CMCL 2022 Shared Task on Multilingual and Crosslingual Prediction of
Human Reading Behavior

Nora Hollenstein
University of Copenhagen

Emmanuele Chersoni

The Hong Kong Polytechnic University

nora.hollenstein@hum.ku.dk emmanuelechersoni@gmail.com

Cassandra Jacobs
University of Buffalo

Yohei Oseki
University of Tokyo

jacobs.cassandra.l@gmail.com osekil@g.ecc.u-tokyo.ac.jp

Laurent Prévot

Aix-Marseille Université & CNRS, LPL

laurent.prevot@univ-amu. fr

Abstract

We present the second shared task on eye-
tracking data prediction of the Cognitive Mod-
eling and Computational Linguistics Workshop
(CMCL). Differently from the previous edition,
participating teams are asked to predict eye-
tracking features from multiple languages, in-
cluding a surprise language for which there
were no available training data. Moreover, the
task also included the prediction of standard
deviations of feature values in order to account
for individual differences between readers.

A total of six teams registered to the task. For
the first subtask on multilingual prediction, the
winning team proposed a regression model
based on lexical features, while for the sec-
ond subtask on cross-lingual prediction, the
winning team used a hybrid model based on a
multilingual transformer embeddings as well
as statistical features.

1 Introduction

The benefits of eye movement data for machine
learning have been assessed in various domains, in-
cluding NLP (Barrett et al., 2016, 2018; McGuire
and Tomuro, 2021) and computer vision (Shan-
muga Vadivel et al., 2015; Kruthiventi et al., 2017;
Bautista and Naval, 2020; Tseng et al., 2020). Eye-
tracking provides millisecond-accurate records on
where humans look when they are reading and are
useful in explanatory research of language process-
ing. Eye movements depend on the stimulus and
are therefore language-specific, but there are also
universal tendencies that have been observed across
languages (Liversedge et al., 2016).
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Figure 1: An example sentence from the Russian Sen-
tence Corpus (Laurinavichyute et al., 2019) averaged
across all readers. A wider diameter of the markers
represents a higher standard deviation.

Modelling human reading has been researched
extensively in psycholinguistics (Reichle et al.,
1998; Matthies and Sggaard, 2013; Hahn and
Keller, 2016). In NLP, eye-tracking prediction
has been used to determine linguistic complexity
(Singh et al., 2016; Sarti et al., 2021) or to ana-
lyze language models’ ability to account for mea-
sures of human reading effort (Merkx and Frank).
Being able to accurately predict eye-tracking fea-
tures across languages will advance this field and
will facilitate comparisons between models and the
analysis of their varying capabilities.

In this shared task, we address the challenge of
predicting eye-tracking features recorded during
sentence processing of multiple languages. We are
interested in both cognitive modelling approaches
as well as linguistically motivated approaches (i.e.,
language models). This shared task is hosted on
CodaLab, where the instructions and pre-processed
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eye-tracking datasets are available.'

Compared to the CMCL 2021 Shared Task on
eye-tracking prediction (Hollenstein et al., 2021a),
we introduce two major changes:

* Multilingual data: We provide an eye move-
ment dataset with sentences from six different
languages (Chinese, Dutch, English, German,
Hindi, Russian) for Subtask 1 and a new Dan-
ish test set for Subtask 2.

» Eye-tracking features: To take into account
the individual differences between readers, the
task is not limited to predict the mean eye
tracking features across readers, but also the
standard deviation of the feature values.

2 Related Work
2.1 Eye-Tracking and Language Models

It is widely acknowledged by researchers on natu-
ralistic reading that fixation patterns are influenced
by the words’ contextual predictability (Ehrlich and
Rayner, 1981), although there is some substantial
disagreement about the nature of this link (Broth-
ers and Kuperberg, 2021). In Natural Language
Processing, the most influential account of this phe-
nomenon comes from surprisal theory (Hale, 2001;
Levy, 2008). This theory claims that the processing
difficulty of a word is proportional to its surprisal,
i.e., the negative logarithm of the probability of the
word given the context, and it served as a reference
framework for several studies on language mod-
els and eye-tracking data prediction (Demberg and
Keller, 2008; Frank and Bod, 2011; Fossum and
Levy, 2012). Surprisal is not necessarily the only
factor involved: for example, word length, word
frequency, and other local statistics (e.g., bigram
and trigram probabilities) also affect reading times
(Rayner and Raney, 1996; Williams and Morris,
2004; Goodkind and Bicknell, 2021). Embedding-
based semantic similarity was also found to be cor-
related with eye-tracking metrics (Mitchell et al.,
2010; Salicchi et al., 2021; Yu et al., 2021), al-
though it is not clear whether its effect is indepen-
dent of surprisal (Frank, 2017).

