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Abstract

Graph Neural Network (GNN)-based models
have proven effective in various Natural Lan-
guage Processing (NLP) tasks in recent years.
Specifically, in the case of the Extractive Doc-
ument Summarization (EDS) task, modeling
documents under graph structure is able to an-
alyze the complex relations between seman-
tic units (e.g., word-to-word, word-to-sentence,
sentence-to-sentence) and enrich valuable infor-
mation for the sentence representation. How-
ever, long-form document summarization us-
ing graph-based approaches is still an open re-
search issue. The main challenge is to represent
long documents in a graph structure in an effec-
tive way. In this regard, this paper proposes a
new heterogeneous graph neural network (Het-
erGNN) model to improve the performance
of long document summarization (HeterGraph-
LongSum). Specifically, the main idea is to
add the passage nodes into the heterogeneous
graph structure of word and sentence nodes
for enriching the final representation of sen-
tences. In this regard, HeterGraphLongSum
includes three types of semantic units such as
word, sentence, and passage. Experiments on
two benchmark datasets for long documents
such as Pubmed and Arxiv indicate promising
results of the proposed model for the extractive
long document summarization problem. Espe-
cially, HeterGraphLongSum is able to achieve
state-of-the-art performance without relying on
any pre-trained language models (e.g., BERT).
The source code is available for further exploita-
tion on the Github1.

1 Introduction

Document summarization is one of the central
problems in NLP, which aims to rewrite a single
document or multi documents under a shorter ver-
sion with preserving the main information. There
are two major approaches such as extractive and

∗corresponding author
1https://github.com/tuananhphan97vn/HeterGraphLongSum

abstractive summarization. Abstractive models
are more sophisticated abilities that require well-
comprehensive reading text and generating high-
quality text. Specifically, most of the existing ar-
chitectures have been built based on sequence-to-
sequence (Seq2Seq) techniques in different ways
such as Recurrent Neural Network (RNN) (Nalla-
pati et al., 2017), Pointer-Generator-Network(See
et al., 2017), or Transformer-based models(Zhang
et al., 2020; Xiao and Carenini, 2020). Further-
more, the external information, for instance, pre-
trained model BERTSum(Liu and Lapata, 2019)
and topic modeling (Wang et al., 2020b; Nguyen
et al., 2021)) are incorporated to improve perfor-
mances. Nevertheless, this approach requires a
complicated neural network that consists of mil-
lions of learnable parameters, which is the cause
of raising significant costs in both terms of com-
putation time perplexity and resources. Therefore,
extractive models still gain much attention. Partic-
ularly, extractive document summarization (EDS)
takes a document in the form list of sentences and
chooses several best candidates from the original
document, then combine them to create the sum-
marization. Recent models trend to turn EDS into
the sequential binary-labeling task (Nallapati et al.,
2017; Cheng and Lapata, 2016; Zhou et al., 2018).

Graph neural network (GNN) has recently been
exploited as an emerging line of deep learn-
ing architectures, which has powered various do-
mains, including NLP tasks (Vashishth et al.,
2020). Specifically, GNN models are able to model
complex structural data containing semantic units
(node) with relationships (edge) between them (Xu
et al., 2019). For the EDS task, each document
is represented as a graph structure in which the
nodes are the semantic units of the document such
as words and sentences. Sequentially, developing
edges among sentence nodes are capable to model
the cross-sentence relations, which is able to handle
the limitation of traditional Seq2Seq-based meth-
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Figure 1: Overview of HeterGraphLongSum model. Passages of each document are defined as a set of sentences in
sequence with a fixed number of sentences. In this architecture, the edges from passage to word and sentence to
passage are not taken into account because of the redundancy.

ods in terms of long-distance dependency among
sentences (Cui et al., 2020). In particular, cross-
sentence edges can be constructed explicitly be-
tween sentences (sentence-to-sentence) (Xiao and
Carenini, 2019; Jing et al., 2021; Yasunaga et al.,
2017) or through intermediate bridge via com-
mon words (sentence-word-sentence)(Wang et al.,
2020a) or latent topics (sentence-topic-sentence)
(Cui et al., 2020).

