Combining Compressions for Multiplicative Size Scaling on Natural
Language Tasks

Rajiv Movva“'?3, Jinhao Lei 2, Shayne Longpre®*, Ajay Gupta?, and Chris DuBois?

“Equal Contribution
'Cornell Tech, rm868 @cornell.edu
2Apple, {jlei2, ajay_gupta2, cdubois } @apple.com
*Massachusetts Institute of Technology, slongpre @mit.edu

Abstract

Quantization, knowledge distillation, and mag-
nitude pruning are among the most popular
methods for neural network compression in
NLP. Independently, these methods reduce
model size and can accelerate inference, but
their relative benefit and combinatorial inter-
actions have not been rigorously studied. For
each of the eight possible subsets of these tech-
niques, we compare accuracy vs. model size
tradeoffs across six BERT architecture sizes
and eight GLUE tasks. We find that quan-
tization and distillation consistently provide
greater benefit than pruning. Surprisingly, ex-
cept for the pair of pruning and quantization,
using multiple methods together rarely yields
diminishing returns. Instead, we observe com-
plementary and super-multiplicative reductions
to model size. Our work quantitatively demon-
strates that combining compression methods
can synergistically reduce model size, and that
practitioners should prioritize (1) quantization,
(2) knowledge distillation, and (3) pruning to
maximize accuracy vs. model size tradeoffs.

1 Introduction

As increasingly large models dominate Natural
Language Processing (NLP) benchmarks, model
compression techniques have grown in popularity
(Gupta and Agrawal, 2020; Rogers et al., 2020;
Ganesh et al., 2021). For example, quantization
(Shen et al., 2020; Zafrir et al., 2019; Jacob et al.,
2018) lowers bit precision of network weights to
reduce memory usage and accelerate inference
(Krashinsky et al., 2020). Knowledge distillation
(KD; Hinton et al. (2015)), which trains a student
neural network using the logits (or representations)
of a teacher network, is used widely to transfer
knowledge to smaller models (Sanh et al., 2019;
Jiao et al., 2020; Sun et al., 2019, 2020). Pruning
identifies weights which can be omitted at test time
without significantly degrading performance. Some

pruning methods remove individual weights accord-
ing to magnitudes or other heuristics (Gordon et al.,
2020; Chen et al., 2020; Sanh et al., 2020), while
others remove structured blocks of weights or en-
tire attention heads (Wang et al., 2020; Hou et al.,
2020; Voita et al., 2019; Michel et al., 2019).

Recent work has begun combining these com-
pression methods for improved results. Sanh et al.
(2020), Zhang et al. (2020), and Bai et al. (2021)
have used knowledge distillation with pruning or
low-bit quantization to fine-tune BERT. As practi-
tioners look to combine methods more generally,
new research is needed to compare their empiri-
cal value and study interactions. This work ad-
dresses the questions: (1) Which popular compres-
sion methods or combinations of methods are usu-
ally most effective? (2) When combining methods,
are their benefits complementary or diminishing?

We address these questions by computing ac-
curacy vs. model size tradeoff curves for six pre-
trained BERT sizes fine-tuned on eight GLUE tasks
(Wang et al., 2019b), applying each of eight possi-
ble subsets of quantization-aware-training (QAT),
knowledge distillation (KD), and magnitude prun-
ing (MP). Our main findings are as follows:

1. When methods are applied independently,
QAT yields best accuracy-compression trade-
offs, followed by KD and then MP.

2. Strikingly, we observe no diminishing re-
turns when combining KD with QAT or
MP. Instead, KD mitigates the loss in accu-
racy caused by either method, thereby super-
multiplicatively reducing model size.

3. When used together, QAT and MP amplify
each other’s individual accuracy losses. How-
ever, combining all three methods (i.e., also
using KD) preserves accuracy, allowing 18x
and 11x compression for BERT-LARGE and
BASE respectively.

2861

Proceedings of the 29th International Conference on Computational Linguistics, pages 2861-2872
October 12-17, 2022.

2 Methods

In our work, we study three common model com-
pressions: quantization-aware-training, knowledge
distillation, and magnitude pruning. We prioritize
performant, broadly applicable approaches with ac-
cessible implementations, so our findings are most
useful to practictioners. Hyperparameters and ad-
ditional method details are in Appendices A & C.

BERT Architecture Sizes. We test each com-
pression combination across six different BERT
architecture sizes, seeing as they may have differ-
ent compressibilities. These pretrained models are
taken from Turc et al. (2019): LARGE (367 million
params), BASE (134M), MEDIUM (57M), SMALL
(45M), MINT (19M), TINY (8M). Including a range
of sizes makes our findings relevant to practition-
ers or deployment settings without resources for
architectures like LARGE or BASE. Additionally,
using smaller model sizes is a practical baseline to
compare our compression methods against.

Quantization-Aware-Training (QAT). While
most neural networks use 32-bit floats for weights
and activations, recent work has shown promise for
lower precisions. 16-bit floats cause no accuracy
loss for most architectures (Das et al., 2018), and
Zafrir et al. (2019) show that, with quantization-
aware-training (QAT), 8-bit integer (INTS8) BERT
mostly preserves GLUE accuracy. The INT8 model
is nearly 4x smaller, and can achieve 2.4-4.0x infer-
ence acceleration with appropriate hardware (Kim
et al., 2021a). As lower precisions harm accuracy
significantly (Shen et al., 2020), we use an 8-bit
BERT with the QAT scheme described by Zafrir
et al. (2019), recapped in the Appendix.

