dynam-
ically self-adjusting to the actual learning order
according to the training loss. In this way, our CL-

based GET model can make the learning process
move towards a better global optimum upon the
heterogeneous data to generate high-quality and
fine-grained types. Our contributions in this paper
are summarized as follows:

• To the best of our knowledge, our work is the
first to propose the paradigm of generative
entity typing (GET).

• We propose to leverage curriculum learning to
train our GET model upon heterogeneous data,
where the curriculum can be self-adjusted
with self-paced learning.

• Our extensive experiments on the data of dif-
ferent languages and downstream tasks justify
the superiority of our GET model.

2 Related Work

Classification-based Entity Typing The tradi-
tional classification-based entity typing methods
can be categorized into three classes. 1) Coarse-
grained entity typing methods (Weischedel and
Brunstein, 2005; Tokarchuk et al., 2021) assign
mentions to a small set of coarse types; 2) Fine-
grained entity typing (FET) methods (Yuan and
Downey, 2018; Onoe et al., 2021) classify men-
tions into more diverse and semantically richer on-
tologies; 3) Ultra-fine entity typing methods (Choi
et al., 2018; Ding et al., 2021; Dai et al., 2021)
use a large open type vocabulary to predict a set of
natural-language phrases as entity types based on
texts. However, FET and ultra-fine entity typing
methods hardly perform satisfactorily due to the
huge predefined type set. They also hardly han-
dle few-shot and zero-shot issues. Comparatively,
our GET model can generate high-quality multi-
granularity types even beyond the predefined set
for the given entity mentions.

Concept Acquisition Concept acquisition is very
related to entity typing which also aims to obtain
the types for the given entities, since entity types
are often recognized as concepts. Concept acquisi-
tion can be categorized into the extraction-based or
generation-based scheme. The extraction scheme
cannot acquire concepts not existing in the given
text (Chen et al., 2019a; Yang et al., 2020). The
existing approaches of concept generation (Zeng
et al., 2021) focus on utilizing the existing concept
taxonomy or knowledge bases to generate concepts
but neglect to utilize the large corpus. Our GET
model can also achieve text-based concept genera-
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Figure 2: Our PLM-based GET framework trained with
curriculum learning.

tion.

Curriculum Learning According to the curricu-
lum learning (CL) paradigm, a model is first trained
with the easier subsets or subtasks, and then the
training difficulty is gradually increased (Bengio
et al., 2009) to improve model performance in dif-
ficult target tasks, such as domain adaption (Wang
et al., 2021) and training generalization (Huang and
Du, 2019). The existing CL methods can be divided
into predefined CL (PCL) (Bengio et al., 2009) and
automatic CL (ACL) (Kumar et al., 2010). PCL
divides the training data by the difficulty level with
prior knowledge, while ACL, such as self-paced
learning (SPL), measures the difficulty according
to its losses or other models.

3 Methodology

In this section, we first formalize our task in this
paper and overview the framework of our GET
model. Then, we introduce the details of model
implementation.

3.1 Task Formalization

Given a piece of text X and an entity mention
M within it, the task of generative entity typ-
ing (GET) is to generate multiple types TS =
{T1, T2, ..., TK}, where each Tk(1 ≤ k ≤ K) is a
type for M w.r.t. the context of X .

3.2 Framework

As most of the previous entity typing models (Choi
et al., 2018; Lee et al., 2020; Gong et al., 2021),
our GET model is also trained upon the hetero-
geneous data consisting of a small portion of
human-annotated data and a large portion of auto-
generated data, due to the difficulty and high cost of
human annotation. We will introduce how to obtain
our auto-generated data in Section 4.1. The frame-

work of our model learning includes the following
three steps, as shown in Figure 2.

1. Prompt Construction: To better leverage the
knowledge obtained from the pre-training of
PLM, we employ the prompt mechanism (Liu
et al., 2021a) to guide the learning of our PLM-
based GET model;

2. Curriculum Instruction: As a key component
of CL, the curriculum instruction is responsi-
ble for measuring the difficulty of each sample
in the heterogeneous training data, and then
designing a suitable curriculum for the model
training process;

3. CL-based Learning: In this step, our PLM-
based GET model is trained with the designed
curriculum, which is capable of adjusting its
learning progress dynamically through self-
paced learning (SPL).