Although the aforementioned approaches have
achieved remarkable results in the EDS problem,
most of the architectures are proposed for short
documents (i.e., new articles). Long-form docu-
ment is still a remaining challenge in this research
field due to two main reasons: i) most traditional
Seq2Seq methods truncate longer documents into
small fixed-length sequences (i.e., passages) (Za-
heer et al., 2020; Zhang et al., 2021), which leads to
information loss problem, especially for the extrac-
tive summarization; ii) using GNN-based methods
is able to mitigate the information loss by enabling
cross-sentence relations, however, representing an
effective way for long-text documents into graph
structure is still an open research issue. Specifi-
cally, since the vocabulary size is limited, when
the length of the document is increased, more sen-
tences become neighbors with each other (via com-
mon words) which is the cause of the similar em-
bedding between sentences. Therefore, a graph

structure, which includes only word nodes and sen-
tence nodes, might not be an effective way to rep-
resent the long documents for the EDS problem.

In order to alleviate the aforementioned chal-
lenges, this paper presents a new graph-based archi-
tecture, which contains three semantic units such
as word, sentence, and passage. In particular, the
passage nodes are adopted for learning the cross-
relations between sentences in different passages.
Furthermore, the passage node can be regarded as
the local structure of a group of sentence nodes in
which the edges between passages and sentences
have the possibility to reduce the harm of simi-
lar representations of sentences when expanding
graph structure with long documents. Figure 1
illustrates the model architecture of HeterGraph-
LongSum. Specifically, the main contributions of
this paper are threefold as follows:

• We present a novel GNN-based method for
modeling long-form documents. Specifically,
instead of using common methods for learn-
ing long documents with the hierarchical per-
spective (e.g., word-to-sentence-to-passage),
we consider passage as one of the node types,
which is updated simultaneously with other
nodes in the graph. In this regard, more seman-
tic units (additional nodes) in the graph en-
able the capability to enrich the cross-relations
between elements (e.g., sentence representa-
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tion).

• We propose a new Heterogeneous GNN (Het-
erGNN) model for the EDS task, focusing
on long documents (e.g., scientific papers).
Especially, we consider this issue without em-
ploying pre-trained encoders (e.g., BERT). In
this regard, our method is able to extend to
other low-resource languages without any ob-
stacles.

• We evaluate the proposed model with two
benchmark long document datasets such as
PubMed and ArXiv. The experiential results
indicate that our method is able to achieve the
state-of-the-art level in this research field.

2 Related Work

2.1 Neural Extractive Summarization

Neural networks have achieved great success in
extractive summarization, which explores differ-
ent neural components to develop an end-to-end
learning model (Zhong et al., 2019). The encoder-
decoder frameworks are mainly developed by us-
ing RNN (Cheng and Lapata, 2016; Nallapati et al.,
2017; Zhou et al., 2018) and Transformer (Zhang
et al., 2020; Xiao and Carenini, 2020) with auto-
regressive (Jadhav and Rajan, 2018; Liu and Lap-
ata, 2019) or non auto-regressive (Narayan et al.,
2018; Arumae and Liu, 2018) decoder. Sequen-
tially, recent remarkable results are mainly devel-
oped by using pre-trained language models (e.g.,
BERT (Devlin et al., 2019)) such as BERTSUM
(Liu and Lapata, 2019) and MATCHSUM (Zhong
et al., 2020). Most of the aforementioned stud-
ies formulate the EDS task as sentence labeling
or sentence ranking problems. In this paper, we
formulated this task as the binary-labeling problem
(Nallapati et al., 2017) and exploited our model
with a non-pre-trained CNN/BiLSTM encoder in
which we believe that this method is able to easily
extend to other low resource languages.

2.2 Graph-based Summarization

Early works on graph-based methods for EDS tasks
rely on the similarity scores between sentences in
unsupervised manners such as TextRank (Mihalcea
and Tarau, 2004) and LexRank (Erkan and Radev,
2004). The core idea of using graph representa-
tion is to utilize the linguistic information of sen-
tences. Consequentially, GNNs have been adopted

for learning cross-sentence relations with remark-
able performances, using the concept of discourse
graph (Yasunaga et al., 2017; Xu et al., 2020). Re-
cently, the trend research focuses on representing
documents with different types of nodes (hetero-
geneous graphs) to utilize the effects of additional
semantic units such as words, sentences (Wang
et al., 2020a; Jin et al., 2020) and latent topics (Cui
et al., 2020). In this study, the proposed model ex-
ploits the heterogeneous graph structure with more
complex units by adding semantic passage nodes
to leverage the problems of adopting graph-based
models in long document summarization.