Knowledge Distillation (KD). In KD, we fine-
tune a small student model by optimizing its
weights to mimic the outputs of a teacher model.
We use a common, simple variant of KD, emu-
lating Turc et al. (2019): we use a BERT-LARGE
fine-tuned for three epochs on the GLUE task as
the teacher, and the student is trained to minimize
KL-divergence between its predicted probabilities
and the teacher’s.

To further improve the utility of KD, we adopt
Jiao et al. (2020)’s approach of data augmentation
(DA) for GLUE training datasets. This technique
helps for all tasks, especially the smaller ones (e.g.
MRPC, RTE). Each example is copied 10, 20, or
30 times (more copies for smaller tasks), and each
copy has some of its words replaced with synonyms

(i.e. words with closest GLoVe embeddings). Many
of the copies have altered meanings, but the teacher
is able to adapt by making different predictions.
Before running all of our experiments, we ran a
few trials (on MRPC and QNLI) to confirm that
DA helped with distillation but not without, and so
we only used DA for the KD experiments.

Magnitude Pruning (MP). Several pruning
methods have been used in NLP (Hoefler et al.,
2021). We use unstructured weight pruning, which
can achieve higher sparsities than structured prun-
ing (Renda et al., 2020), and has comparatively
standard implementations.

Magnitude pruning masks the weights with low-
est magnitudes to achieve a target sparsity. As in
Sanh et al. (2020), we iteratively prune weights at a
linear schedule during training after some warmup
steps. Sanh et al. (2020) also propose movement
pruning, in which weights are pruned according to
their gradients during fine-tuning. We found that
movement pruning performs worse than magnitude
at moderate sparsities (40-60%), when accuracy
is retained (corroborated by Sanh et al. (2020)).
As we target accuracy-preserving pruning, we use
magnitude pruning for the experiments in this work.
We prune either 40% or 60% of encoder weights
only, as pruning embedding weights significantly
damages accuracy (Yu et al., 2020).

3 Results

Experiments For six BERT architecture sizes
and eight GLUE tasks!, we tested every possible
subset of compression methods: no compression
(Baseline), QAT, KD, MP, QAT+KD, QAT+MP,
KD+MP, and QAT+KD+MP. For each of 576
experiment settings, we log the max GLUE devel-
opment set accuracy across twelve hyperparameter
configurations and five repetitions of each configu-
ration. In Figure 1, we plot mean GLUE accuracy
across all eight tasks on the y-axis against decreas-
ing model size on the z-axis, for each compres-
sion combination. The curves without pruning in-
clude six points, one for each architecture size from
LARGE to TINY. With pruning, there are twice as
many points, as each architecture is pruned to ei-
ther 40% or 60% encoder sparsity. Results split by
task are available in Appendix Figure Al.

Individually, QAT and KD are most effective.
For all architectures, QAT (blue) reduces model

! We excluded CoLA and WNLI to reduce experimental bur-
den and due to issues with WNLI (Wang et al., 2019a).

2862

88 Large
%)
@ 86
3
o 84
j - Baseline
3 82 == QAT
0 KD
c 80 H==1MP
3 —— QAT+KD
= 73— QAT+MP
= KD+MP
76 H = QAT+KD+MP
1GB 300MB

100MB

BERT-Large Baseline

30MB 10MB

Figure 1: Mean GLUE accuracy vs. decreasing model size, with curves plotted for each compression combination.
The different points for each curve represent the different BERT architecture sizes, from LARGE down to TINY.

size by 4x while minimally reducing accuracy:
the largest drop is —0.6% for BERT-BASE (sup-
porting Zafrir et al. (2019)), while other architec-
ture sizes are nearly unaffected. KD (orange) does
not reduce a given architecture’s size, but instead
yields a consistent boost to accuracy, especially
for smaller architectures. This upward shift on
the accuracy-model size curve means that larger
models can be downsized more effectively: e.g.,
LARGE’s baseline accuracy is matched by the KD
version of BASE, and KD SMALL outperforms
baseline MEDIUM. Compared to QAT or KD, MP
(green) is only modestly helpful. Typically, 40% of
encoder weights can be removed without much im-
pact, but pruning 60% (i.e., the second point in each
set of two) degrades accuracy. Also, removing 40%
of encoder weights corresponds to a < 40% model
size reduction because we do not prune embedding
weights. Therefore, while MP can be helpful for
LARGE and BASE, it cannot significantly compress
small architectures, which have a higher percentage
of their weights in embeddings.

