
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 1719–1730
December 7-11, 2022 ©2022 Association for Computational Linguistics

COST-EFF: Collaborative Optimization of Spatial and Temporal
Efficiency with Slenderized Multi-exit Language Models

Bowen Shen1,2, Zheng Lin1,2∗, Yuanxin Liu1,3, Zhengxiao Liu1,
Lei Wang1∗, Weiping Wang1

1Institute of Information Engineering, Chinese Academy of Sciences
2School of Cyber Security, University of Chinese Academy of Sciences
3MOE Key Laboratory of Computational Linguistics, Peking University

{shenbowen, linzheng, liuzhengxiao, wanglei, wangweiping}@iie.ac.cn
liuyuanxin@stu.pku.edu.cn

Abstract

Transformer-based pre-trained language mod-
els (PLMs) mostly suffer from excessive over-
head despite their advanced capacity. For
resource-constrained devices, there is an ur-
gent need for a spatially and temporally effi-
cient model which retains the major capacity
of PLMs. However, existing statically com-
pressed models are unaware of the diverse
complexities between input instances, poten-
tially resulting in redundancy and inadequacy
for simple and complex inputs. Also, minia-
ture models with early exiting encounter chal-
lenges in the trade-off between making predic-
tions and serving the deeper layers. Motivated
by such considerations, we propose a collab-
orative optimization for PLMs that integrates
static model compression and dynamic infer-
ence acceleration. Specifically, the PLM is
slenderized in width while the depth remains
intact, complementing layer-wise early exiting
to speed up inference dynamically. To address
the trade-off of early exiting, we propose a
joint training approach that calibrates slender-
ization and preserves contributive structures to
each exit instead of only the final layer. Ex-
periments are conducted on GLUE benchmark
and the results verify the Pareto optimality of
our approach at high compression and acceler-
ation rate with 1/8 parameters and 1/19 FLOPs
of BERT.

1 Introduction

Pre-training generalized language models and fine-
tuning them on specific downstream tasks has be-
come the dominant paradigm in natural language
processing (NLP) since the advent of Transform-
ers (Vaswani et al., 2017) and BERT (Devlin et al.,
2019). However, pre-trained language models
(PLMs) are predominantly designed to be vast
in the pursuit of model capacity and generaliza-
tion. With such a concern, the model storage and

∗ Zheng Lin and Lei Wang are the corresponding authors.

Tfm Layer 1

Tfm Layer 6
…

Emb Layer

Clf 1

Clf 6

Clf 12Tfm Layer 12

…

Clf

BERTBase COST-EFF (ours)

Tfm Layer 12

Tfm Layer 6

Tfm Layer 1

Emb Layer

Distillation

Dynamic acceleration
for temporal efficiency

Static slenderization
for spatial efficiency Computation demands

… …

Figure 1: An illustration of COST-EFF model structure
and inference procedure. Emb, Tfm and Clf are abbre-
viations of embedding, Transformer and classifier, re-
spectively. Blue bar charts denote probability distribu-
tion output by classifiers.

inference time of PLMs are usually high, mak-
ing them challenging to be deployed on resource-
constrained devices (Sun et al., 2020).

Recent studies indicate that Transformer-based
PLMs bear redundancy spatially and temporally
which comes from the excessive width and depth
of the model (Michel et al., 2019; Xin et al., 2021).
With static compression methods including net-
work pruning (Xia et al., 2022) and knowledge
distillation (Jiao et al., 2020), spatial overheads of
PLMs (i.e., model parameters) can be reduced to
a fixed setting. From the perspective of input in-
stances rather than the model, early exiting with-
out passing all the model layers enables the dy-
namic acceleration at inference time and dimin-
ishes the temporal overheads (Zhou et al., 2020).

However, static compression can hardly find an
optimal setting that is both efficient on simple in-
put instances and accurate on complex ones, while
early exiting cannot diminish the redundancy in
model width and is impotent for reducing the ac-
tual volume of model. Further, interpretability
studies indicate that the attention and semantic fea-
tures across layers are different in BERT (Clark

1719

et al., 2019). Hence, deriving a multi-exit model
from a pre-trained single-exit model like BERT in-
curs inconsistency in the training objective, where
each layer is simultaneously making predictions
and serving the deeper layers (Xin et al., 2021).
Empirically, we find that the uncompressed BERT
is not severely influenced by such inconsistency,
whereas small capacity models are not capable of
balancing shallow and deep layers. Plugging in
exits after compression will lead to severe perfor-
mance degradation, which hinders the complemen-
tation of the two optimizations.

To fully exploit the efficiency of PLMs and miti-
gate the above-mentioned issues, we design a slen-
derized multi-exit model and propose a Collabo-
rative Optimization approach of Spatial and Tem-
poral EFFiciency (COST-EFF) as depicted in Fig-
ure 1. Unlike previous works, e.g., DynaBERT
(Hou et al., 2020) and CoFi (Xia et al., 2022),
which obtain a squat model, we keep the depth
intact while slenderizing the PLM. Superiority of
slender architectures over squat ones is supported
by (Bengio et al., 2007) and (Turc et al., 2019) in
generic machine learning and PLM design. To ad-
dress the inconsistency in compressed multi-exit
model, we first distill an multi-exit BERT from the
original PLM as both the teaching assistant (TA)
and the slenderization backbone, which is more
effective in balancing the trade-off between layers
than compressed models. Then, we propose a col-
laborative approach that slenderizes the backbone
with the calibration of exits. Such a slenderization
diminishes less contributive structures to each exit
as well as the redundancy in width. After the slen-
derization, task-specific knowledge distillation is
conducted with the objectives of hidden represen-
tations and predictions of each layer as recovery.
Specifically, the contributions of this paper are as
follows.