3.3 Prompt Construction
To generate the types of given entities by a PLM,
we construct the prompts in cloze format from the
Hearst patterns listed in Table 1. Specifically, each
input text X including an entity mention M is con-
catenated with a cloze prompt constructed with M ,
and the PLM is asked to fill the blank within the
cloze prompt. Recall the example in Figure 1, the
original text “In the early 1980s, P & G tried to
launch here a concentrated detergent under the
Ariel brand name that it markets in Europe” can
be concatenated with a cloze prompt such as “P &
G is a ” to construct an input prompt for the
PLM, which predicts “large detergent company",
“large detergent manufacturer" and “company" as
the types for P & G to fill the blank.

M is a such as M
M is one of especially M
M refers to , including M

M is a member of

Table 1: Prompts constructed from Hearst patterns.

3.4 Curriculum Instruction
Curriculum instruction is the core issue of CL,
which requires estimating the difficulty of samples
in terms of model learning, to decide the order of
using samples for model training.

For our specific PLM-based GET model, we
argue that the difficulty of a sample in terms of
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Figure 3: The landscapes of CE loss comparison for
the two training subsets with type length=1 and type
length≥2.

model learning greatly depends on the granularity
of its type, which could be roughly measured by the
length of the type term. To prove this, we generate
two subsets of training samples in the same size
from the auto-generated data according to their
type length: one subset with type length=1, and
the other subset with type length≥21. Then, we
train a typical PLM, T5 (Raffel et al., 2019) for one
epoch in the two subsets and record the landscapes
of loss. As observed in Figure 3, the length≥2
subset has lower converge and higher cross-entropy
(CE) losses than the length=1 subset when training
converges, which shows that it is more difficult for
the PLM to fit the training samples of fine-grained
types.

Based on this observation, we partition the auto-
generated data into two subsets, i.e., the subset
with one-word types (denoted as DA), and the sub-
set with types of more than one word (denoted as
DB), and DA is used for model training earlier than
DB . The human-annotated data (denoted as DC)
is finally used, as it usually contains many ultra
fine-grained types annotated by human annotators,
which is harder for model learning. For easier pre-
sentation later, we denote the whole training data as
D = DA

⋃
DB

⋃
DC = {< X(i),M (i), TS(i) >

}Ni=1, where N is the training sample size and a
sample is denoted as D(i)

k = < X(i),M (i), T
(i)
k >.

Based on the fixed curriculum instruction, CL can
control the order in which data are used for model
training, i.e., from DA to DB to DC .

3.5 CL-based Learning

T5 Backbone To meet the cloze format and gen-
erate more fine-grained types, we choose T5 (Raf-
fel et al., 2019) as the backbone PLM of our GET
model. T5 is an encoder-decoder pre-trained model,

1Here we chose length=1 and length≥2 to divide the train-
ing data since most of the types are no longer than 2

which can focus on the entire text and allow multi-
ple words to fill in the blanks. To train the T5, in
our settings, we define the loss function of sample
D

(i)
k as,

L
(
D

(i)
k

)
= LCE

(
T
(i)
k , f(X(i),θ,M (i))

)
(1)

where LCE is a CE loss function that calculates
the cost between the ground truth type T

(i)
k and

the predicted type f(X(i),θ,M (i)). θ denote the
model parameters.