Used together, KD mitigates accuracy losses
from both QAT and MP. Moving to combi-
nations of compression methods, we find that
the most successful pair combines QAT and KD
(red), which yields QAT’s 4 x memory reduction
while retaining the improved accuracy over base-
line from KD. Meanwhile, QAT+MP (purple)

does poorly: though LARGE and BASE can prune
40% of weights while retaining accuracy, when
they are pruned and quantized, they have lower
accuracy than when they are only quantized. This
result suggests that pruning specifically damages
accuracy with quantization: practitioners should
expect additive (or worse) accuracy degradation
when combining QAT and MP. On the other hand,
with KD+MP (brown), 40% weights can be pruned
while retaining the accuracy boost from KD, for
all architectures. Thus, KD mitigates accuracy
losses from both MP and QAT. This result still
holds when we combine all three methods (black).
With QAT+KD+MP, 40% of encoder weights for
LARGE and 60% for BASE (and smaller) can be re-
moved while matching the accuracy of QAT+KD.
In our experiments, KD completely mitigates the
compounding losses from QAT+MP and even im-
proves accuracy. KD enables deeper compression
when practitioners combine methods.

Combining methods yields super-multiplicative
compression ratios. Building on our qualitative
findings, we were interested in quantitative esti-
mates for how much each method allows us to
compress each architecture size. So, we compute
compression ratios, i.e., the maximal size reduction
factor possible while preserving accuracy to within
0.5% of baseline. For example, baseline LARGE
(1341 MB) yields 92.8% accuracy on QNLI, while

2863

Size QAT MP QAT+ QAT+MP +MP QAT+KD+MP
LARGE 1341 3.6x 3.4x 1.7x 12.6x 3.9% 9.8 % 18.1x
BASE 438 2.6x 1.8x 1.7x 5.9% 3.1x 2.8 % 11.1x
MEDIUM 166 2.9x 2.0x 1.2x 8.0x 4.0x 3.9% 14.1x
SMALL 115 3.6x 24x 1.2x 9.4x 4.7% 3.6 14.1x
MINI 45 3.7x 12x 1.1x 4.7x 3.4x 1.8x 7.0x
TINY 18 3.4x 1.0x 0.7x 4.0x 2.2x% 1.0x 3.9%

Table 1: Ratios, averaged across all GLUE tasks, measuring the maximum possible size reduction factor of a certain
architecture while within 0.5% of baseline accuracy. Uncompressed sizes are listed in megabytes (MB).

BASE with QAT, KD, and 40% MP (76 MB) is
the smallest model within 0.5% of that, at 92.6%
accuracy. Therefore, BERT-LARGE’s compression
ratio on QNLI is % = 17.6x, and averaging this
value across tasks yields a net ratio of 18.1x (top-
right, Table 1). We similarly compute ratios for all
architectures and compression combinations.

As before, QAT usually retains accuracy and
yields a 4 x size reduction. However, because there
are a few tasks for which QAT causes a > 0.5% ac-
curacy drop?, the task-averaged compression ratios
for LARGE and BASE of 3.6 x and 2.6 x. KD also
has high mean compression ratios, because it of-
ten boosts small architectures’ accuracies to match
larger baseline architectures. MP yields 1.7x com-
pression (from 40% pruning) for LARGE and BASE,
and even less for the smaller architectures.

When combined, we observe synergistic com-
pression between QAT and KD. We might expect
strong diminishing returns from combining meth-
ods, but even in their absence, we would expect
independent compression ratios to multiply. Strik-
ingly, though, we often see super-multiplicative
model size reductions with QAT+KD: e.g. BASE,
59> 2.6-1.8=4.7; MEDIUM: 8.0 > 2.9-2.0 =
5.8. For KD+MP, the ratios multiply for LARGE
and BASE. Also, while pruning was originally
ineffective for MEDIUM and smaller, KD+MP
appears to make pruning more effective, again
with super-multiplicative compression (e.g. for
Medium: 3.5 > 2.0 - 1.2 = 2.4). These find-
ings show that KD mitigates the drop in accu-
racy from quantization (Zhang et al., 2020) and
pruning (Sanh et al., 2020), supporting qualita-
tive findings from prior literature. This mitiga-
tion effect, combined with the accuracy boost that
KD provides, yields joint compressions that are
more effective than the sum of their parts. Re-
markably, with all three compressions, we still see

% Those tasks would be considered to have 1x compression.

super-multiplicative scaling for BASE and smaller
(e.g., BASE: 11.1 > 26 -18-17 = 8.0;
MEDIUM: 14.1 >2.9-2.0-1.2 =7.0). At 18.1x,
LARGE is most compressible, but actually has a
sub-multiplicative ratio, perhaps because the indi-
vidual compressions already work very well.

4 Discussion and Future Work

We examine the relative benefits and interactions
of three widely-used compression methods in NLP:
knowledge distillation, INT8 quantization-aware-
training, and magnitude pruning. Though multiple
techniques are increasingly used simultaneously,
little work has studied the empirical interactions
between them.

Across six architecture sizes and eight GLUE
tasks, we find that INT8 quantization is most ben-
eficial, and combining quantization with KD miti-
gates any of its occasional accuracy drops. Quan-
tization and pruning yield diminishing returns,
with the two methods exacerbating accuracy losses
when used together. However, when all three meth-
ods are combined, KD restores accuracy above
baseline, yielding 18 x and 11X net compression
for BERT-LARGE and BASE. We quantitatively
confirm that KD’s model size improvements are
complementary (often super-multiplicative) with
quantization and pruning. Given these benefits,
using larger, more recent GLUE winners as KD
teachers may yield further gains (e.g. ERNIE, Sun
et al. (2021)). We also hope that our observed bene-
fits inspire authors of new compression techniques
to evaluate complementarity with existing methods.

