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Abstract
In social media, there are instances where peo-
ple present their opinions in strong language, re-
sorting to abusive/toxic comments.There are in-
stances of communal hatred, hate-speech, toxi-
city and bullying. And, in this age of social
media, it’s very important to find means to
keep check on these toxic comments, as to pre-
serve the mental peace of people in social me-
dia.While there are tools, models to detect and
potentially filter these kind of content, develop-
ing these kinds of models for the low resource
language space is an issue of research.

In this paper, the task of abusive comment iden-
tification in Tamil language, is seen upon as
a multiclass classification problem.There are
different pre-processing as well as modelling
approaches discussed in this paper.The differ-
ent approaches are compared on the basis of
weighted average accuracy.

1

1 Introduction

With social media being accessible and popular
across masses in India, there has been a surge in
content in regional languages. People often create
content, comment or exchange messages in mono-
lingual or code mixed language (Priyadharshini
et al., 2020, 2021; Kumaresan et al., 2021). How-
ever,even if there is an abundance of content in
Indian language across social media, there is a lack
of Indian language datasets (Chakravarthi, 2020;
Chakravarthi and Muralidaran, 2021). Hence In-
dian languages are deemed as low resource lan-
guage space, due to lack of available datasets, mak-
ing working in these languages spaces, a challeng-
ing research problem (Chakravarthi et al., 2019b,
2018).

Among the messages and comments exchanged
on social media there are instances of monolin-
gual comments in regional language as well as

1https://github.com/Aanisha/Tamil_Comment_Classification

transliterated comments. Monolingual comments
in transliterated means to write or print (a letter
or word) using the closest corresponding letters
of a different alphabet or script. Code-Mixing is
mixing of two or more language in the same utter-
ance (Sampath et al., 2022; Ravikiran et al., 2022;
Chakravarthi et al., 2022a; Bharathi et al., 2022;
Priyadharshini et al., 2022).

In this paper, the task is identifying abusive
comments in Tamil language. Tamil is a mem-
ber of the southern branch of the Dravidian lan-
guages, a group of about 26 languages indigenous
to the Indian subcontinent (Anita and Subalalitha,
2019b,a; Subalalitha and Poovammal, 2018). It is
also classed as a member of the Tamil language
family, which contains the languages of around
35 ethno-linguistic groups, including the Irula and
Yerukula languages (Subalalitha, 2019; Srinivasan
and Subalalitha, 2019; Narasimhan et al., 2018).
The earliest Old Tamil documents are small in-
scriptions in Adichanallur dating from 905 BC to
696 BC. This is a multiclass classification problem,
with 6 different categories of abusive comments
are present. In a multi class classification problem,
an instance can belong only to one class. How-
ever present Machine Learning or Deep Learning
based models cannot be directly applied to Tamil
language. Thus several pre-processing techniques
have been proposed for Tamil language and models
have been fine tuned to suit the task (Sakuntharaj
and Mahesan, 2021, 2017, 2016; Thavareesan and
Mahesan, 2019, 2020a,b, 2021).

2 Related work

There has been different works done on identifying
abusive comments on different languages.

In (Zhao et al., 2021) Performed binary and mul-
ticlass classification using a Twitter corpus and
studied two approaches: (a)a method which con-
sists in extracting of word embeddings and then us-
ing a DNN classifier; (b) fine-tuning the pre-trained
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BERT model.However it was only on English lan-
guage embeddings.

In (Farooqi et al., 2021) Detected hate speech
from Hindi-English code mixed conversations on
Twitter. The proposed architecture used neural net-
works, leveraging the transformer’s cross-lingual
embeddings and further fine tuning them for low-
resource hate-speech classification in transliterated
Hindi text.

In (Andrew, 2021) as a part of shared task in
ACL Dravidian Lang Tech 2021, several Machine
learning algorithms were compared and experi-
mented for identifying abusive comment in various
Dravidian languages.

3 Dataset

The dataset is provided by (Priyadharshini et al.,
2022) as a part of the shared task Abusive comment
detection in Tamil.

The dataset has a collection of comments in
Tamil language.There are 2240 native Tamil script
comments and 5943 transliterated Tamil-English
comments in the train data,classified across 7 dif-
ferent categories : ’Hope-Speech’, ’Homophobia’,
’Misandry’, ’Counter-speech’, ’Misogyny’, ’Xeno-
phobia’, Trans-phobic’ and ’None-of-the-above’.