• To comprehensively optimize the spatial and
temporal efficiency of PLMs, we leverage
both static slenderization and dynamic accel-
eration from the perspective of model scale
and variable computation.

• We propose a collaborative training approach
that calibrates the slenderization under the
guidance of intermediate exits and mitigates
the inconsistency of early exiting.

• Experiments conducted on the GLUE bench-
mark verify the Pareto optimality of our ap-

proach. COST-EFF achieves 96.5% perfor-
mance of fine-tuned BERTBase with approxi-
mately 1/8 parameters and 1/19 FLOPs with-
out any form of data augmentation.1

2 Related Work

The compression and acceleration of PLMs were
recently investigated to neutralize the overhead of
large models by various means.

The structured pruning objects include, from
small to large, hidden dimensions (Wang et al.,
2020), attention heads (Michel et al., 2019), multi-
head attention (MHA) and feed-forward network
(FFN) modules (Xia et al., 2022) and entire Trans-
former layers (Fan et al., 2020). Considering the
benefit of the overall structure, we keep all the
modules while reducing their sizes. Besides prun-
ing out structures, a fine-grained approach is un-
structured pruning which prunes out weights. Un-
structured pruning can achieve high sparsity of
97% (Xu et al., 2022) but is not yet adaptable to
general computing platforms and hardware.

During the recovery training of compressed
models, knowledge distillation objectives include
predictions of classifiers (Sanh et al., 2020), fea-
tures of intermediate representations (Jiao et al.,
2020) and relations between samples (Tung and
Mori, 2019). Also, the occasion of distillation
varies from general pre-training and task-specific
fine-tuning (Turc et al., 2019). Distillation enables
the training without ground-truth labels comple-
menting data augmentation. In this paper, data
augmentation is not leveraged as it requires a long
training time, but our approach is well adaptable
to it if better performance is to be pursued.

Dynamic early exits come from BranchyNet
(Teerapittayanon et al., 2016), which introduces
exit branches after specific convolution layers of
the CNN model. The idea is adopted to PLMs
as Transformer layer-wise early exiting (Xin et al.,
2021; Zhou et al., 2020; Liu et al., 2020). How-
ever, early exiting only accelerates inference but
does not reduce the model size and the redundancy
in width. Furthermore, owing to the inconsistency
between shallow and deep layers, it is hard to
achieve high speedup using early exiting alone.

The prevailing PLMs, e.g., RoBERTa (Liu et al.,
2019) and XLNet (Yang et al., 2019) are vari-
ants of Transformer with similar overall structures,

1Code is available at https://github.com/sbwww/
COST-EFF.

1720

https://github.com/sbwww/COST-EFF
https://github.com/sbwww/COST-EFF

well-adaptable to the optimizations that we pro-
pose. Apart from PLMs with increasing size,
ALBERT(Lan et al., 2020) is distinctive with a
small volume of 18M (Million) parameters ob-
tained from weight sharing of Transformer layers.
Weight sharing allows the model to store the pa-
rameters only once, greatly reducing the storage
overhead. However, the shared weights have no
contribution to inference speedup. Instead, the
time required for ALBERT to achieve BERT-like
accuracy increases.

3 Methodology

In this section, we analyze the major structures of
Transformer-based PLMs and devise correspond-
ing optimizations. The proposed COST-EFF has
three key properties, namely static slenderization,
dynamic acceleration and collaborative training.

3.1 Preliminaries

In this paper, we focus on optimizing the
Transformer-based PLM which mainly consists of
embedding, MHA and FFN. Specifically, embed-
ding converts each input token to a tensor of size
H (i.e., hidden dimension). With a common vo-
cabulary size of |V| = 30, 522, the word embed-
ding matrix accounts for < 22% of BERTBase pa-
rameters. Inside the Transformer, MHA has four
matrices WQ, WK , W V and WO, all of which
with input and output size of H . FFN has two ma-
trices W FI and W FO with the size of H × F .
As the key components of Transformer, MHA and
FFN account for < 26% and < 52% of BERTBase
parameters, respectively.

Based on the analysis, we have the following
slenderization and acceleration schemes. (1) The
word embedding matrix W t is decomposed into
the multiplication of two matrices following (Lan
et al., 2020). Thus, the vocabulary size |V| and
hidden size H are not changed. (2) For the trans-
formation matrices of MHA and FFN, structured
pruning is adopted to reduce their input or out-
put dimensions. (3) The inference is accelerated
through early exiting as we retain the pre-trained
model depth. To avoid introducing additional pa-
rameters, we remove the pre-trained pooler matrix
before classifiers. (4) Knowledge distillation on
prediction logits and hidden states of each layer
is leveraged as a substitute for conventional fine-
tuning. The overall architecture of COST-EFF is
depicted in Figure 2.

3.2 Static Slenderization
3.2.1 Matrix Decomposition of Embedding
As mentioned before, the word embedding takes
up more than 1/5 of BERTBase parameters. The
output dimension of word embedding is equal to
hidden size, which we don’t modify, we use trun-
cated singular value decomposition (TSVD) to in-
ternally compress the word embedding matrix.