SPL-based Training Process Our model train-
ing can be performed according to the above prede-
fined curriculum, but the feedback from the learn-
ing process is inevitably ignored, which may lead
to divergent solutions (Jiang et al., 2015). As an
alternative, we adopt self-paced learning (SPL) to
enforce the model to self-adjust the curriculum
according to the feedback from the training loss.
Formally, we define the objective of our CL as,

min
θ,v

E(θ,v;λ) =
N∑

i=1

K(i)∑

k=1

v
(i)
k L

(
D

(i)
k

)
+ g(v;λ)

(2)
where the binary variable v

(i)
k ∈ [0, 1] indicates

whether sample D
(i)
k should be incorporated into

the calculation of the objective. Specifically,

v
(i)
k =

{
1 L

(
D

(i)
k

)
< λ

0 L
(
D

(i)
k

)
≥ λ

(3)

and

g(v;λ) = −λ
N∑

i=1

K(i)∑

k=1

v
(i)
k , (4)

where K(i) is the number of types for <
X(i),M (i), TS(i) >, and λ is the “age" of SPL
to control the learning pace. The regularizer g(; )
is the binary self-paced function used to avoid over-
fitting (Jiang et al., 2014).

In the training process, “easy" samples with
small losses are used first for training. We update
λ = µλ to increase λ gradually, where µ > 1 is
the step size. With the growth of λ, more samples
with larger losses are gradually incorporated into
model training to obtain a more “mature" model.

Prior Knowledge to Optimize SPL As men-
tioned in Section 3.4, we expect that the model
is trained orderly by the three subsets according to
the predetermined curriculum and generates more
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fine-grained types. However, the order of using the
data for model training totally depends on the loss
function (Eq. 1) in SPL. Thus, SPL is limited in in-
corporating predetermined curriculum and the type
granularity into learning. Therefore, we treat the
predetermined curriculum and the type granularity
as prior knowledge to optimize SPL. Specifically,
we increase the weight of the samples with fine-
grained types to let the model pay more attention
to these data and assign each subset with different
weights to ensure that the training process is exe-
cuted according to the predetermined curriculum.
In particular, given the sample D

(i)
k , we define its

weight as

w(D
(i)
k ) = length(T

(i)
k ) ∗ γ(D(i)

k ) (5)

where

γ(D
(i)
k ) =





1 if D(i)
k ∈ DA,

2 if D(i)
k ∈ DB,

3 if D(i)
k ∈ DC .

(6)

Then, the loss function L in Eq. 1 is updated as

LCE

(
T
(i)
k , f(X(i),θ,M (i))) ∗ w

(
D

(i)
k

)
, (7)

which indicates that a sample with a large weight
(more difficult) can be incorporated later into the
training process since its v

(i)
k is more likely to

be 0 according to Eq. 3. We adopt an alterna-
tive convex search (ACS) to realize SPL, of which
the algorithm is shown in Appendix A. We use
Adam (Kingma and Ba, 2015) to update the model
parameters.

3.6 Type Generation

When the PLM in our GET model has been trained
through the aforementioned CL-based learning pro-
cess, we use it to generate the types for the given
entity mention. Specifically, we let the PLM fill in
the blank of the input text. To obtain more diverse
candidate types, we apply the beam search (Reddy
et al., 1977) with beam size as b, and select the b
most probable candidates. Then, we reserve the
types with confidence scores bigger than 0.5.

4 Experiments

In this section, we verify the advantages of our GET
model over the classification-based entity typing
models through our experiments. We also explore

the role of CL in guiding PLM-based type gen-
eration with different language data. We further
display the effectiveness of our generated entity
types in two downstream tasks.

4.1 Datasets
As we mentioned before, due to the expensive
manual labeling of fine-grained types, the training
dataset consists of a large portion of auto-generated
data and a small portion of human-annotated data.
Since PLMs have more difficulty fitting the train-
ing samples of fine-grained types (elaborated in
Figure 3 in Section 3.4), we partition the auto-
generated data into two subsets, and denote the
subset with one-word types as DA while the other
as DB . Furthermore, human-annotated data with
ultra fine-grained types is denoted as DC .

Auto-generated Data The auto-generated data
used in our model is obtained from the abstracts
of entities on Wikipedia (Vrandečić and Krötzsch,
2014). Specifically, we collect the abstract texts
and their hyperlinks pointing to the web pages of
mentioned entities, from which the type labels of
these mentioned entities can be obtained. In this
way, the obtained type labels are more consistent
with the contexts of entities, and thus of much
higher quality than those auto-generated with dis-
tant supervision (Gong et al., 2021).