In future work, we hope to measure accuracy vs.
inference time tradeoffs, and compare these results
to our findings on model size. Though there is work
on accelerated inference with INT8 quantization
(Kim et al., 2021b) or pruning (Pool et al., 2021),
it is not clear how these speedups stack. Profiling
compression combinations on specialized hardware
would be an informative avenue to explore next.

2864

Broader Impacts

As NLP models dramatically scale in size, they rely
increasingly on specialized hardware (e.g. GPUs,
TPUs) to train and deploy them. The manufactur-
ing and energy consumption involved in the us-
age of such devices imposes a significant carbon
footprint (Strubell et al., 2019; Gupta et al., 2021).
Model compression is part of the broader move-
ment towards "Green AI", in which researchers
develop more energy-efficient models with similar
task accuracies in order to reduce usage of compute-
hungry hardware (Schwartz et al., 2020).

By careful empirical study of how to optimally
combine compression methods, we believe our
work takes further steps towards Green Al. In par-
ticular, rather than proposing a single architecture
that achieves a specific tradeoff, we equip practi-
tioners with a set of principles to apply depending
on their needs, hopefully increasing uptake of at
least some subset of compression methods. Apply-
ing our insights to widely-used deployment settings
(speech-to-text, search, efc.) could significantly re-
duce AI’s consumptive footprint.

Though model compression methods can dra-
matically mitigate deep learning’s carbon foot-
print, they may also create opportunities for harm
(Suresh and Guttag, 2021). Specifically, recent
work shows that pruning damages accuracy for mi-
nority classes in the training dataset (Hooker et al.,
2020), and that pruning may change model behav-
ior even when accuracy is preserved (Movva and
Zhao, 2020). Such predictive disparities can lead
to algorithmic harms: e.g., representational harms
for language models, or allocational harms for cer-
tain downstream task predictors (Blodgett et al.,
2020). More work is needed to systematically char-
acterize the relationship between compression and
algorithmic harms.

References

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jin Jin,
Xin Jiang, Qun Liu, Michael Lyu, and Irwin King.
2021. BinaryBERT: Pushing the limit of BERT quan-
tization. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 4334-4348, Online. Association for Computa-
tional Linguistics.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and
Hanna Wallach. 2020. Language (Technology)

is Power: A Critical Survey of "Bias" in NLP.
arXiv:2005.14050 [cs]. ArXiv: 2005.14050.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia
Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. 2020. The lottery ticket hypothesis for pre-
trained bert networks. In Advances in Neural Infor-
mation Processing Systems, volume 33, pages 15834~
15846. Curran Associates, Inc.

Dipankar Das, Naveen Mellempudi, Dheevatsa Mudi-
gere, Dhiraj D. Kalamkar, Sasikanth Avancha, Kunal
Banerjee, Srinivas Sridharan, Karthik Vaidyanathan,
Bharat Kaul, Evangelos Georganas, Alexander Hei-
necke, Pradeep Dubey, Jests Corbal, Nikita Shustrov,
Roman Dubtsov, Evarist Fomenko, and Vadim O.
Pirogov. 2018. Mixed precision training of convo-
lutional neural networks using integer operations.
CoRR, abs/1802.00930.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali
Khan, Yin Yang, Hassan Sajjad, Preslav Nakov, Dem-
ing Chen, and Marianne Winslett. 2021. Compress-
ing large-scale transformer-based models: A case
study on bert. Transactions of the Association for
Computational Linguistics, 9:1061-1080.

Mitchell A. Gordon, Kevin Duh, and Nicholas An-
drews. 2020. Compressing BERT: Studying the
Effects of Weight Pruning on Transfer Learning.
arXiv:2002.08307 [cs]. ArXiv: 2002.08307.

Manish Gupta and Puneet Agrawal. 2020. Compression
of deep learning models for text: A survey. arXiv
preprint arXiv:2008.05221.

Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse,
Hsien-Hsin S. Lee, Gu-Yeon Wei, David Brooks, and
Carole-Jean Wu. 2021. Chasing Carbon: The Elu-
sive Environmental Footprint of Computing. In 2021
IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 854-867.
ISSN: 2378-203X.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli
Dryden, and Alexandra Peste. 2021. Sparsity in Deep
Learning: Pruning and growth for efficient inference
and training in neural networks. arXiv:2102.00554
[cs]. ArXiv: 2102.00554.

Sara Hooker, Nyalleng Moorosi, Gregory Clark, Samy
Bengio, and Emily Denton. 2020. Characterising
Bias in Compressed Models. arXiv:2010.03058 [cs].
ArXiv: 2010.03058.