2.3 Long Document Summarization

Long document summarization has recently re-
ceived increased attention since the remained chal-
lenge of modeling long texts (Frermann and Kle-
mentiev, 2019). Specifically, the current potential
solution for this issue is to truncate documents into
small fixed-length sequences and use sliding win-
dow methods to process the document separately
(Beltagy et al., 2020; Zaheer et al., 2020). How-
ever, this paradigm leads the serious information
loss, which is not suitable for the EDS task, due
to this task requiring the information relations of
extracted sentences (Li et al., 2020). In this re-
gard, several promising approaches have been in-
troduced for long document summarization. Cohan
et al. (2018) presents a hierarchical encoder to cap-
ture the discourse structure of the input document
with a discourse-aware decoder for abstractive sum-
marization. Xiao and Carenini (2019) leverages
the long text summarization task by incorporat-
ing a distributed representation of both the global
(whole document) and local (section/topic) con-
texts. Cui and Hu (2021) employs a dynamic mem-
ory network with sliding multiple windows to mit-
igate the information loss between segments of
sentences. Regarding the graph-based methods,
Cui et al. (2020) adopts a modified graph atten-
tion network (GAT) for capturing inter-sentence
relationship. Furthermore, latent topics are added
as an additional type of node, which incorporates
sentence nodes to improve the performance of long
document summarization in terms of capturing the
relational information of long-distance sentences.
In this study, we take the graph-based structure
for EDS of long text into account with a differ-
ent perspective by considering word nodes and
sentence nodes for capturing both inter and intra-
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sentence relations. Moreover, passage nodes are
jointly trained to improve the performance of long
texts by learning the cross-relations of sentences
with long-distance and mitigating the similar rep-
resentation problem in the large-scale graph struc-
ture.

3 HeterGraphLongSum model

HeterGraphLongSum aims to learn a heteroge-
neous graph structure for long text summarization.
Specifically, we model an input document with
three types of nodes such as word, sentence, and
passage nodes, as a heterogeneous graph, and using
graph attention network (GAT) (Velickovic et al.,
2017) for capturing information relations among
nodes.

3.1 Graph Construction

Let G = {V,E} represent an arbitrary graph,
where V and E denote the node and edge sets,
respectively. Specifically, as shown in the Figure
1, our directed graph can be defined as V = {Vw ∪
Vs ∪ Vp} and E = {Ew2s ∪Es2w ∪Ew2p ∪Ep2s},
where Vw, Vs, and Vp stand for three semantic
units of a document (i.e., word, sentence, and
passage), and Ew2s, Es2w, Ew2p, and Ep2s stand
for four types of edges such as word-to-sentence,
sentence-to-word, word-to-passage, and passage-
to-sentence, respectively. Accordingly, the pro-
posed heterogeneous graph structure is designed
based on two assumptions as follows:

• The passage units are not available on most
publicity datasets in this research field. There-
fore, following the previous works on long-
form document representations(Zaheer et al.,
2020; Zhang et al., 2021), we format the pas-
sages in form of a sequence of sentences and
created them by concatenating a fixed size
with n sentences. In this regard, the number
of sentences for each passage is a hyperpa-
rameter, which is tuned during the validation
process.

• Regarding the certain edge types, instead of
adopting the full connection between seman-
tic units, only four types of edges are taken
into account such as word-to-sentence (w2s),
sentence-to-word (s2w), word-to-passage
(w2p), and passage-to-sentence (p2s). Ac-
cordingly, the edge from passage-to-word
(p2w) and sentence-to-passage (s2p) are not

considered because of the redundancy. Specif-
ically, p2w is not considered since many
words receive the same information (i.e., from
the passage), which might harm the overall
performance. Furthermore, there are two
types of edge to update the passage infor-
mation such as w2p and s2p. In this re-
gard, we design w2p in our graph structure
to enable the cross-passage relations via path
passage → sentence → word → passage
and remove the s2p edge type. We prove this
assumption via the ablation study in the exper-
iment section.