Later research work brought evidence that lan-
guage models with a lower perplexity are better at
fitting to human reading times (Goodkind and Bick-
nell, 2018; Aurnhammer and Frank, 2019; Wilcox
et al., 2020; Merkx and Frank). However, other

"https://competitions.codalab.org/
competitions/36415

studies suggested that perplexity may not tell the
whole story. For example, Hao et al. (2020) pointed
out that such a metric cannot be used for comparing
models with different vocabularies and proposed,
as a more reliable predictor, the correlation between
surprisal values computed by a language model
and the surprisal values obtained from humans by
means of a Cloze test. Moreover, while most work
on eye-tracking and language modeling focused
on English, recent experiments on typologically
distant languages like Japanese showed that lower-
perplexity models may not be necessarily better at
predicting eye-movement data (Kuribayashi et al.,
2021). Therefore, multilingual evaluation is an
important step for building cognitively plausible
models of human reading processes.

2.2 Multilingual Eye-Tracking Corpora

Comparing monolingual and multilingual Trans-
former models, Hollenstein et al. (2021b) found
that the latter are surprisingly accurate in predicting
eye-tracking features across languages. In particu-
lar, multilingual BERT (Devlin et al., 2019) shows
the best crosslinguistic transfer ability, even with-
out being explicitly trained on the target language,
while the XLLM models (Lample and Conneau,
2019) achieve better in-language performance after
fine-tuning.

Psycholinguistic research in the last two decades
has led to the introduction of corpora with eye-
tracking recordings in several languages, includ-
ing English (Cop et al., 2017; Luke and Christian-
son, 2017; Hollenstein et al., 2018, 2020), German
(Kliegl et al., 2006; Jéager et al., 2021), Hindi (Hu-
sain et al., 2015), Japanese (Asahara et al., 2016),
Dutch (Cop et al., 2017), Russian (Laurinavichyute
et al., 2019), Mandarin Chinese (Pan et al., 2021),
and Danish (Hollenstein et al., 2022). However, it
is not optimal to combine datasets recorded in dif-
ferent settings. The most recent release is the Mul-
tilingual Eye-Movement Corpus (MECO; Siegel-
man et al. 2022), a new resource including parallel
data from 580 readers of 13 different languages
following the same experiment protocol. The no-
table differences between these corpora and other
psycholinguistic studies is the naturally occurring
stimuli, the presentation of full sentences or longer
text spans, and that the participants were able to
read in their own speed.
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Corpus Lang. Sents. Tokens Subjects Reference

BSC ZH 150 1685 60 Panetal. (2021)

PAHEC HI 153 2596 30 Husain et al. (2015)

RSC RU 144 1417 102 Laurinavichyute et al. (2019)
Provo EN 189 2659 84 Luke and Christianson (2017)
ZuCo 1.0 EN 300 6588 12 Hollenstein et al. (2018)
ZuCo 2.0 EN 349 6828 18 Hollenstein et al. (2020)
GECO-NL NL 800 9218 18 Copetal. (2017)

PoTeC DE 101 1895 75 Jdger et al. (2021)

CopCo (Subtask 2 onlyy DK 402 6768 5 Hollenstein et al. (2022)

Table 1: Datasets used in the shared task. Note that the number of sentences and tokens refers to the text materials

we have selected and not necessarily to the complete original datasets.

Feature min max mean (std)
FFDAvG 0.0 56.74 13.02 (7.34)
FFDSTD 0.0 58.54 4.47 (3.55)
TRTAvG 0.0 100.0 18.87 (11.57)
TRTSTD 0.0 100.0 9.86 (8.01)

Table 2: Minimum, maximum, mean and standard devi-
ation of the scaled feature values in both training and
test data of Subtask 1, after averaging across readers.

3 Task Description

The shared task is formulated as a regression task
to predict 2 eye-tracking features and the corre-
sponding standard deviation across readers for each
word:

1. FFDAVG: first fixation duration (FFD), the
duration of the first fixation on the prevailing
word;

2. FFDsSTD: standard deviation of FFD across
readers;

3. TRTAVG: total reading time (TRT), the sum
of all fixation durations on the current word,
including regressions;

4. TRTSTD: standard deviation of TRT across
readers.

3.1 Subtask 1

The goal of the first subtask is multilingual eye
tracking prediction, i.e., to predict the eye-tracking
features for sentences of the 6 provided languages
in the training data on held-out sentences of the
same languages in the test data. The dataset con-
tains sentences from a range of openly available
eye-tracking corpora.