TSVD first decomposes the matrix as Am×n =
Um×mΣm×nV n×n, where Σm×n is the singular
value diagonal matrix. After that, the three ma-
trices are truncated to the given rank. Thus, the
decomposition of word embedding is as

W
|V|×H
t ≈ W

|V|×R
t1 WR×H

t2

=
(
Ũ

|V|×R
Σ̃

R×R
)
Ṽ

R×H
,

(1)

where we multiplies Ũ and Σ̃ matrices as the first
embedding matrix W

|V|×R
t1 and WR×H

t2 = Ṽ is a
linear transformation with no bias.

3.2.2 Structured Pruning of MHA and FFN
To compress the matrices in MHA and FFN which
contribute to most of the PLM’s parameters, we
adopt structured pruning to compress one dimen-
sion of the matrices. As depicted in Figure 2, the
pruning granularity of MHA and FFN are attention
head and hidden dimension, respectively.

Following (Molchanov et al., 2017), COST-EFF
has the pruning objective of minimizing the differ-
ence between pruned and original model, which is
calculated by first-order Taylor expansion

|∆(S)| = |L(X)− L(X|hi = 0,hi ∈ S)|

=

∣∣∣∣∣∣
∑

hi∈S

δL
δhi

(hi − 0) +R(1)

∣∣∣∣∣∣

≈

∣∣∣∣∣∣
∑

hi∈S

δL
δhi

hi

∣∣∣∣∣∣
,

(2)

where S denotes a specific structure, i.e., a set of
weights, L(·) is the loss function and δL

δhi
is the

gradient of loss to weight hi. |∆(S)| is the impor-
tance of structure S measured by absolute value of
the first-order term. For simplicity, we ignore the
remainder R(1) in Taylor expansion.

In each Transformer layer, the structure S of
MHA is the attention head while that of FFN is
the hidden dimension as depicted in the lower part
of Figure 2. Specifically, the output dimensions

1721

…

Decomposition
of word embedding

Hidden dimension pruning
of FFN

Hidden
state

Attn
map

Postion & segment
embedding

Add
&

norm
ClfHidden

state

Add
&

norm
Input sequence

Embedding layer Transformer layer

FFNMHA

N'
heads

Attention head pruning
of MHA

…

…

…

…

N
heads

Tfm Layer 1

Tfm Layer 2
…

Emb Layer

Clf 1

Clf 2

Clf 12Tfm Layer 12

Knowledge distillation
of COST-EFF

Feature
distillation

Prediction
distillation

Entropy

Next layer

Output

Figure 2: Illustration of COST-EFF. The upper part is the general architecture and forward procedure of the model.
The lower part is the slenderization details of corresponding modules, where grey circles denote the input and
output dimensions of matrices and the lines connecting them are weights.

of WQ, WK , W V and W FI are compressed.
On the contrary, the input dimensions of WO and
W FO are compressed. Thus, the dimension of the
hidden states remains intact in COST-EFF. Also,
as a single but drastic pruning would usually cause
damage hard to recover, we use iterative pruning
(Tan and Motani, 2020) in COST-EFF which grad-
ually prunes out insignificant modules.

3.3 Dynamic Acceleration

3.3.1 Inference with Early Exiting

Unlike static compression, early exiting dynam-
ically determines the computation at inference
time, depending on the complexity of inputs and
the perplexity of the model. Specifically, we use
layer-wise early exiting, as shown in Figure 1, by
plugging in a classifier at each Transformer layer.

Following the experimental results of Elas-
ticBERT (Liu et al., 2022), entropy-based exiting
generally outperforms patience-based, we use en-
tropy of the classifier output as the exit condition
defined as H(x) = −∑C

i=1 p(i) ln p(i), where
p(·) is the probability distribution calculated by
softmax function and H(x) is the entropy of the
probability distribution x. If the entropy is greater
than a given threshold HT , the model is hard to
make a prediction at that state. Conversely, the
model tends to make a certain prediction with
small entropy, where the difference in the proba-
bility distribution is large and dominant.

3.3.2 Training Multiple Exits
When training the model with multiple exits, the
loss function of each exit is taken into account.
DeeBERT (Xin et al., 2020) introduced a two-
stage training scheme where the backbone model
and exits are separately trained. However, only
with the loss of the final classifier and the gra-
dients that back-propagate, shallow layers of the
backbone model are not capable of making confi-
dent predictions but rather serve the deep layers.
Thus, it is necessary to introduce the loss of inter-
mediate classifiers while training and calculating
the Taylor expansion-based structure importance
as Equation 2 in COST-EFF.

To balance the gradient from multiple classifier
losses, we use gradient equilibrium following (Li
et al., 2019) and scale the gradient of layer k to

∇′
wk

L =
1

L− k + 1

L∑

i=k

∇wk
Li, (3)

where L is the model depth, ∇wk
Li is the gradient

propagates from layer i down to layer k and ∇′
wk

L
is the rescaled gradient.

3.4 Collaborative Training of COST-EFF

3.4.1 Training with Knowledge Distillation
The small size and capacity of the compressed
model make it hard to restore performance only
with fine-tuning. Whereas knowledge distillation

1722

is used as a complement that transfers the knowl-
edge from the original teacher model to the com-
pressed student model. In this paper, we aim to
distill the prediction and intermediate features (i.e.,
hidden states) as depicted in Figure 2.