To construct DA and DB from the auto-
generated data, we collect 100,000 Chinese and
English abstracts from Wikipedia, from which we
randomly select 500 samples as our test set, and
the rest are used as the training set. Then we split
the training set into two subsets DA and DB , ac-
cording to the length of the types as mentioned in
Section 3.4.

Human-annotated Data To demonstrate that
GET is superior to the classification-based ap-
proaches, we collect the human-annotated data
from four different entity type datasets. The statis-
tics of them are listed in Table 2. We compare
our model with baselines on BNN, FIGER and
Ultra-fine to demonstrate the superior performance
of GET on entity typing. GT dataset is used to
evaluate the effectiveness of CL upon the texts of
different languages and heterogeneous data. Please
note that we do sample the test set to reduce the
cost of manual evaluation on assessing whether
the newly-generated types are correct. However,
the results from the baselines and our model are
evaluated in the same test instances.

3065



Dataset Type Lang. Size of D3 Size of test set
BNN (Weischedel and Brunstein, 2005) Coarse-grained EN 10,000 500

FIGER (Shimaoka et al., 2016) Fine-grained EN 10,000 278
Ultra-Fine (Choi et al., 2018) Ultra fine-grained EN 5,500 500

GT (Lee et al., 2020) Multilingual
EN 4,750 250
ZH 4,750 250

Table 2: The statistic of different entity typing datasets.

Model BNN FIGER
CT # Prec. R-Recall R-F1 CT # Prec. R-Recall R-F1

Zhang et al. (2018) 555 58.10% 50.49% 54.03% 348 62.00% 49.85% 55.26%
Lin and Ji (2019) 534 55.90% 48.58% 51.98% 353 62.90% 50.57% 56.07%

Xiong et al. (2019) 558 58.40% 50.75% 54.31% 350 62.30% 50.09% 55.53%
Ali et al. (2020) 697 73.00% 63.43% 67.88% 399 71.00% 57.08% 63.29%

Chen et al. (2020) 718 75.20% 65.35% 69.93% 388 69.10% 55.56% 61.59%
Zhang et al. (2021) 732 76.70% 66.65% 71.32% 394 70.10% 56.36% 62.48%

Li et al. (2021) 668 69.90% 60.74% 65.00% 397 70.60% 56.76% 62.93%
Ours 875 82.30% 79.62% 80.94% 444 66.20% 63.52% 64.83%

Table 3: Comparison results of different approaches on the sample test set in coarse-grained and fine-grained entity
typing dataset.

4.2 Evaluation Metrics

The detailed information about the baselines and
some experiment settings is shown in Appendix B.
Please note that the baselines on BNN and FIGER
are different from those on Ultra-Fine.

For BNN and FIGER, we only reserve the type
in the predefined type set with the highest proba-
bility predicted by the model since there is only
one golden label in the dataset. Ultra-fine entity
typing aims to predict a set of natural-language
phrases that describe the types of entity mentions
based on texts. Therefore, we reserve the types
with the probability bigger than 0.5 for all models.
Please note that previous work adopts a classifica-
tion paradigm, while our GET model can generate
new types not existing in the predefined type set.
Therefore, annotators are invited to assess whether
the generated types are correct. The annotation
detail is shown in Appendix B.4.

We record the number of correct types assigned
to the entity mentions (CT #) and strict macro-
averaged precision (Prec.). Obviously, it is im-
possible to know all correct types generated based
on the input text in advance due to incalculable
search space. Therefore, we report the relative re-
call. Specifically, suppose CTs # is the total number
of new types obtained by all models. Then, the rel-
ative recall (R-Recall) is calculated as CT # divided

by CTs #. Accordingly, the relative F1 (R-F1) can
also be calculated with Prec. and R-Recall. In ad-
dition, we also record the average length of types
(Len.) under different training strategies to investi-
gate the effectiveness of CL and prior knowledge.