Intuitively, by adding two types of edges from
passage nodes, cross-sentences relations can be
simultaneously processed in two ways: i) local
information with path sentence → word →
passage → sentence; ii) global information with
path sentence → word → sentence. The ad-
ditional local information enables the model to
mitigate the problem of similarity representation
between sentences when the graph structure is ex-
panded by adding passage information. Specifi-
cally, this issue is specific to sentences located in
different positions in the document, which is espe-
cially suitable for learning long documents.

3.2 Graph Encoder Embedding
Supporting the matrix features of word node, sen-
tence node and passage node are sequentially de-
noted as Xw ∈ R|Vw|×dw , Xs ∈ R|Vs|×ds , and
Xp ∈ R|Vp|×dp , respectively. The initialized em-
bedding representation of the word node is encoded
by using Glove (Pennington et al., 2014). In the
case of sentences, instead of using pre-trained mod-
els, we combine Convolutional Neural Network
(CNN) and bidirectional Long Short-Term Memory
(BiLSTM) for the encoder, which can be formu-
lated as follows:

(Xs)j = CNN(x1:m)⊕BiLSTM(x1:m) (1)

where m denotes the number of words in the sen-
tence sj . In this regard, the Passage feature is
encoded by using Bi-directional LSTM based on
the hidden state of sentences, which is extracted
from the last layer network as follows:

(Xp)i = BiLSTM
(
(Xs)(j)

)
(2)

where (Xp)i denotes embedding of the i-th passage
node, j and k are the j-th sentence and number of
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sentence per passage (k ∗ i ≤ j ≤ k ∗ (i+ 1)),
respectively.

3.3 Graph Learning Layer
The vectors of nodes are initialized with embed-
ding features, where H0

s = Xs H0
w = Xw, and

H0
p = Xp, respectively. Sequentially, the node rep-

resentations are updated with the graph attention
network.
Graph Attention Network: Given the heteroge-
neous graph structure and initialized features of
each node, GAT is adopted to calculate the hidden
states of nodes. Specifically, supporting h⃗i ∈ Rdhi

and Ni denote the input hidden representation and
the neighbors of node i-th, respectively, the graph
attention layer can be calculated as follows:

zij = LeakyRelu(⃗aT (Wqh⃗i||Wkh⃗j))

αij =
ezij∑

k∈Ni
ezik

h⃗
′
i = σ

∑
j∈Ni

αijWvh⃗j


(3)

where Wq, Wk, Wv, and α⃗ are learnable param-
eters and optimized during the training process.
The symbol || indicates the concatenation opera-
tor. σ denotes the non-linear transform function
and h⃗

′
i denotes the hidden state which presents in-

formation gained from the neighboring nodes. Al-
ternatively, multi-head attention can be used for
improving the performance, which is calculated as
follows:

h⃗
′
i =∥Kk=1 σ

∑
j∈Ni

αijW
k
v h⃗j

 (4)

Furthermore, in order to mitigate the gradient van-
ishing problem, the residual connection is added
to the original representation to provide the final
hidden state:

h⃗
′′
i = h⃗i + h⃗

′
i (5)

Graph Propagation: After initialization, the sen-
tence nodes are updated with their neighbor word
nodes and passage nodes by using GAT and FFN
layer:

U1
w2s = GAT (H0

s , H
0
w, H

0
w)

U1
p2s = GAT (H0

s , H
0
p , H

0
p )

U1
s = σ(U1

w2s + U1
p2s)

H1
s = FFN(U1

s +H0
s )

(6)

Sequentially, word nodes are updated with the new
representation of sentences. Similarly, the passage
nodes are updated by the updated word embedding.
The updated process at an iteration of GAT can be
formulated as follows:

U t
w2s = GAT (Ht−1

s , Ht−1
w , Ht−1

w )

U t
p2s = GAT (Ht−1

s , Ht−1
p , Ht−1

p )

U t
s = σ(U t

w2s + U t
p2s)

Ht
s = FFN(U t

s +Ht−1
s )

U t
w = GAT (Ht−1

w , Ht
s, H

t
s)

Ht
w = FFN(U t

w +Ht−1
w )

U t
p = GAT (Ht−1

p , Ht
w, H

t
w)

Ht
p = FFN(U t

p +Ht−1
p )

(7)

Note that, H1
w and H1

p are set to the same values
with H0

w and H0
p , respectively.