As the inconsistency between layers is observed
(Xin et al., 2021), simply using ground-truth la-
bels to train a compressed multi-exit model would
result in severe contradictions. Given this, we
first distill the original model into a multi-exit
BERTBase model with the same layers as the TA.
Then, each layer output of TA is used as soft la-
bels of the corresponding layer in COST-EFF as

Lpred =

L∑

i=1

CELoss
(
zTA
i /T, zCE

i /T
)
, (4)

where zTA
i and zCE

i are the prediction outputs of
TA and COST-EFF at the i-th layer, respectively.
T is the temperature factor usually set as 1. Be-
sides distilling the predictions, COST-EFF distills
hidden states to effectively transfer the representa-
tions of TA to the student model. The hidden state
outputs, denote as H i(i = 0, 1, · · · , L+1) includ-
ing embedding output H0 and each Transformer
layer output, are optimized as

Lfeat =
L+1∑

i=0

MSELoss
(
HTA

i ,HCE
i

)
. (5)

3.4.2 COST-EFF Procedure
As mentioned in Section 3.4.1, COST-EFF first
distills the model into a multi-exit TA model with
the same number of layers. Specifically, we dis-
till the predictions at this stage. Although feature
distillation is typically more powerful, representa-
tions of the single-exit model are not aligned with
the multi-exit model and will introduce inconsis-
tencies during training. Such distillation masks
the trivial implementations of different PLMs to
be compressed, as well as preliminarily mitigates
the inconsistency between layers with a larger and
more robust model. Then, the TA model is used as
both the slenderization backbone and the teacher
of further knowledge distillation.

During slenderization, we integrate the loss of
exits into Taylor expansion-based structure impor-
tance calculation. Compared to simply using the
loss of the final classifier, multi-exit loss helps cal-
ibrate the slenderization by weighing structures’
contribution to each subsequent exit instead of

only the final layer. In this way, the trade-off be-
tween layers can be better balanced in the slen-
derized model. After slenderization, the recov-
ery training is a layer-wise knowledge transferring
from TA to COST-EFF with the objective of min-
imizing the sum of Lpred and Lfeat which miti-
gates the contradictions of ground-truth label train-
ing on the slenderized multi-exit model.

4 Experimental Evaluation

4.1 Experiment Setup
Datasets We use four tasks of GLUE benchmark
(Wang et al., 2019), namely SST-2, MRPC, QNLI
and MNLI. The details of these tasks are shown in
Table 1 and most categories of GLUE are covered.

Task Category Labels Metric

SST-2 Single-sentence 2 Acc
MRPC Paraphrase 2 F1
QNLI Inference 2 Acc
MNLI Inference 3 Acc

Table 1: Details of the datasets.

Comparative Methods We compare the follow-
ing baselines and methods. (1) Different size of
BERT models, namely BERTBase, BERT6L-768H
and BERT8L-256H, fine-tuned based on the pre-
trained models of (Turc et al., 2019). (2) Represen-
tative static compression methods. DistilBERT
(Sanh et al., 2020) and TinyBERT (Jiao et al.,
2020). (3) Dynamic accelerated methods. Dee-
BERT (Xin et al., 2020), PABEE (Zhou et al.,
2020) and the pre-trained multi-exit model Elas-
ticBERT (Liu et al., 2022).

Model Settings As the number of parameters
profoundly impacts the capacity and performance,
we have two comparison groups with similar
model sizes inside each group. Models in the first
group are with less than 20M parameters and the
second group of models are of larger size above
50M parameters. The details of model settings can
be found in Table 2. Notably, the results of Distil-
BERT are extracted from the original paper and
the others are implemented by ourselves as the ex-
periments involve different backbone models and
training data. The implementation is with AdamW
optimizer on a single 24GB RTX 3090 GPU, while
train batch size is in {32, 64} and learning rate is
in {2e-5, 3e-5, 4e-5} varying from tasks.

1723

Model
Size

EE
L H A F

BERTBase 12 768 12× 64 3072

BERT8L-256H 8 256 4× 64 1024
TinyBERT4 4 312 12× 26 1200

DeeBERT12L-256H 12 256 4× 64 1024 ✓
PABEE12L-256H 12 256 4× 64 1024 ✓
COST-EFF8× 12 768 2× 64 256 ✓
BERT6L-768H 6 768 12× 64 3072
TinyBERT6 6 768 12× 64 3072
DistilBERT6 6 768 12× 64 3072

ElasticBERT6L 6 768 12× 64 3072 ✓
DeeBERT12L-512H 12 512 8× 64 2048 ✓

PABEE12L-512H 12 512 8× 64 2048 ✓
COST-EFF2× 12 768 6× 64 1536 ✓

Table 2: Settings of compressed models. L is the num-
ber of layers and H is the dimension of hidden states.
A denotes the MHA size as head_num × head_size,
and the intermediate size of FFN is F . Models with a
check sign in the EE column adopt early exiting.

4.2 Experiment Results
4.2.1 Overall Results
The results of COST-EFF and comparative meth-
ods are listed in Table 3. When counting parame-
ters, we include the parameters of embeddings and
use the vocabulary size of 30,522 as default. The
FLOPs are evaluated by PyTorch profiler with in-
put sequences padded or truncated to the default
length of 128 tokens and are averaged by tasks.