The validation data has 560 native Tamil script
comments and 1486 transliterated Tamil-English
comments.The test data has 699 native Tamil lan-
guage comments and 1857 transliterated Tamil-
English comments.

The most dominant category present across all
the datasets is : ’None-of-the-above’ and the cate-
gories with less no of comments are ’Homophobia’
with 207 and ’Trans-phobic’ with 163 total com-
ments.

4 Approaches

4.1 Pre-processing

The dataset has a very imbalanced distribution of
the categories of comments.

So, for the experiments two separate datasets are
generated.

Table 1 shows the distribution of first dataset, is
combining both native Tamil script and transliter-
ated Tamil-English comments.

Table 2, shows the distribution of second
dataset,which creates a more balanced distribution
by a mixed approach of oversampling and under-
sampling.

Command Output
None-of-the-above 5011
Misandry 1276
Counter-speech 497
Xenophobia 392
Misogyny 336
Hope-Speech 299
Homophobia 207
Trans-phobic 163

Table 1: Distribution of comments in the different cate-
gories

Command Output
None-of-the-above 3007
Misandry 1276
Counter-speech 497
Xenophobia 392
Misogyny 586
Hope-Speech 549
Homophobia 457
Trans-phobic 413

Table 2: Distribution of comments in the different cate-
gories in pre-processed dataset.

The ’None-of-the-above’ class comments
are downsampled by a percentage of 0.4 in
the train data .The lower represented classes
’Misogyny’,’Hope-speech’,’Homophobia’ and
’Trans-phobic’ data samples are over-sampled.

The values are decided on experimental basis.

4.2 Tokenization and feature vectors

For tokenization of the dataset, two different tok-
enizers have been used.

The MuRil tokenizer is used.MuRIL is a mul-
tilingual LMBert specifically built for IN lan-
guages.MuRIL is trained on significantly large
amounts of IN text corpora only.Can generate em-
beddings for low resource native script and translit-
erated Indic languages.(Khanuja et al., 2021).

Another tokenizer used is the the IndicNLP to-
kenizer. A trivial tokenizer which just tokenizes
on the punctuation boundaries. This also includes
punctuations for the Indian language scripts (the
purna virama and the deergha virama). It returns a
list of tokens.(Arora, 2020).

Two kinds of feature vectors are used for the
various modelling approaches.MuRil embeddings
are generated from pre-trained MuRil model, and
used as feature vectors for solving the multiclass
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classification problem.
Another feature vector used is normalized Tf-Idf

vectors from the tokenized text,where
tf(t) = (No. of times term ‘t’ occurs in a doc-

ument) / (Frequency of most common term in a
document)

and,
idf(t) = log e [ (1+Total number of documents

available) / ( 1 + Number of documents in which
the term t appears ) ] + 1)

tf − idf(t) = tf(t) ∗ idf(t)

These feature vectors are generated from the
tokenized texts of MuRil and IndicNLP tokenizer
respectively.

4.3 Modelling approaches

4.3.1 Logistic Regression
The multiclass logistic regression model is imple-
mented (LR, 2017). The model of logistic regres-
sion for a multiclass classification problem forces
the output layer to have discrete probability dis-
tributions over the possible k classes. This is ac-
complished by using the softmax function. Given
the input vector(z), the softmax function works as
follows:
σ(zi) =

ezi∑K

j=1
ezj

for i = 1, 2, . . . ,K

There are n output classes and thus there is a
necessity to impose weights connecting each input
to each output.

4.3.2 Linear Support Vector Machines
SVMs are very good classification algorithm. The
idea is to identify hyper-planes that will separate
the various features. The classification decision is
thus performed as follows:
f(x) = sign(W.x+ b)

where x represents the input feature, W repre-
sents the model weight and b represents the bias.
For the multiclass classification problem, a one-vs-
rest (also known as one-vs-all) approach is used.

4.3.3 Gradient Boosting Classifier
Gradient boosting classifiers are a group of ma-
chine learning algorithms that combine many weak
learning models together to create a strong predic-
tive model. Decision trees are usually used when
doing gradient boosting.

Here, this algorithm is used for a multiclass clas-
sification.

4.3.4 Transformers

Google introduced the transformer architecture in
the paper “Attention is All you need”. Transformer
uses a self-attention mechanism, which is suitable
for language understanding.The transformer has an
encoder-decoder architecture. They are composed
of modules that contain feed-forward and attention
layers.