4.3 Overall Comparison Results

The comparison results on traditional entity typing
and Ultra-fine entity typing are shown in Table 3
and Table 4 2. The tables show that our model
(Ours) achieves consistent performance improve-
ments on these datasets. For BNN, our model sig-
nificantly improves Prec. and covers more entity
types. For FIGER, our model generates more types
than other baselines. For Ultra-Fine, the existing
models based on the classification paradigm are
extremely difficult to select the appropriate types
from the large predefined type set. Comparatively,
our GET model has no classification constraint
since it transforms multi-classification into a gen-
eration paradigm that is more suitable for PLMs.
Therefore, our model greatly improves the preci-
sion of Ultra-Fine and covers more types of entities.

We further display the capability of our model to
generate new types beyond the predefined type set,
as shown in Table 5. In the table, MaNew (Macro-

2The statistical significance test and data size analysis are
provided in Appendix B.5
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Model Ultra-Fine
CT # Prec. R-Recall R-F1

Xiong et al. (2019) 782 50.30% 24.28% 32.75%
Onoe and Durrett (2019) ELMo 884 51.50% 27.44% 35.81%
Onoe and Durrett (2019) BERT 884 51.60% 27.44% 35.83%

López and Strube (2020) 915 43.40% 28.41% 34.34%
Onoe et al. (2021) 1039 52.80% 32.26% 40.05%
Liu et al. (2021b) 1042 54.50% 32.35% 40.60%
Dai et al. (2021) 1213 53.60% 37.66% 44.24%

Ours 1275 87.10% 39.58% 54.43%

Table 4: Comparison results of different approaches on the sample test set in Ultra-fine entity typing dataset.

Dataset MaNew MiNew R.New
BNN 4 100 11.61%

FIGER 25 137 26.81%
Ultra-Fine 73 543 42.14%

Table 5: The number and ratio of new types generated
by our model on different datasets.

Figure 4: The ratio of training samples of different
learning strategies in each epoch.

New) is the total number of generated types beyond
the predefined type set, MiNew (Micro-New) is
the total number of generated types beyond the
human-annotated type set (i.e., golden labeled set
TS) of each instance, and R.New is the ratio of
new generated types per sample. The listed results
are counted upon the test sets in different datasets,
from which we find that our model can generate
abundant types that are not in the golden label set,
thereby increasing the diversity of entity types.

4.4 Effectiveness of CL

We further compare our model with the following
ablated variants to verify the effectiveness of CL.
FT is fine-tuned directly with training data without
CL; PCL adopts Baby Step (Bengio et al., 2009)
instead of SPL, which inputs the subsets into the
model in turn according to a fixed curriculum, but
ignores the feedback from the learning process;

Figure 5: The ratio of the types of length=1 and length ≥
2 in the original training dataset, and the types generated
by our GET model with fine-tuning (FT) or curriculum
learning (CL).

SPL w/o PK adopts SPL but ignores prior knowl-
edge in training.

In order to demonstrate the performance of the
compared models on Chinese and English data,
we only consider DC of GT in our ablation stud-
ies. Since the models are designed toward het-
erogeneous training data, we investigate their per-
formance on both the auto-generated test set and
human-annotated test set (in GT), which is dis-
played in Table 6. Please note that we only report
the Prec. and R-F1 due to the limited space. Based
on the results, the superiority of PCL and SPL over
FT verifies the advantage of CL over the general
training strategy, while the superiority of SPL w/o
PK over PCL verifies the effectiveness of SPL. Fur-
thermore, our GET model performs well on type
generation upon abstract texts (auto-generated data)
and common free texts (human-annotated data).

To explore the reason for the advantage of SPL,
we record the ratio of incorporated training samples
in each epoch. As shown in Figure 4, SPL gradually
incorporates the whole training data to train the
model. The training on the former subsets can
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Model Dataset Chinese English
CT # Prec. R-F1 Len. CT # Prec. R-F1 Len.