3.2 Subtask 2

The second subtask test the models’ performances
in a cross-lingual prediction scenario. The training
and development data are identical to Subtask 1,
but the test data contains eye-tracking data from a
new language. The participants were only informed
about which language would be included in this
subtask at the beginning of the evaluation phase.

4 Data
4.1 Subtask 1

The dataset contains sentences from the follow-
ing openly available eye-tracking corpora: the Bei-
jing Sentence Corpus (BSC; Pan et al. 2021), the
Postdam-Allahabad Hindi Eye Tracking Corpus
(PAHEC; Husain et al. 2015), the Russian Sen-
tence Corpus (RSC; Laurinavichyute et al. 2019),
the Provo Corpus (Luke and Christianson, 2017),
the Zurich Cognitive Language Processing Corpus
(ZuCo; Hollenstein et al. 2018, 2020), The Dutch
part of the Ghent Eye-Tracking Corpus (GECO-
NL; Cop et al. 2017), and the Potsdam Textbook
Corpus (PoTeC; Jéager et al. 2021). These datasets
cover a diverse range of text domains, including
news articles, novels, Wikipedia sentences, scien-
tific textbook passages, etc. The details are pre-
sented in Table 1.

The training data contains 1703 sentences, the
development set contains 104 sentences, and the
test set 324 sentences.

4.2 Subtask 2

As described, the training and development data
are identical to Subtask 1, but the test data contains
eye-tracking data from a new language, namely
Danish. The Danish eye-tracking data contains 402

123



train
100

80

! !

; )

! ;

i

: : i
w© ' j
20 !

0 78

11.05 3.57 15.11

FFDAvg FFDStd TRTAvg TRTStd

test subtask 1
100

80

FFDAvg FFDStd TRTAvg TRTStd

test subtask 2
100

80

60 > .

FFDAvg FFDStd TRTAvg TRTStd

Figure 2: Boxplots showing the feature value distri-
butions of the training data and the test sets of both
subtasks. Below each box is the median value of each
feature.

sentences read by 5 readers, extracted from the
CopCo corpus (Hollenstein et al., 2022).

4.3 Preprocessing

Tokenization The tokens in the sentences are
split in the same manner as they were presented
to the participants during the reading experiments.
Hence, this does not necessarily follow a linguis-
tically correct tokenization. For example, the se-
quences “(except,” and “don’t” were presented as
such to the reader and not split into “(”, “except”,
“ and “do”, “n’t” as a tokenizer would do. It is
the participants’ decision how to deal with these
tokens.

Feature Extraction The data contains scaled fea-
tures in the range between 0 and 100 to facilitate
evaluation via the mean absolute average (MAE).
The eye-tracking feature values (FFDAVG and TR-
TAVG) are averaged over all available readers of a
corpus. This preprocessing step is done separately
for each corpus before combining them. Table 2
shows the scaled features values across the full
dataset of Subtask 1. In Figure 2, we present the
distributions of the feature values for the training
set and the test set of Subtasks 1 and 2. Finally,
Figure 3 in the Appendix shows the individual plots
for each language.

5 [Evaluation

In this section, we describe the evaluation proce-
dure used to assess the submitted predictions of the
participating teams.

Any additional data source was allowed to train
the models, as long as it is freely available to the
research community. For example, additional eye-
tracking corpora, additional features such as brain
activity signals, pre-trained language models, etc.

5.1 Scoring Metric

The submitted predictions are evaluated against the
real eye-tracking feature values using the mean ab-
solute error (MAE) metric, a measure of errors be-
tween paired observations including comparisons
of predicted (y) versus observed (z) values for each
word in the test set:

it |y — il
n

MAFE = (1)
The winning system is defined as the one with the
lowest average MAE across all 4 features. We
reported additional metrics for analysis, namely
R? for all features individually and aggregated, but
only MAE was used for the ranking.

5.2 Mean Baseline

We use the mean central tendency as a baseline for
this regression problem, i.e., we calculate the mean
value for each feature from the training data and
use it as a prediction for all words in the test data.
Table 3 shows the MAE scores achieved by this
mean baseline for each eye-tracking feature.