In the first group, the models are highly com-
pressed and accelerated, while the performance is
retained at approximately 96.5% by COST-EFF8×,
which is much better than the conventional pre-
training and fine-tuning of BERT8L-256H. Specif-
ically, COST-EFF8× out-performs TinyBERT4 in
all four tasks, suggesting that a slenderized model
preserving all the layers is superior to a squat one.
The slenderized architecture is more likely to ex-
tract hierarchical features for hard instances while
expeditiously processing simple instances. For
larger models, TinyBERT6 with general distilla-
tion gains a slight advantage over COST-EFF2×.
Whereas COST-EFF2× has a smaller volume than
TinyBERT6 and does not require general distilla-
tion, the performance gap is not significant. Mean-
while, TinyBERT6 without general distillation is
dominated by COST-EFF2× in both efficiency and
effectiveness, indicating the necessity of Tiny-

BERT general distillation. However, a large ef-
fort is required by general distillation which pre-
trains a single model of a fixed size and compu-
tation. In case the computation demand changes,
pre-training yet another model can be extremely
time-consuming. Compared to TinyBERT, COST-
EFF has advantages in both performance and flex-
ible inference.

To demonstrate the effect of dynamic accelera-
tion, we empirically select simple instances from
the development set which are shorter (i.e., lower
than the median non-padding length after tokeniza-
tion). The results on simple instances exhibit ex-
tra improvements attributed to dynamic inference,
which are hard to obtain with static models. No-
tably, shorter length does not always indicate sim-
plicity. For entailment tasks like QNLI, shorter in-
puts would contain less information, which poten-
tially aggravate the perplexity of language models.
Also, we plot performance curves with respect to
GLUE scores and FLOPs in Figure 3 and 4. The
performance curves are two-dimensional and ex-
hibit the optimality of different methods. Aiming
at obtaining the model with smaller computation
and performance, we focus on the models in the
upper left part of the figure, which is the Pareto
frontier plotted in dashed blue lines.

As depicted in Figure 3 and 4, both COST-
EFF8× and COST-EFF2× outperform DistilBERT,
DeeBERT, PABEE and BERT baselines. Com-
pared with TinyBERT and ElasticBERT, COST-
EFF is generally optimal. We find that early exit-
ing reduces the upper bound of NLI performance,
where both COST-EFF2× and ElasticBERT6L are
inferior to TinyBERT6. This issue may stem from
the inconsistency between layers. Given that the
complex samples in the NLI task rely on high-
level semantics, the shallow layers should serve
the deeper layers rather than solving the task by
themselves. However, this issue does not affect
global optimality. As shown in Figure 3, COST-
EFF8× has non-dominated performance against
TinyBERT4 on QNLI and MNLI, demonstrating
the flexibility of our approach.

The performance of models incorporating early
exiting is substantially affected by each exit. In
Figure 5, we plot the layer-wise performance of
models with early exiting in the first group and
the final performance of TinyBERT4. COST-
EFF8× achieves the dominant performance com-
pared to DeeBERT and PABEE. Compared to

1724

Model
Params FLOPs

SST-2 MRPC QNLI MNLI-m/mm
reduc. reduc.

BERTBase 1.0× 1.0× 93.1 90.5 91.7 84.4 / 84.5

BERT8L-256H 7.6× 13.5× 88.4 84.7 86.6 77.5 / 78.4
TinyBERT4 7.6× 18.6× 89.7 86.7 87.0 81.2 / 81.6

DeeBERT12L-256H 6.0× 14.9× 87.5 85.0 86.8 77.6 / 78.5
PABEE12L-256H 6.3× 14.5× 88.1 85.4 86.0 78.6 / 78.3

COST-EFF8× (ours) 7.9× 19.0× 90.6 87.1 87.8 81.3 / 81.8

BERT6L-768H 1.6× 2.0× 91.1 88.1 89.6 81.5 / 82.0
DistilBERT6 1.6× 2.0× 91.3 - 89.2 82.2 / -
TinyBERT6 1.6× 2.0× 91.6 89.2 91.3 84.2 / 84.4

TinyBERT6 w/o GD 1.6× 2.0× 91.2 88.5 90.0 83.5 / 83.4
ElasticBERT6L 1.6× 2.4× 91.2 89.4 90.5 83.2 / 83.2

DeeBERT12L-512H 1.9× 2.2× 89.8 89.0 89.8 81.8 / 82.6
PABEE12L-512H 2.0× 2.2× 89.7 86.9 89.2 81.6 / 81.9

COST-EFF2× (ours) 2.0× 2.4× 92.0 89.7 90.9 83.7 / 83.8

simple input instances

TinyBERT4 7.6× 18.6× 90.1 (+0.4) 83.6 (-3.1) 87.0 (+0.0) 81.4 / 83.4 (+0.9)
COST-EFF8× (ours) 7.9× 20.3× 91.5 (+0.9) 88.8 (+1.7) 87.9 (+0.1) 82.3 / 83.4 (+1.3)

Table 3: Results on GLUE development set. BERTBase is used as the baseline to evaluate the average compression
and acceleration rate, i.e., Params reduc. and FLOPs reduc., which are the higher the better. TinyBERT is imple-
mented by conducting task-specific distillation without data augmentation on the public general distilled models,
while TinyBERT6 w/o GD is initialized from pre-trained BERT6L-768H without general distillation. ElasticBERT6L
is initialized from the first 6 layers of ElasticBERT without pooler. The best results are in bold and the second best
results are underlined.