3.4 Sentence Extraction
For the sentence selector layer, we first extract doc-
ument representation from the hidden state of pas-
sages via the attention layer, then combine docu-
ment representation and each sentence by using the
concatenate operator, which is sequentially formu-
lated as follows:

zi = ReLu(a⃗Tp
⃗(hp)i)

αi =
ezi∑
j e

zj

h⃗d =
∑
m

αm ∗
(
h⃗p

)
m

(8)

⃗hd,sk = FFN
(
h⃗d ∥ h⃗sk

)
(9)

where a⃗p is learnable parameter. i and k represent
indexes of passage i-th and sentence k-th, respec-
tively. αi indicates the amount of contribution of
passage i-th to document representation h⃗d. Con-
sequently, if αi gets a high attention score, this
passage tends to be more significant than other
passages. Finally, the output sentence-document
representation ⃗hd,si is used for sentences classifi-
cation by using binary cross-entropy loss as the
training objective:

L =
1

N

i=N∑
i=1

yilog (ŷi) + (1− yi) log (1− ŷi)

(10)
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Model arXiv PubMed
R-1 R-2 R-L R-1 R-2 R-L

SumBasic∗ 29.47 6.95 26.30 37.15 11.36 33.43
LexRank∗ 33.85 17.36 28.99 39.19 13.89 34.59
Oracle+ 53.88 23.05 34.90 55.05 27.48 38.66
Cheng & Lapata (2016)+ 42.24 15.97 27.88 43.89 18.53 30.17
SummaRuNNer+ 42.91 16.65 28.53 43.89 18.78 30.36
Xiao & Carenini (2019)(Xiao and Carenini, 2019) 43.62 17.36 29.14 44.85 19.7 31.43
Match-Sum 40.59 12.98 32.64 41.21 14.91 36.75
Topic-GraphSum(Cui et al., 2020) 44.03 18.52 32.41 45.95 20.81 33.97
SSN-DM(Cui and Hu, 2021) 45.03 19.03 32.58 46.73 21.00 34.10
HeterGraphLongSum (iter=1) 46.62 18.69 40.77 48.75 22.45 43.97
HeterGraphLongSum (iter=2) 47.36 19.11 41.47 48.86 22.63 44.19

Table 1: Results on the test set. Report results with * are from Cohan et al. (2018), and results with + are from Xiao
and Carenini (2019). Other results are obtained from respective papers. Our results are calculated by averaging
values of 3 runs.

4 Experiment

4.1 Experimental setup

Dataset: two benchmark datasets of long docu-
ments are considered for the experiments such as
arXiv and PubMed datasets, which are scientific
papers. Accordingly, those datasets are processed
following the work in Cohan et al. (2018) and get
Oracle results, a gold standard extractive label, by
the work in Xiao and Carenini (2019). The statis-
tics of evaluated datasets are illustrated in Table 2.

Datasets Documents Avg. Tokens
Train Val Test Doc. Sum.

arXiv 203,037 6,436 6,440 4,938 220
PubMed 119,924 6,633 6,658 3,016 203

Table 2: Statistics of experiential datasets.