FT
Auto-

generated
data

690 84.46% 70.81% 2.80 870 75.85% 52.87% 1.48
PCL 646 91.76% 70.37% 2.75 864 85.97% 54.87% 1.32

SPL w/o PK 672 92.18% 72.22% 2.75 900 87.12% 56.66% 1.54
Ours 714 90.04% 74.18% 2.86 928 87.14% 57.84% 1.62
FT

Human-
annotated

data

383 72.54% 53.98% 2.65 352 84.82% 48.82% 1.72
PCL 370 77.24% 54.01% 2.64 375 88.03% 51.62% 1.69

SPL w/o PK 383 78.64% 55.59% 2.61 370 90.46% 51.53% 1.74
Ours 409 83.64% 59.28% 2.63 373 90.75% 51.88% 1.82

Table 6: Performance comparisons of our model and its variants on the auto-generated and human-annotated test set.

be regarded as a pre-training process that helps
model optimization and regularizes the training on
the latter subsets. Thus, SPL can better guide the
model to find a global minimum loss and make it
more generalizable.

4.5 Effectiveness of Prior Knowledge
From the Table 6, we also find that Ours can gen-
erate more fine-grained types than SPL w/o PK.
Without the prior knowledge, SPL only relies on
the self-judgment of the model and treats all the
selected samples equally, which ignores the data
heterogeneity and type granularity during training
and harms the model performance.

As shown in Figure 5, compared to the origi-
nal training dataset, there are more coarse-grained
types (length=1) than fine-grained types (length≥2)
generated by the directly fine-tuned GET model
(Generation with FT), while the GET model with
CL can generate more fine-grained types of the al-
most same ratio as the coarse-grained types. It is
because that the prior knowledge about the type
length is considered to re-weight the importance
of samples, making the model pay more attention
to fine-grained types. Thus, more fine-grained and
high-quality types are generated. Based on these
results, we believe that combining prior knowledge
with SPL is an excellent way to optimize CL.

We also explore the influence of different λ and
µ which is shown in Appendix B.6.

4.6 Applications
We further conduct experiments on the task of short
text classification and entity linking to prove that
the types generated by our model can promote the
downstream tasks.

Short Text Classification. Existing short text
classification approaches (Chen et al., 2019b) di-

Method Prec. Recall F1
No type 72.92% 72.70% 72.47%
types (KG) 73.99% 73.17% 73.30%
types (Gen.) 74.51% 73.41% 73.53%

Table 7: Performance of short text classification based
on Bi-LSTM without/with different external knowledge
on NLPCC2017 dataset.

Dataset Method F1
AIDA

CoNLL-YAGO
triples (KG.) 94.58%
triples (Gen.) 94.92%

ACE 2014
triples (KG) 89.74%
triples (Gen.) 90.54%

Table 8: Performance of entity linking model DCA-SL
with different external knowledge.

rectly use KG as external knowledge to improve
model performance. However, how to choose the
context-consistent types for the roles that the en-
tities play in the text relation is still a problem,
which may lead to unsatisfactory results. GET can
generate context-consistent types for entities, and
thus it can be adopted to promote the classifica-
tion performance. We conduct our experiments
in the NLPCC2017 dataset 3, the Chinese news
title dataset with 18 classes (e.g., entertainment,
game, food). We first use an NER model to iden-
tify entities in the text and directly apply our model
upon NLPCC2017 dataset to generate types for the
entities. Then we choose Bi-LSTM to achieve clas-
sification. we also collect corresponding types of
entities in the representative KG CN-DBpedia for
comparison. The results in Table 7 show that exter-
nal knowledge enhances the classification perfor-
mance, and the types generated by our GET model

3http://tcci.ccf.org.cn/conference/2017/taskdata.php
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Input Text Golden Generated
He was capped 42
times and scored 8
goals for Sweden,

and he played at the
2002 FIFA World Cup

nation

nation,
nordic country,
scandinavian

country

The Audit Bureau of
Circulations

was formed in 1914
to verify publication

circulation figures and
track media rates

administration,
organization

organization,
government

agency,
investigative

service

Chapman retired from
playing hockey after

the 1943 to 1944
hockey season

tournament,
event,contest,
game,activity,
sport,hockey

sport,
contact sport,
team sport,
winter sport

Table 9: Ultra-fine entity typing examples with the cor-
responding golden labels and generated types. Entity
mentions are in bold and underlined.

are more effective than those directly obtained from
KG.