TinyBERT4, COST-EFF8× can achieve better per-
formance from the 7th to 12th layer, further ver-
ifying our claim that slender models are superior
to squat models in performance, benefiting from
the preserved architecture and its ability to extract
high-level semantics. Another way to obtain pow-
erful multi-exit models is alternating the backbone
from BERT to the pre-trained ElasticBERT (Liu
et al., 2022). In view of fairness, we uniformly
use BERT as the backbone of COST-EFF and com-
parative methods. Notably, our approach is well-
adaptable to ElasticBERT and the advanced per-
formance is exhibited in Appendix A.

4.2.2 Ablation Studies
Impact of knowledge distillation The ablation
experiments of distillation strategies aim to evalu-
ate the effectiveness of prediction and feature dis-
tillation. In this ablation study, the comparison
methods are (1) ablating feature distillation and
(2) alternating prediction distillation with ground-
truth label training. The results shown in Table 4
indicate that both objectives are crucial.

Model SST-2 MRPC QNLI

COST-EFF8× 90.6 87.1 87.8
−Lfeat 87.5 86.8 86.4
−Lpred 88.6 82.4 84.2

Table 4: Ablation results on GLUE development set
with 8× compression. Feature distillation is ablated in
−Lfeat, while ground-truth label is used to replace pre-
diction distillation in −Lpred. FLOPs of two ablated
methods are ensured more than COST-EFF8×.

Attributing to the imitation of hidden represen-
tations, COST-EFF8× has an advantage of 1.6%
in performance compared to training without fea-
ture distillation. Without prediction distillation,
the performance drops more than 3.4%. Previ-
ous works of static compression, e.g., TinyBERT
(Jiao et al., 2020) and CoFi (Xia et al., 2022),
are generally not sensitive to prediction distilla-
tion in GLUE tasks, as the output distribution of
the single-exit teacher model is generally in ac-
cordance with the ground-truth label. However,

1725

500 1000 1500 2000 2500
MFLOPs

85

86

87

88

89

90

91
Ac

c
SST-2

750 1000 1250 1500 1750 2000 2250 2500
MFLOPs

85

86

87

88

F1

MRPC

750 1000 1250 1500 1750 2000 2250 2500
MFLOPs

84

85

86

87

88

Ac
c

QNLI

1000 1250 1500 1750 2000 2250 2500
MFLOPs

76

77

78

79

80

81

82

Ac
c

MNLI-m

COST-EFF8 ×
TinyBERT4

BERT8L 256H

DeeBERT12L 256H

PABEE12L 256H

Pareto
95% BERT score (h)
5% BERT FLOPs (v)

Figure 3: Performance curves of models with 8× compression rate on GLUE development set. Horizontal grey
line indicates the 95% of BERTBase performance and vertical line indicates 5% BERTBase FLOPs.

2000 4000 6000 8000 10000
MFLOPs

85

86

87

88

89

90

91

92

Ac
c

SST-2

4000 6000 8000 10000
MFLOPs

86

87

88

89

F1

MRPC

4000 6000 8000 10000
MFLOPs

86

87

88

89

90

91

Ac
c

QNLI

4000 5000 6000 7000 8000 9000 1000011000
MFLOPs

80

81

82

83

84

Ac
c

MNLI-m

COST-EFF2 ×
TinyBERT6

DistilBERT6
BERT6L 768H

DeeBERT12L 512H

PABEE12L 512H

ElasticBERT6L

Pareto
97% BERT score (h)
25% BERT FLOPs (v)

Figure 4: Performance curves of models with 2× compression rate on GLUE development set. Horizontal grey
line indicates the 97% of BERTBase performance and vertical line indicates 25% BERTBase FLOPs.

a large decrease in COST-EFF performance is
observed in Table 4 if prediction distribution is
ablated. The result indicates that pursuing the
ground truth at shallow layers can deteriorate the
performance of deep layers. Such inconsistency
between shallow and deep layers commonly exists
in early exiting models, which is particularly hard
to balance by compressed models with small ca-
pacity. Instead, COST-EFF introduces an uncom-
pressed TA model to mitigate the contradiction at
an early stage and transfer the balance through pre-
diction distillation.

Impact of collaborative training In this paper,
we propose a collaborative approach for model
slenderization and exit training, intended to cali-
brate the pruning of shallow modules. To validate
the effectiveness of the training strategy, we ablate
the collaborative training at different times. First,
we implemented a two-stage training mode as Dee-
BERT does. Also, we implement COST-EFF8×
with exit loss ablated before and during slender-
ization. The layer-wise comparison of the above
methods is shown in Figure 6.

Intuitively, two-stage training has an advan-
tage on the final layer over collaborative training,

as the inconsistency between layers is not intro-
duced. However, the advantage diminishes in shal-
low layers, leaving the general performance unac-
ceptable. Compared to slenderizing without exit
loss, our approach has an advantage of 1.1% to
2.3%. Notably, slenderizing without calibration
of exit can still achieve similar performance to
COST-EFF at shallow layers, suggesting that the
distillation-based training is effective in restoring
performance. However, the inferior performance
of deep layers indicates that the trade-off between
layers is not well-balanced, since the slenderiza-
tion is conducted aiming at optimizing the perfor-
mance of the final classifier.