2865

https://doi.org/10.18653/v1/2021.acl-long.334
https://doi.org/10.18653/v1/2021.acl-long.334
http://arxiv.org/abs/2005.14050
http://arxiv.org/abs/2005.14050
https://proceedings.neurips.cc/paper/2020/file/b6af2c9703f203a2794be03d443af2e3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b6af2c9703f203a2794be03d443af2e3-Paper.pdf
http://arxiv.org/abs/1802.00930
http://arxiv.org/abs/1802.00930
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2002.08307
http://arxiv.org/abs/2002.08307
https://doi.org/10.1109/HPCA51647.2021.00076
https://doi.org/10.1109/HPCA51647.2021.00076
http://arxiv.org/abs/2102.00554
http://arxiv.org/abs/2102.00554
http://arxiv.org/abs/2102.00554
http://arxiv.org/abs/2010.03058
http://arxiv.org/abs/2010.03058

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. Dynabert: Dynamic bert
with adaptive width and depth. In Advances in Neural
Information Processing Systems, volume 33, pages
9782-9793. Curran Associates, Inc.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Men-
glong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. 2017.
Quantization and Training of Neural Networks
for Efficient Integer-Arithmetic-Only Inference.
arXiv:1712.05877 [cs, stat]. ArXiv: 1712.05877.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Meng-
long Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. 2018. Quan-
tization and training of neural networks for effi-
cient integer-arithmetic-only inference. In 2018
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 2704-2713. IEEE
Computer Society.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling bert for natural language under-
standing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
Findings, pages 4163-4174.

Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W.
Mahoney, and Kurt Keutzer. 2021a. I-BERT: Integer-
only BERT Quantization. arXiv:2101.01321 [cs].
ArXiv: 2101.01321.

Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W
Mahoney, and Kurt Keutzer. 2021b. I-bert:
Integer-only bert quantization. arXiv preprint
arXiv:2101.01321.

Ronny Krashinsky, Oliver Giroux, Stephen Jones, Nick
Stam, and Sridhar Ramaswamy. 2020. NVIDIA Am-
pere Architecture In-Depth.

Paul Michel, Omer Levy, and Graham Neubig.
2019. Are Sixteen Heads Really Better than One?
arXiv:1905.10650 [cs]. ArXiv: 1905.10650.

Rajiv Movva and Jason Y. Zhao. 2020. Dissecting
Lottery Ticket Transformers: Structural and Behav-
ioral Study of Sparse Neural Machine Translation.
arXiv:2009.13270 [cs, stat]. ArXiv: 2009.13270.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532-1543, Doha, Qatar.
Association for Computational Linguistics.

Jeff Pool, Abhishek Sawarkar, and Jay Rodge. 2021.
Accelerating inference with sparsity using the nvidia
ampere architecture and nvidia tensorrt. NVIDIA
Developer Blog.

Alex Renda, Jonathan Frankle, and Michael Carbin.
2020. Comparing Rewinding and Fine-tuning in Neu-
ral Network Pruning. arXiv:2003.02389 [cs, stat].
ArXiv: 2003.02389.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in bertology: What we know about
how bert works. Transactions of the Association for
Computational Linguistics, 8:842-866.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Victor Sanh, Thomas Wolf, and Alexander Rush. 2020.
Movement pruning: Adaptive sparsity by fine-tuning.
In Advances in Neural Information Processing Sys-
tems, volume 33, pages 20378-20389.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren
Etzioni. 2020. Green Al. Communications of the
ACM, 63(12):54-63.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. 2020. Q-bert: Hessian based ultra low
precision quantization of bert. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8815-8821.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and Policy Considerations for
Deep Learning in NLP. arXiv:1906.02243 [cs].
ArXiv: 1906.02243.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for bert model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4323-4332.

Yu Sun, Shuohuan Wang, Shikun Feng, Siyu Ding,
Chao Pang, Junyuan Shang, Jiaxiang Liu, Xuyi
Chen, Yanbin Zhao, Yuxiang Lu, Weixin Liu, Zhi-
hua Wu, Weibao Gong, Jianzhong Liang, Zhizhou
Shang, Peng Sun, Wei Liu, Xuan Ouyang, Dianhai
Yu, Hao Tian, Hua Wu, and Haifeng Wang. 2021.
ERNIE 3.0: Large-scale Knowledge Enhanced Pre-
training for Language Understanding and Generation.
arXiv:2107.02137 [cs]. ArXiv: 2107.02137.

Zhiqging Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. MobileBERT:
a compact task-agnostic BERT for resource-limited
devices. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2158-2170, Online. Association for Computa-
tional Linguistics.

Harini Suresh and John Guttag. 2021. A Framework
for Understanding Sources of Harm throughout the
Machine Learning Life Cycle. In Equity and Ac-
cess in Algorithms, Mechanisms, and Optimization,

2866

https://proceedings.neurips.cc/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf
http://arxiv.org/abs/1712.05877
http://arxiv.org/abs/1712.05877
http://arxiv.org/abs/2101.01321
http://arxiv.org/abs/2101.01321
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
http://arxiv.org/abs/1905.10650
http://arxiv.org/abs/2009.13270
http://arxiv.org/abs/2009.13270
http://arxiv.org/abs/2009.13270
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://developer.nvidia.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/
https://developer.nvidia.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/
http://arxiv.org/abs/2003.02389
http://arxiv.org/abs/2003.02389
https://proceedings.neurips.cc/paper/2020/file/eae15aabaa768ae4a5993a8a4f4fa6e4-Paper.pdf
https://doi.org/10.1145/3381831
http://arxiv.org/abs/1906.02243
http://arxiv.org/abs/1906.02243
http://arxiv.org/abs/2107.02137
http://arxiv.org/abs/2107.02137
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.1145/3465416.3483305
https://doi.org/10.1145/3465416.3483305
https://doi.org/10.1145/3465416.3483305

EAAMO 21, pages 1-9, New York, NY, USA. As-
sociation for Computing Machinery.

Tulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-Read Students Learn Better:
On the Importance of Pre-training Compact Models.
arXiv:1908.08962 [cs]. ArXiv: 1908.08962.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing Multi-Head
Self-Attention: Specialized Heads Do the Heavy Lift-
ing, the Rest Can Be Pruned. arXiv:1905.09418 [cs].
ArXiv: 1905.09418.

Alex Wang, Jan Hula, Patrick Xia, Raghavendra Pappa-
gari, R. Thomas McCoy, Roma Patel, Najoung Kim,
Ian Tenney, Yinghui Huang, Katherin Yu, Shuning
Jin, Berlin Chen, Benjamin Van Durme, Edouard
Grave, Ellie Pavlick, and Samuel R. Bowman. 2019a.
Can you tell me how to get past sesame street?
sentence-level pretraining beyond language model-
ing. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
4465-4476, Florence, Italy. Association for Compu-
tational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019b.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In the Pro-
ceedings of ICLR.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2020.
Structured Pruning of Large Language Models. Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 6151-6162. ArXiv: 1910.04732.

Haonan Yu, Sergey Edunov, Yuandong Tian, and Ari S.
Morcos. 2020. Playing the lottery with rewards and
multiple languages: lottery tickets in RL and NLP.
arXiv:1906.02768 [cs, stat]. ArXiv: 1906.02768.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert. arXiv
preprint arXiv:1910.06188.

Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao
Chen, Xin Jiang, and Qun Liu. 2020. Ternarybert:
Distillation-aware ultra-low bit bert. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 509—
521.

2867

http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1905.09418
http://arxiv.org/abs/1905.09418
http://arxiv.org/abs/1905.09418
https://doi.org/10.18653/v1/P19-1439
https://doi.org/10.18653/v1/P19-1439
https://doi.org/10.18653/v1/P19-1439
https://doi.org/10.18653/v1/2020.emnlp-main.496
http://arxiv.org/abs/1906.02768
http://arxiv.org/abs/1906.02768

A Experiment Details

A.1 Experiment Breakdown

In total, we tested 576 experimental conditions,
each of which involves fine-tuning a model on a
GLUE task. We used eight GLUE tasks: SST-
2, MRPC, STS-B, QQP, MNLI, MNLI-MM,
QNLI, and RTE. We excluded COLA and WNLI
from the pruning experiments to reduce the com-
putational burden (more on the compute budget
below), and because there are some known issues
with WNLI that make it difficult for a fair evalua-
tion (Wang et al., 2019a).

We used six architecture sizes (details about the
architectures are in Table 2), and eight subsets of
compression methods (including the baseline of
no compression). Note that, when we combine
compression methods, there is no concept of order,
because all methods function simultaneously and
independently: QAT simply adds additional oper-
ations after each Linear layer, KD only modifies
the loss, and MP gradually masks more weights.
Therefore, these eight subsets are exhaustive.

There were twice as many pruning experiments
as non-pruning experiments, since each pruning
experiment tested two different sparsity levels®. So,
there were 4 compression subsets without pruning,
4 compression subsets with 40% pruning, and 4
compression subsets with 60% pruning. Overall,
there were 6 - 8 - (3 - 4) = 576 experimental condi-
tions.

A.2 Training & Hyperparameters

For each experiment, we started by initializing the
BERT architecture with pretrained weights from
Turc et al. (2019). We fine-tuned for 3 epochs
(on either the base or augmented GLUE training
set, depending on whether we were performing a
distillation experiment). As is standard for BERT
fine-tuning on GLUE, batch size and LR can have a
significant effect on the results (Devlin et al., 2018;
Turc et al., 2019). For each experimental condi-
tion, we tested three batch sizes ({8, 16, 32}) and
four learning rates ({le-5, 2e-5, 3e-5, 4e-5} for
LARGE and BASE; {3e-5, 5e-5, 0.0001, 0.0003}
for MEDIUM/SMALL/MINI/TINY). For each hy-

3 Actually, we tested three sparsities (also including 80%),
but we only show experiments from 40% and 60% in the
main text. This was because 80% sparse models generally
performed poorly, and fell outside the accuracy-model size
frontier, so they did not affect our results — which focused on
the best possible tradeoffs for each method. We show these
additional results in Appendix C.3.

perparameter combination, we performed five rep-
etitions, so there were 3 - 4 - 5 = 60 total training
runs per experimental condition. We report max
accuracy across these 60 runs rather than taking
an average, as the BERT training on GLUE can
be unstable and lead to poor results a high frac-
tion of the time (Devlin et al., 2018). We use the
public GLUE development sets rather than the offi-
cial test sets, since it wouldn’t have been feasible
to make thousands of submissions to the GLUE
testing portal.