For Subtask 1, we add an additional stronger
mean baseline calculated over the training set of
each language individually. This baseline assumes
that the language of each sentence is known to the
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Rank Team Name MAE FFDAvG FFDsTD TRTAVG TRTSTD R?  Reference
1 HkAmsters 3.01 4.40 4.15 1.76 1.73 0.61  Salicchi et al. (2022)
2 DMG 3.65 5.65 4.43 2.61 1.92 049 Takmaz (2022)
- Lang. baseline 4.27 3.55 2.03 6.56 494 034 -
3 NU HLT 5.49 6.67 8.38 3.93 299 -0.18 Imperial (2022)
4 Poirot 5.50 8.37 5.68 5.47 2.50 -0.03 Srivastava (2022)
5 UFAL 5.72 8.81 5.73 5.77 2.58 0.00 Bhattacharya et al. (2022)
- Mean baseline 5.73 8.82 5.89 5.69 2.54 0.00 -
6 TorontoCL 11.09 18.84 8.89 13.06 3,57 -2.04

Table 3: Overall results of Subtask 1 showing the best submission per team and the mean baselines, including the
overall MAE and R? scores, as well as the individual MAE scores for each feature. The teams are ranked by the
MAE averaged across all five eye-tracking features (third column).

Rank Team Name MAE FFDAvG FFDsTD TRTAVG TRTSTD R?  Reference
1 Poirot 423 5.60 5.65 2.95 2.73 -0.26  Srivastava (2022)
2 DMG 4.97 6.90 5.77 5.45 1.73  -0.57 Takmaz (2022)
- Mean baseline 5.73 8.82 5.89 5.69 254  0.00 -
3 NU HLT 7.09 14.65 4.04 7.53 2.12  -1.83  Imperial (2022)

Table 4: Overall results of Subtask 2 showing the best submission per team and the mean baseline, including the
overall MAE and R? scores, as well as the individual MAE scores for each feature. The teams are ranked by the
MAE averaged across all five eye-tracking features (third column).

system. This second baseline was not reported in
the rankings, but serves for further analysis.

6 Participating Teams & Systems

Six teams and a total of 37 participants registered
on the competition website. All six teams submit-
ted their predictions during the evaluation phase
for Subtask 1. Four of the teams also submitted
predictions for Subtask 2. Each team was allowed
three submissions for each subtask during the eval-
uation phases. Finally, 5 teams published system
description papers outlining their approaches (see
Table 3 for all references).

6.1 Methods

The participating teams submitted predictions gen-
erated from various approaches, from regression
algorithms such as random forests (NU HLT)
and linear regression models (HkAmsters) with a
wide range of lexical, cognitively and phonetically-
motivated features (NU HLT), to neural approaches
that fine-tune large pre-trained transformer mod-
els with additional regression heads, and inte-
grate adapters into pre-trained transformer lan-
guage models (DMG) (Pfeiffer et al., 2020; Han
et al., 2021).

Some teams chose to build language-specific

models (e.g., HkAmsters, DMG), while others
merged the words from all languages into a com-
mon vocabulary space in which all words are con-
verted to their IPA forms (NU HLT). Moreover, rep-
resentations from both monolingual models such
as GPT-2 (Radford et al., 2019) as well as multi-
lingual transformer models such as mBERT (De-
vlin et al., 2019) and XLM (Lample and Conneau,
2019) were also included (Poirot). For the second
subtask, dealing with a new unseen language was
handled again through a common phonetic vocab-
ulary space (NU HLT), through translation (i.e.,
translating the Danish text to German and then us-
ing a German model for prediction) (DMG), or
zero-shot learning (Poirot).

7 Results

In this section, we describe the prediction perfor-
mance achieved by the participating teams. The
official results of this shared task are presented in
Tables 3 and 4 for Subtask 1 and 2, respectively.
The best results for the first subtask on multilin-
gual prediction were achieved by Team HkAmsters
with language-specific regression models based on
word-level features such as word length, word fre-
quency, and surprisal scores estimated with GPT-2
(Radford et al., 2019). For the second subtask on
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cross-lingual prediction, the winning team (Poirot)
used a zero-shot hybrid model based on a multilin-
gual transformer embeddings as well as statistical
features.

8 Outlook & Conclusion

We presented the results of the second shared
task on predicting token-level eye-tracking fea-
tures recorded during natural reading of sentences
or longer text spans. In this second edition, we
focused on multilingual and crosslingual predic-
tion. We hope the CMCL Shared Task makes a
lasting contribution to the field of linguistic cog-
nitive modelling by providing researchers with a
standard evaluation framework and a high quality
dataset. Despite the limited size of the training and
test sets as well as the diversity of text domains
within the eye-tracking corpora, many previously
reached conclusions can now be tested more thor-
oughly and future models can be compared on a
shared multilingual benchmark.
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A Appendix

Figure 3 shows the distributions of the feature values for the data of all six languages.
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Figure 3: Boxplots showing the feature value distributions of the eye-tracking data of all languages of Subtask 1.
Below each box is the median value of each feature.
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