They have led to advancements in the field of
NLP to perform tasks as text classification,machine
translation etc.

5 Results

6 Implementation

6.0.1 Logistic Regression

The original training data contains 10227 com-
ments and the test data contains 2555 comments.

The data is first tokenized using the IndicNLP to-
kenizer and feature vectors are generated by using
Tf-Idf with unigrams and bigrams being extracted.

The feature vector are fed to the logistic regres-
sion model with a newton-cg solver, to accomodate
multiclass classification.

There are two experiments that are run for this
model.The model is trained on original dataset and
the model is trained on sampled dataset.

6.0.2 Support Vector Machine

The original training data contains 10227 com-
ments and the test data contains 2555 comments.

The data is first tokenized using the IndicNLP to-
kenizer and feature vectors are generated by using
Tf-Idf with unigrams and bigrams being extracted.

The feature vector are fed to the support vector
machine with degree=8, to accomodate multiclass
classification.The penalty is squared l2.

There are two experiments that are run for this
model.The model is trained on original dataset and
the model is trained on sampled dataset.

6.0.3 Gradient Boosting Classifier

The original training data contains 10227 com-
ments and the test data contains 2555 comments.

The data is first tokenized using the IndicNLP to-
kenizer and feature vectors are generated by using
Tf-Idf with unigrams and bigrams being extracted.

The feature vector is input to the Gradient Boost-
ing Classifier model, which uses deviance loss func-
tion for optimization and a learning rate of 0.1.
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Model Dataset Acc Precision Recall F1-score
Logistic Regression Original 0.66 0.62 0.66 0.57
Logistic Regression Sampled 0.65 0.62 0.65 0.59
Linear SVM Original 0.59 0.54 0.59 0.47
Linear SVM Sampled 0.56 0.50 0.56 0.48
Gradient Boost Classifier Original 0.68 0.67 0.68 0.63
Gradient Boost Classifier Sampled 0.70 0.67 0.70 0.66
Finetuned MuRIL Original 0.68 0.60 0.68 0.62
Finetuned MuRIL Sampled 0.64 0.67 0.64 0.65
Finetuned MuRIL(weighted loss) Sampled 0.51 0.67 0.51 0.56

Table 3: The results of the experiments conducted.

There are two experiments that are run for this
model.The model is trained on original dataset and
the model is trained on sampled dataset.

6.0.4 Transformers
The train data contains 8183 comments and the
validation data contains 2046 comments.Also the
sampled train dataset(details in dataset) is tested
on this system.Validation data is same in both the
experiments.

The data is tokenised using the Muril tokeniser
which has a a vocabulary of 197,285.

The tokenised output from the MuRil tokenizer
has 3 elements Input Id,Attention Mask
and Token Id.These 3 vectors are fed to the pre-
trained MuRil model to generate embeddings.

The model embeddings are input to a 1D con-
volutional layer which changes the dimension of
the embedding from (x,64,768) to (x,64,1).Then
it’s flattened to have a vector of dimension
(x,64).Lastly, there is a fully connected layer with
softmax activation to have the output of dim.
(x,8).The model output is the probabilities for the
sentence to belong to each of the categories.

Figure 1: The finetuned MuRil model

For training, the MuRil layers are frozen and
pre-trained weights are used.Only trainable layers

are the CNN and Dense layers.There is a dropout
of 0.2 used.

There are three experiments that are run for this
model.The model is trained on original dataset,the
model is trained on sampled dataset, and the model
is trained on sampled dataset with weighted loss
being applied.

The models in each case are trained for 25
epochs.All the transformers are trained on a single
GPU and takes around 25-30 mins for one training
session.

7 Results

Table 3 contains the results from the different
experiments. The best performing model is the
Gradient Boost Classifier trained on the sampled
dataset. Within the results, the category "None-
of-the-above" is more easily detected correctly by
most of the models, while the classes "Misogyny"
and "counter-speech" are not detected easily. The
transformer finetuned on original dataset has the
highest accuracy among all the transformer ex-
periments. However it’s not able to identify the
categories with lower number of datapoints. The
transformers trained on sampled dataset is able to
perform better in the categories with lower number
of datapoints.

8 Future Work

The future work will be primarily to find more
efficient sampling techniques for the text data, and
compare the performances with further ML models.
Also, evaluate performances with other existing
transformer models,to check how different suitable
models can be fine-tuned to solve this particular
task.
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