Overall, then, we performed 576 - 60 = 34560
fine-tuning experiments. This was feasible be-
cause the smaller architectures could be fine-tuned
quickly (from an hour for MEDIUM to a few min-
utes for TINY, on the largest GLUE tasks). We per-
formed all experiments on NVIDIA V100 GPUs,
and all told, we would estimate approximately 75K
GPU hours were necessary for our experiments.
As we set a rough budget of 100K GPU hours, this
was the reason why we had to make decisions like
excluding two GLUE tasks (CoLA, WNLI), not
performing data augmentation for non-distillation
experiments, and not performing pretraining distil-
lation; any of these decisions would have ballooned
our experimental burden. We recognize the privi-
lege of having had access to as much GPU time as
we did, and hope that other researchers can benefit
from this thorough empirical analysis.

B Task-Specific Results

In Figure A1, we plot similar curves to Figure 1,
split by each task. The data from Figure 1 are
replicated in the top-left plot. Tasks are ordered by
size (reading left-to-right and then top-to-bottom).
Most tasks have concordant trends with the curves
for average GLUE performance as discussed in the
main text, but there are a couple exceptions.

First, for magnitude pruning, we find that some
tasks experience worse accuracy-size tradeoffs than
baseline when pruned to 40% of weights remain-
ing; this was typically not the case when all task
accuracies are averaged. Specifically, for some
tasks (e.g. SST-2, STS-B, MRPC), pruning signif-
icantly degrades accuracy below baseline. Smaller
BERT architectures are especially harmed, since
they are already under-parameterized compared to
BERT-LARGE and BASE. This finding agrees with
Chen et al. (2020), who find that these particular
GLUE tasks are least prunable while preserving
accuracy (they also use magnitude pruning, but

2868

Architecture # Layers Hidden Dim. Params (Millions) Size (MB) Avg GLUE
LARGE 24 1024 367 1341 88.47
BASE 12 768 134 438 87.39
MEDIUM 8 512 57 166 85.11
SMALL 4 512 45 115 83.29
MINI 4 256 19 45 81.41
TINY 2 128 8 18 78.10

Table 2: Information on the different BERT architecture sizes we use in our experiments, with pretrained versions
of each size downloaded from (Turc et al., 2019) (in accordance with their license). The “Avg GLUE” column is the
mean GLUE accuracy across the eight tasks included in our experiments.

80

70

90

85

90 *

90
85

STS-B
1GB 100MB

85 MRPC
10MB 1GB

100MB

10MB

Baseline
QAT

KD

MP

QAT+KD
QAT+MP
KD+MP
QAT+KD+MP

1GB 100MB 10MB

Figure A1: For each task, dev set accuracy vs. decreasing model size (from >1GB down to 10MB), with curves
plotted for each compression combination. Tasks are ordered by training dataset size (left-to-right). The grey
horizontal line in each plot is the baseline accuracy for BERT-LARGE.

a more compute-intensive version, allowing for
slightly higher sparsities than we report).

Second, we find that for MRPC and RTE, the
curves appear noisier, making some trends hard to
discern. This is for two reasons: one, the tasks
have the smallest training dataset, so they tend to
degrade more in response to pruning (Chen et al.,
2020). Second, we empirically found that these
tasks varied more in their accuracy from run-to-
run than other tasks (perhaps also because of their
smaller training datasets). Thus, the true trends for
different compression methods may be obscured
by lower-confidence accuracy metrics.

C Implementation Details

C.1 Quantization-Aware-Training

In this work, we use quantization-aware-training
(QAT) rather than naive post-training quantization

(PTQ). PTQ quantizes weights after training and
can significantly increase error due to the loss of
precision. Recently, QAT has been more common,
in which the effects of weight quantization are sim-
ulated during training with fake quantization oper-
ations (Jacob et al., 2017). Therefore, at inference
time, the model’s weights are better tailored to ac-
commodate a reduced precision.

We specifically quantize the embedding and lin-
ear modules in our BERT architecture to use INT8
weights, following the symmetric linear quantiza-
tion scheme from Q8BERT (Zafrir et al., 2019).
The following quantization operation is applied to
weights and activations, with scaling factor S and
max value M, to quantize a value x:

Quantize(z | S, M) = Clamp(|z - S|, —M, M),

where |-] is the integer rounding function, and

2869

Clamp(-, —M, M) maps out-of-range values to
—M or M. M is determined by the number of
bits; with 8 bits, for example, we have up to 256
possible quantization levels, so M = 127. Follow-
ing Zafrir et al. (2019), the scaling factor S is set
so that the largest possible value for a weight or
activation matrix gets quantized to M. Thus, for a
weight matrix W, the scale SV is given by

M
w _
5 ~ max |W|

For activations = from a given layer L, the scale
factor S* is computed as an exponential moving
average of the max activation value during training,

M

5= EMA (max/, |z])’

For quantization-aware-training, we add fake
quantization ops to the model’s weight matrices
and activations during the training forward pass,
therefore simulating the effect of quantization on
each layer’s output. However, Quantize(-) is not
differentiable due to the rounding operation, so the
backward pass simply ignores the quantization op
using the straight-through-estimator: 9z9/0x = 1.
We model our fake quantization ops off the im-
plementation in Intel’s n1p-architect® repos-
itory, authored by Zafrir et al. (2019) and others.