Models for comparision: we evaluate the pro-
posed models with recent benchmark models in
this research field which are mainly divided into
four approaches: traditional EDS models such as
SumBasic (Vanderwende et al., 2007) and LexRank
(Erkan and Radev, 2004); Seq2Seq-based mod-
els such as Cheng & Lapata (Cheng and Lapata,
2016), SummaRuNNer (Nallapati et al., 2017), and
Xiao & Carenini (Xiao and Carenini, 2019); pre-
trained-based models such as Match-Sum (Zhong
et al., 2020); graph-based models such as Topic-
GraphSum(Cui et al., 2020) and SSN-DM (Cui and
Hu, 2021).
Hyperparameter setting: Regarding the word
node generation, following previous work (Xiao

and Carenini, 2019), the vocabulary is limited to
50,000. The word embedding initializes with 100
dimensions using Glove pre-trained model (Pen-
nington et al., 2014). The dimension of the sen-
tence and passage are both set to 64. The dimension
of the final output representation of all models is
set to 64. The multi-head of the GAT layer for s2w
is set to 4 and others (i.e., w2s, w2p, and p2s) are
set to 1. The passage length is a hyperparameter,
which is a constant number. Specifically, we vary
the value of passage length from 10 to 30 in or-
der to determine the best results for two evaluated
datasets. More details of the impact of passage
length are presented in the ablation section. We
select top-6 of PubMed and top-5 of arXiv datasets
for the decoding process, according to the best
performance of the validation set. All models are
trained for 20 epochs with a single NVIDIA V100
card (batch size = 32) and use early stopping on the
validation set according to entropy loss in order to
select the best model.

4.2 Main Results

Table 1 reports the evaluation results on two bench-
mark datasets. Accordingly, ROUGE is used as the
evaluation metric, which includes unigram (R-1),
bigram (R-2) overlap, and longest common subse-
quence (R-L) for measuring informativeness and
assessing fluency, respectively. The results are pre-
sented in different sections corresponding to dif-
ferent approaches. The first section includes tra-
ditional approaches and the Oracle. The second
section obtains the results of Seq2Seq-based mod-
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Our Model arXiv PubMed
R-1 R-2 R-L R-1 R-2 R-L

w/o Passage Node 46.43 18.62 40.56 47.81 21.88 43.01
w/o Doc. Rep. 46.61 18.8 40.76 48.52 22.34 43.77
Proposed Model 47.05 19.01 41.2 48.86 22.63 44.19

Table 3: Reported results of our proposed model and two ablated variants on two benchmark datasets.

els. The third section is Match-Sum, a state-of-
the-art BERT-based summarizing model. The next
section reports recent graph-based models for the
EDS problem. The last section is our model, which
includes two versions with different iterations of
GAT layers.

Based on the evaluation results, several hypothe-
ses for extractive long document summarization
problem can be expressed as follows: i) Using pre-
trained models (e.g., BERT and RoBERTa) without
any modifications is not effective for long docu-
ments. The main reason is the limitation of 512
tokens of BERT-based models; ii) Exploiting the
global context (the whole document) is able to
improve the performance, even without the need
for pre-trained models for extracting features; iii)
Using graph layer with external information (e.g.,
latent topic) for encoder embedding is currently
state-of-the-art approach in this research field; iv)
our model, which incorporates global context with
graph neural network, achieve state-of-the-art re-
sults on both benchmark datasets of long docu-
ments. Especially, the most advantage is that our
method provides promising performances with-
out external information and pre-trained language
models. A limitation of our study is that we use
the fixed length of sentences for passages, which
might not suitable for all datasets with the same
value (more detail in the ablation study section).
An appropriate solution is to adopt semantic self-
segmentation methods for determining passages
(Moro and Ragazzi, 2022). We leave this issue for
future work of this study.

4.3 Ablation Study

Ablated Variants: in order to analyze the impact
of each module in the proposed architecture, we
evaluate the proposed model with two ablated vari-
ants such as i) w/o Passage Node removes the
passage node in the heterogeneous graph structure,
build a HeterGNN with two types of nodes such
as word and sentence; ii) w/o Doc. Rep. removes
the document representation from passages for the

sentence extraction process (Eq. 8). Table 3 shows
the results of different variants on two evaluated
datasets. As result, the proposed architecture out-
performs all variants, which proves that combining
both modules can achieve the best results. Espe-
cially, by adding passage nodes, the similar repre-
sentation problem of sentences, when the nodes of
words and sentences are increased to represent the
long-form document, can be reduced. In particular,
the effectiveness of proposed modules is visual-
ized with an example in Figure 2. Accordingly,