Entity Linking. The representative entity link-
ing model DCA-SL (Yang et al., 2019) adopts the
entity description and triples in KG as an exter-
nal knowledge to enhance the performance of the
model in the entity linking task. To prove that the
types generated by our model are of high quality,
we first adopt our model to generate types for en-
tities based on texts. Then we replace the types
in the original triples in KGs with the types we
generated. From Table 8 we find that the gener-
ated types by our model can improve the entity
lining performance of DCA-SL effectively, indicat-
ing that the generated types are of high quality and
meaningful.

5 Conclusion

In this paper, we propose a novel generative
paradigm for entity typing, which employs a gener-
ative PLM trained with curriculum learning. Com-
pared with the traditional classification-based entity
typing methods, our generative entity typing (GET)
model can generate new types beyond the prede-
fined type set for given entity mentions. Our ex-
tensive experiments on several benchmark datasets
justify that the curriculum learning with SPL and
the prior knowledge of type length and subset order
help our model generate more high-quality fine-
grained types.

6 Limitations

Although we have proven that our GET model can
generate high-quality and new types beyond the

predefined type set for given entity mentions, it
also has some limitations. In this section, we ana-
lyze these limitations and hopefully advance future
work in GET.

6.1 Uncontrolled Generation

To delve into the model performance, we com-
pare the types generated by our approach with
the golden type labels in Ultra-fine entity typing
datasets. Table 9 lists three examples with the cor-
rect types generated by our model and the golden
labeled type set of the entities in the Ultra-Fine
dataset. The first example shows that our model
can generate more fine-grained types which may
not appear in the golden labeled set. The second
and third examples demonstrate that although our
model can generate new concepts, it may ignore
some correct types in the golden label set, e.g., “ad-
ministration". However, enforcing the model by
constraint decoding to generate the types in the
predefined type set may compromise the flexibility
of our model to generate new concepts. Therefore,
we hope that future work can handle this dilemma
with better methods.

6.2 Type Selection

As mentioned in Sec. 3.6, T5 adopts beam search to
generate the b most probable types with confidence
scores. Then we reserve the types with confidence
scores larger than the selection threshold. However,
it can hardly achieve a satisfactory balance to re-
serve the types by choosing a specific threshold to
directly truncate the output of T5. If we select a
relatively big threshold, we can get more accurate
types but may lose some correct types. If the recall
is preferred, precision might be hurt. Therefore, we
suggest that future work consider how to achieve a
better trade-off between precision and recall.
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A CL Algorithm

We adopt an alternative convex search (ACS) to
realize the SPL of our model training. As shown
in Algorithm 1, we use Adam to update the model
parameters.

Algorithm 1 Self-paced Learning with prior knowl-
edge for types generation.
Input: Input training data D, predetermined curriculum γ,
self-paced function g, step size µ, pre-training learning param-
eters θ , maximum number of iterations T and the number of
training epoch EP

Output: Model parameters θ̂
1: Initialize v and λ;
2: Derive prior knowledge according to γ and type length;
3: while ep < EP do
4: while t < T do
5: Compute the objective function E(θt,v;λ) with

prior knowledge;
6: Update θt+1 = Adam(E(θt,v;λ));
7: t = t+ 1;
8: end while
9: Record θ̂ = θT

10: Record v = argminv(E(θ̂,v;λ))
11: λ = µλ;
12: ep = ep+ 1;
13: end while
14: return θ̂

B Experiment Detail

B.1 Baselines of Traditional Entity Typing

Upon traditional entity typing dataset, namely
FIGER and BNN, we compare our model with
following baselines:

• Zhang et al. (2018): This approach uses a
neural architecture to learn a distributional
semantic representation to classify.

• Lin and Ji (2019): This approach proposes a
two-step mention-aware attention mechanism
to enable the model to focus on the important
words in mentions and contexts to improve
type classification performance.

• Xiong et al. (2019): This approach utilizes a
graph propagation layer to capture label cor-
relations for type classification.