5 Conclusion

In this paper, we statically slenderize and dynam-
ically accelerate PLMs in the pursuit of inference
efficiency as well as preserving the capacity. To
integrate the perspectives, we propose a collabora-
tive optimization approach that achieves a mutual
gain of static slenderization and dynamic acceler-
ation. Specifically, the size of PLM is reduced in
model width, and the inference is adaptable to the
complexity of inputs without introducing redun-

1726

2 4 6 8 10 12

65

70

75

80

85

90
Ac

c
SST-2

2 4 6 8 10 12

82

84

86

88

F1

MRPC

2 4 6 8 10 12
Layer

60

65

70

75

80

85

Ac
c

QNLI

2 4 6 8 10 12
Layer

40

50

60

70

80
Ac

c

MNLI-m

COST-EFF8 ×
DeeBERT12L 256H

PABEE12L 256H

TinyBERT4

Figure 5: Layer-wise performance on GLUE develop-
ment set. Horizontal lines indicate the final classifier
performance of TinyBERT4.

dancy for simple inputs and inadequacy for hard
inputs. Comparative experiments are conducted
on GLUE benchmark and verify the Pareto opti-
mality of our approach at high compression and
acceleration rate.

Limitations

COST-EFF currently has the following limitations.
If they are addressed in future works, the poten-
tial capabilities of COST-EFF can be unleashed.
(1) During the inference of dynamic early exiting
models, the conventional practice is to set batch
size as 1 to better adjust the computational accord-
ing to individual input samples. However, such
a setting is not always effective as a larger batch
size is likely to reduce inference time, whereas
input complexities inside a batch may differ sig-
nificantly. Thus, it is inspiring to investigate a
pipeline that gathers samples with similar expec-
tations of complexity into a batch while control-
ling the priority of batches with different complex-
ities to achieve parallelism. (2) We choose natu-
ral language understanding (NLU) tasks to study
compression and acceleration following the strong
baselines TinyBERT (Jiao et al., 2020) and Elas-
ticBERT (Liu et al., 2022). However, the extensi-
bility of COST-EFF is yet to be explored in more
complex tasks including natural language gener-
ation, translation, etc. So far, static model com-
pression is proved to be effective in complex tasks
(Gupta and Agrawal, 2022) and we are seeking

2 4 6 8 10 12

82

84

86

88

90

92

Ac
c

SST-2

2 4 6 8 10 12

81

82

83

84

85

86

87

88

F1

MRPC

2 4 6 8 10 12
Layer

82

84

86

88

90

Ac
c

QNLI

2 4 6 8 10 12
Layer

72

74

76

78

80

82

Ac
c

MNLI-m

COST-EFF8 × (joint)
COST-EFF8 × (2 stage)

COST-EFF8 × (slend w/o exit)
TinyBERT4

Figure 6: Layer-wise performance (zoomed) of collab-
orative training ablation study on GLUE development
set. Horizontal lines indicate the final classifier perfor-
mance of TinyBERT4. COST-EFF8× (slend w/o exit)
is slenderized without the calibration of exits.

the extension of dynamic inference acceleration on
different tasks using models with an iterative pro-
cess.

Acknowledgements

This work was supported by National Natural Sci-
ence Foundation of China (No. 61976207, No.
61906187).

References

Yoshua Bengio, Yann LeCun, et al. 2007. Scaling
learning algorithms towards ai. Large-scale kernel
machines, 34(5):1–41.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for
NLP, pages 276–286, Florence, Italy. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

1727

https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

Angela Fan, Edouard Grave, and Armand Joulin. 2020.
Reducing transformer depth on demand with struc-
tured dropout. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Manish Gupta and Puneet Agrawal. 2022. Compres-
sion of deep learning models for text: A survey.
ACM Transactions on Knowledge Discovery from
Data (TKDD), 16(4):1–55.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. Dynabert: Dynamic
BERT with adaptive width and depth. In Advances
in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. TinyBERT: Distilling BERT for natural lan-
guage understanding. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
4163–4174, Online. Association for Computational
Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Hao Li, Hong Zhang, Xiaojuan Qi, Ruigang Yang, and
Gao Huang. 2019. Improved techniques for train-
ing adaptive deep networks. In 2019 IEEE/CVF In-
ternational Conference on Computer Vision, ICCV
2019, Seoul, Korea (South), October 27 - November
2, 2019, pages 1891–1900. IEEE.

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao,
Haotang Deng, and Qi Ju. 2020. FastBERT: a self-
distilling BERT with adaptive inference time. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6035–
6044, Online. Association for Computational Lin-
guistics.

Xiangyang Liu, Tianxiang Sun, Junliang He, Jiawen
Wu, Lingling Wu, Xinyu Zhang, Hao Jiang, Zhao
Cao, Xuanjing Huang, and Xipeng Qiu. 2022. To-
wards efficient NLP: A standard evaluation and a
strong baseline. In Proceedings of the 2022 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 3288–3303, Seattle,
United States. Association for Computational Lin-
guistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Ad-
vances in Neural Information Processing Systems
32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-
14, 2019, Vancouver, BC, Canada, pages 14014–
14024.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo
Aila, and Jan Kautz. 2017. Pruning convolutional
neural networks for resource efficient inference. In
5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings. OpenRe-
view.net.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. DistilBERT, a distilled ver-
sion of BERT: smaller, faster, cheaper and lighter.
arXiv:1910.01108 [cs]. ArXiv: 1910.01108.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. MobileBERT:
a compact task-agnostic BERT for resource-limited
devices. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2158–2170, Online. Association for Computa-
tional Linguistics.