Figure 2: Visualized the efficiency of using passage
nodes to enhance sentence representation. The degree
of highlighting expresses the important role of the pas-
sage in the document. Underlined sentences are model-
selected summaries. As result, the selected sentences
belong to passages that have high scores of α (Equation
8).
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Our Model arXiv PubMed
R-1 R-2 R-L R-1 R-2 R-L

w/o w2p 46.30 18.50 40.38 48.76 22.57 44.08
w/o p2s 46.87 18.84 40.96 48.76 22.45 44.00
plus p2w 46.77 18.82 40.89 48.80 22.54 44.06
plus s2p 46.62 18.73 40.70 48.23 22.06 43.43
full edge 46.92 18.80 41.07 48.51 22.42 43.75
Proposed Model 47.05 19.01 41.20 48.86 22.63 44.19

Table 4: Evaluation on the impact of edge types.

each passage has different impacts on the document
representation and can be utilized effectively to en-
rich the information of sentence representations.
As shown in the example, the selected sentences
mainly belong to the passages, which have high
attention scores (Equation 8).
Impact of Edge Types: the proposed heteroge-
neous graph includes four types of edge such as
s2w, w2s, w2p, and p2s. Accordingly, p2w and
s2p are removed because of redundancy, which
might influence the performance. In this section,
we try to evaluate the impact of edge types on the
performance by developing several variants of the
proposed graph structure, which are: i) w/o w2p re-
moves the link from word nodes to passage nodes;
ii) w/o p2s removes the link from passage nodes to
sentence nodes; iii) plus p2w adds the link from
passage nodes to word nodes; iv) plus s2p adds
the link from sentence nodes to passage nodes; and
v) full edge builds a HeterGNN model of three
types of nodes such as word, sentence and passage
nodes with fully connected among nodes. Specifi-
cally, there are total six types of edges of this model
such as w2s, w2p, s2w, s2p, p2w, and p2s. Table
4 shows the results of the evaluation. Accordingly,
the results indicate that using four types of edges
in the proposed model is able to achieve the best
results for both evaluated datasets. Note that all the
ablated experiments use the same value of passage
length (n= 10). More details about this hyperpa-
rameter are exploited in the following section.
Length of Passage: is an important hyperparame-
ter in this study in which different datasets might
require different values of passage length. In this re-
gard, we conduct experiments to determine the best
values of passage length for two evaluated datasets.
Table 5 illustrates the impact of passage length
on the performance of two datasets, respectively.
Specifically, the value of passage length is ranged
from 10 to 30 (per 05 periods). As result, the best

Datasets n R-1 R-2 R-L
10 47.05 19.01 41.20
15 46.68 18.79 40.78

arXiv 20 46.14 18.47 40.30
25 46.81 18.79 40.95
30 47.36 19.11 41.47
10 48.86 22.63 44.19
15 48.53 22.26 43.75

PubMed 20 48.75 22.45 43.97
25 48.75 22.57 44.02
30 48.86 22.45 44.07

Table 5: Impact of passage length on the performances
of the proposed model.

values of passage length for arXiv and PubMed
are 30 and 10, respectively. The experimented re-
sult indicates a hypothesis that an adaptive method
for automatically segmenting the passage length
is able to improve performance. In particular, the
passage can be segmented by unsupervised (Alemi
and Ginsparg, 2015) or supervised (Koshorek et al.,
2018) learning. We take this issue into account for
the future work of this study.

5 Conclusion

This paper presents a new GNN-based model for
extractive long document summarization. Specif-
ically, GNN has been introduced as a promising
approach for exploiting the complex relation of
elements (e.g., word and sentence) from an input
document. However, representing long documents
as graph structure is still a remaining challenge.
Specifically, lacking cross-relation information be-
tween sentences (e.g., long-distance of position in
the document) and the increment of nodes might
influence the performance. In this regard, this pa-
per proposes a heterogeneous graph including three
types of nodes such as word, sentence, and passage,
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which are simultaneously learned for enabling the
cross-relation between sentences. The evaluation
of two standard long documents datasets such as
arXiv and PubMed shows that the proposed model
outperforms state-of-the-art models in this research
field without relying on pre-trained language mod-
els (e.g., BERT).
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