• Ali et al. (2020): This method adopts edge-
weighted attentive graph convolution network
to refine the noisy mention representations.

• Chen et al. (2020): Under the undefined case,
this approach does not modify the labels in
the dataset.

• Zhang et al. (2021): This approach utilizes a
probabilistic automatic relabeling method that
treats all training samples uniformly to handle
noisy samples.

• Li et al. (2021): This approach proposes a
novel method based on a two-phase graph net-
work for the Fine-Grained Entity Typing task
to enhance the label representations via impos-
ing the relational inductive biases of instance-
to-label and label-to-label.

B.2 Baselines of Ultra-Fine Entity Typing

For Ultra-Fine dataset, we compare our model with
the following baselines:

• Onoe and Durrett (2019): This approach
adopts ELMo and BERT as the encoder to
fine-tune on the crowdsourced train split or
raw and denoised distantly-labeled data.

• López and Strube (2020): This approach pro-
poses a fully hyperbolic model for multi-class
multi-label classification, which performs all
operations in hyperbolic space.

• Onoe et al. (2021): This approach adopts a
BERT-based model with box embeddings to
capture latent type hierarchies for type classi-
fication.

• Liu et al. (2021b): This approach discovers
and exploits label dependencies knowledge
entailed in the data to sequentially reason fine-
grained entity labels for type classification.

• Dai et al. (2021): This approach uses a BERT
Masked Language Model to generate weak
labels for ultra-fine entity typing to improve
the performance of type classification.

B.3 Experiment Settings

Our experiments are conducted on a workstation
of dual GeForce GTX 1080 Ti with 32G memory,
and the environment of torch 1.7.1. We adopted a
T5-base with 12 layers and 12 self-attention heads
for the English dataset and mT5-small with 8 layers
and 6 self-attention heads for the Chinese dataset.
The hyperparameter settings of training our PLM-
based GET are: λ = 0.5, µ = 2. The beam size b
is 8. The coefficient weight α in the loss function
is 4.
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Data Size CT #. Prec. Recall F1
50% 1040 81.95% 32.29% 46.32%
100% 1275 87.10% 39.58% 54.43%

Table 10: Model Performance with different sizes of
training data in Ultra-fine entity typing task. 50% and
100% are the proportions of auto-generated data used to
train the model.

µ λ CT # Prec. Recall F1
2 0.5 373 90.75% 30.52% 45.68%
2 0.1 330 80.10% 27.00% 40.39%
2 1 359 86.51% 29.38% 43.86%
4 0.5 328 82.21% 26.84% 40.47%
4 0.1 361 82.42% 29.54% 43.49%
4 1 348 81.88% 28.48% 42.26%

Table 11: Our model’s performance with different hyper-
parameter settings.

B.4 Human Assessment

It is impossible to know all newly-generated types
apriori. Thus human annotators are needed to as-
sess whether the generated types are correct. We
employ two annotators to ensure the quality of the
assessment. Each predicated type is labeled with
0 or 1 by two annotators, where 0 means a wrong
type for the given entity and 1 represents the right
type for the given entity. If the results from the two
annotators are different, the third annotator will be
hired for a final check.

B.5 Result Confidence

We also conduct a statistical significance test (Dror
et al., 2018) to show our experiment results are
convincing. Specifically, we run our method on the
test set of the Ultra-fine entity typing dataset twice
with different random seeds. Then we implement
a t-test on the two results with a 0.05 significance
level. The result is not significant (p-value: 0.208)
and thus we can not reject the null hypothesis (H0:
result1-result2=0, where resulti=(CT#, Prec., R-
recall, R-F1)). Based on the above hypothesis test,
we believe that our experiment results are confident
and reproducible.

Besides, we do a run with 50% auto-generated
training data for the Ultra-fine entity typing task
and the results are shown in Table 10. We find that
our method suffers from a slight performance drop
but still outperforms the baselines, which shows
the effectiveness of auto-generated data.

B.6 Parameter Tuning Results
We explore the influence of different λ and µ on the
performance of our model, as shown in Table 11.
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