Chong Min John Tan and Mehul Motani. 2020. Drop-
net: Reducing neural network complexity via iter-
ative pruning. In Proceedings of the 37th Inter-
national Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages
9356–9366. PMLR.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-
Tsung Kung. 2016. Branchynet: Fast inference via
early exiting from deep neural networks. In 2016
23rd International Conference on Pattern Recogni-
tion (ICPR), pages 2464–2469. IEEE.

Frederick Tung and Greg Mori. 2019. Similarity-
preserving knowledge distillation. In 2019
IEEE/CVF International Conference on Computer
Vision, ICCV 2019, Seoul, Korea (South), October
27 - November 2, 2019, pages 1365–1374. IEEE.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
The impact of student initialization on knowledge
distillation. CoRR, abs/1908.08962.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th

1728

https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
https://proceedings.neurips.cc/paper/2020/hash/6f5216f8d89b086c18298e043bfe48ed-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6f5216f8d89b086c18298e043bfe48ed-Abstract.html
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.1109/ICCV.2019.00198
https://doi.org/10.1109/ICCV.2019.00198
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.18653/v1/2020.acl-main.537
https://aclanthology.org/2022.naacl-main.240
https://aclanthology.org/2022.naacl-main.240
https://aclanthology.org/2022.naacl-main.240
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://proceedings.neurips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html
https://openreview.net/forum?id=SJGCiw5gl
https://openreview.net/forum?id=SJGCiw5gl
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
http://proceedings.mlr.press/v119/tan20a.html
http://proceedings.mlr.press/v119/tan20a.html
http://proceedings.mlr.press/v119/tan20a.html
https://doi.org/10.1109/ICCV.2019.00145
https://doi.org/10.1109/ICCV.2019.00145
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7

International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2020.
Structured pruning of large language models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6151–6162, Online. Association for Computa-
tional Linguistics.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. 2022.
Structured pruning learns compact and accurate
models. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1513–1528.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. DeeBERT: Dynamic early exiting
for accelerating BERT inference. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2246–2251, On-
line. Association for Computational Linguistics.

Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin.
2021. BERxiT: Early exiting for BERT with better
fine-tuning and extension to regression. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 91–104, Online. Association for
Computational Linguistics.

Runxin Xu, Fuli Luo, Chengyu Wang, Baobao Chang,
Jun Huang, Songfang Huang, and Fei Huang. 2022.
From dense to sparse: Contrastive pruning for bet-
ter pre-trained language model compression. In
Thirty-Sixth AAAI Conference on Artificial Intelli-
gence (AAAI).

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural
Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada, pages 5754–5764.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020. Bert loses
patience: Fast and robust inference with early exit.
Advances in Neural Information Processing Systems,
33:18330–18341.

A ElasticBERT as Backbone

We implemented COST-EFF with the backbone of
ElasticBERT and obtain better performance than
BERT backbone. The global results are listed in
Table 5. Also, we plot performance curves and
layer-wise performance in Figure 7 and Figure 8,
respectively.

1729

https://doi.org/10.18653/v1/2020.emnlp-main.496
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.acl-main.204
https://aclanthology.org/2021.eacl-main.8
https://aclanthology.org/2021.eacl-main.8
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html

Model
Params FLOPs

SST-2 MRPC QNLI MNLI-m/mm
reduc. reduc.

BERTBase 1.0× 1.0× 93.1 90.5 91.7 84.4 / 84.5

COST-EFF8× (BERT) 7.9× 19.0× 90.6 87.1 87.8 81.3 / 81.8
COST-EFF8× (ElasticBERT) 7.9× 19.1× 90.8 88.1 89.0 81.6 / 82.3

Table 5: Results of COST-EFF on GLUE development set with BERT and ElasticBERT as the backbone.

500 1000 1500 2000 2500
MFLOPs

85

86

87

88

89

90

91

Ac
c

SST-2

750 1000 1250 1500 1750 2000 2250 2500
MFLOPs

85

86

87

88

F1
MRPC

750 1000 1250 1500 1750 2000 2250 2500
MFLOPs

85

86

87

88

89

Ac
c

QNLI

1000 1250 1500 1750 2000 2250 2500
MFLOPs

77

78

79

80

81

82

Ac
c

MNLI-m

COST-EFF8 × COST-EFF8 × (ElasticBERT) Pareto 95% BERT score (h) 5% BERT FLOPs (v)

Figure 7: Performance curves COST-EFF on GLUE development set with BERT and ElasticBERT. Horizontal
grey line indicates the 95% of BERTBase performance and vertical line indicates 5% BERTBase FLOPs.

2 4 6 8 10 12

82

84

86

88

90

92

Ac
c

SST-2

2 4 6 8 10 12

82

84

86

88

90

F1

MRPC

2 4 6 8 10 12
Layer

60

65

70

75

80

85

90

Ac
c

QNLI

2 4 6 8 10 12
Layer

50

55

60

65

70

75

80

85

Ac
c

MNLI-m

COST-EFF8 × (BERT)
COST-EFF8 × (ElasticBERT)

100%, 95%, 90% BERT score

Figure 8: Layer-wise performance on GLUE develop-
ment set. Horizontal lines indicate 100%, 95% and
90% of BERTBase performance from top to bottom.

1730