C.2 Knowledge Distillation

Knowledge Distillation (KD) aims to transfer the
knowledge from a large teacher model into a
smaller student model: ideally, our student’s predic-
tions will emulate the teacher’s, but with reduced
compute cost. Formally, models trained with KD
learn to minimize Lkp, the difference between the
teacher’s and student’s functions f and f°, across
the training set X'

Lxp =Y L(fT(x), (@) .

reX

The functions f7(-) and £°(-) include the final
output probabilities, and L(-) measures the cross
entropy between the student and teacher predicted
probabilities (Sanh et al., 2019).

While some approaches perform distillation dur-
ing BERT pretraining, we only distill during task
fine-tuning, which is also common. Focusing on

*https://github.com/IntellLabs/
nlp-architect

fine-tuning was necessary to make our experimen-
tal search space tractable, since BERT pretraining
can take multiple orders of magnitude more com-
pute than fine-tuning. Task-specific distillation is
also more critical to preserving accuracy than pre-
training distillation (Jiao et al., 2020). We follow
Jiao et al. (2020) in augmenting the GLUE datasets
by copying examples and replacing words with
synonyms. By running an ablation, they find that
augmentation is useful for all tasks, and especially
ones with less data (i.e., COLA and MRPC benefit
much more than MNLI). They use different aug-
mentation factors for each dataset, either scaling
up the size by 10, 20, or 30 times. We use the same
values in our work, copied here: { MNLI: 10, QQP:
10, QNLI: 20, SST-2: 20, STS-B: 30, MRPC: 30,
RTE: 30}.

We directly used their script,
data_augmentation.py, from the
TinyBERT’ Github repository. For each

GLUE training dataset, this script generates an
expanded file in the same format, except with
multiple words replaced with synonyms (i.e.,
L2 nearest neighbors from GLoVe embeddings
(Pennington et al., 2014)). We then take our teacher
model (fine-tuned BERT-LARGE on the same
GLUE task) and generate predicted probabilities
for every example in the augmented dataset, which
includes the original sentences and their synonym-
replacements. Note that, when using multiple
synonyms, some of the sentences change meaning,
leading to a substantially different prediction than
the original sentence. This is another reason (in
addition to little observable change in performance
and our compute budget) that we did not use
augmentation for the experiments which did not
use distillation.

C.3 Pruning

We use the magnitude pruning setup from the
nn_pruning Github repository6 (Sanh et al.,
2020). Importantly, because the nn_pruning
implementation of a “pruned” model stores the
weight values along with a dictionary of weights
to be masked, the real model sizes on disk are not
smaller. So, the pruned model sizes that we re-
port are theoretical rather than actual. That said,

Shttps://github.com/yinmingjun/TinyBERT;
no license visible on Github.

Snttps://github.com/huggingface/nn_
pruning; license allows commercial and private
use.

2870

https://github.com/IntelLabs/nlp-architect
https://github.com/IntelLabs/nlp-architect
https://github.com/yinmingjun/TinyBERT
https://github.com/huggingface/nn_pruning
https://github.com/huggingface/nn_pruning

it would be easy to attain a true size reduction if,
for example, the weights were changed to zeroes
and the model file was gzipped.

As in the movement pruning approach, we prune
gradually throughout training. We prune to three
possible sparsity levels: 40%, 60%, or 80% spar-
sity. Specifically, weights are masked on a linear
schedule after 5000 warmup steps, meaning that
a constant number of weights are masked at each
step in order to reach the target sparsity by the end
of training.

For most architectures, the 80% pruning results
were very poor: they caused significant accuracy
degradation, so they did not yield accuracy-model
size tradeoffs that were on the optimal frontier.
These results did not affect our conclusions, so
we removed the 80% sparse points from Figure 1.
We display these results here in the Appendix (Fig-
ure A2), by showing the same plots as Figure Al,
but with the 80% sparse points added to the curves.
There is often a steep accuracy dropoff from 60%
to 80% sparsity, especially for the smaller tasks
(STS-B, MRPC, RTE).

We acknowledge that there are some marginal
improvements on magnitude pruning or other forms
of weight pruning that may yield better results for
some architectures or tasks. For example, Chen
et al. (2020) use iterative magnitude pruning with
multiple rounds of full training to achieve higher
than 40% sparsities without accuracy loss. How-
ever, the goal of our work is not necessarily to
achieve the largest model size reductions possi-
ble, but rather to understand how methods interact;
therefore, we think our conclusions on magnitude
pruning would hold even with slight modifications
to the method.

2871

80

70 \!
—— Baseline

QAT

% KD
MP
QAT+KD

% QAT+MP
KD+MP

70 QAT+KD+MP

60

80 STS-B 1
1GB 100MB 10MB 1GB 100MB 10MB 1GB 100MB 10MB

Figure A2: Accuracy vs. decreasing model size; same as Figure A1, but with the 80% pruning experiments also
included (i.e., 20% of weights remaining). There is a large dropoff when 80% of weights are pruned compared to
60%, especially for smaller tasks.

2872

