
Proceedings of the 2022 CLASP Conference on (Dis)embodiment, pages 24–29
September 15–16, 2022. ©2022 Association for Computational Linguistics

24

Dispatcher: A Message-Passing Approach To Language Modelling.

Alberto Cetoli †
alberto.cetoli@fractalego.io

Abstract

The transformer architecture has achieved state-
of-the-art performance on language modelling.
Nonetheless, a more efficient algorithm would
allow for a larger number of tokens, thus
a wider context and better grounding of the
model’s predictions. In this spirit, we intro-
duce a more efficient layer type that aims to
substitute self-attention for unidirectional se-
quence generation tasks. The system is shown
to be competitive with existing methods: Given
N tokens, the computational complexity is
O(N logN) and the memory complexity is
O(N) under reasonable assumptions. The Dis-
patcher layer is seen to achieve comparable
perplexity to self-attention while being more
efficient1.

1 Introduction

The introduction of self-attention (Vaswani et al.,
2017) has produced a considerable surge of lan-
guage models (Devlin et al., 2018; Liu et al., 2019;
Yang et al., 2019; Lan et al., 2020). Originally, self-
attention had been envisioned as a three elements
algorithm (key, query, and value) to be applied onto
an encoder-decoder framework for machine trans-
lation. It soon became evident that the Transformer
architecture can successfully master the most rel-
evant NLP tasks (Devlin et al., 2018) with some
marginal modifications. One key application of
self-attention has been language generation (Rad-
ford et al., 2019), where typically the model at-
tempts to predict the next token given a limited
window of prior elements. A full text can thus be
generated word by word. Self-attention - bidirec-
tional in nature - needs to be masked in order to
avoid backward propagation of information.

Until a few years ago recurrent models
(Sutskever et al., 2011; Graves, 2014; Merity et al.,

1The code is available at https://github.com/
fractalego/dispatcher

† Work done while at QBE Europe.

2017; Melis et al., 2018) outperformed every other
method for language modelling and generation.
This has changed with the introduction of masked
self attention (MSA) models, which have achieved
the state-of-the-art in language generation, culmi-
nating in some unexpected results for multi-task
zero-shot learning (Radford et al., 2019) as well as
intriguing few-shot abilities (Brown et al., 2020).

The main argument of this work is to show that
language modelling can efficiently rely on a mes-
sage passing approach to perform, proposing a
method that does not leverage upon self-attention.
Instead, the system builds a tree-like structure of
forward message passing weighed by dispatching
coefficients. In the end, the Dispatcher architecture
can generate texts as well as the original Trans-
former model, more efficiently. The main contri-
butions of the paper are to introduce the novel al-
gorithm as well as compare perplexity to the "stan-
dard" self-attention on the task of language mod-
elling.

2 Model

The original Transformer architecture is composed
of a number of self-attention, skip connection, and
feed-forward layers. Given N tokens, the self-
attention block has a computational and memory
complexity of O(N2) and is therefore problematic
for long sequences. Here we propose to substitute
each self-attention layer with a different algorithm.

Within the Dispatcher layer, information is
pushed forward onto the next tokens in a recur-
sive fashion. The algorithm is given a list of em-
beddings as input, with the aim to create output
embeddings that contain a mixture of the tokens
that precede them, without any leakage from the
tokens that follow. The system achieves this goal
by summing the tokens with themselves shifted by
a power of two, iteratively. Each of these steps is
labelled shift and sum in Fig. 1.

In the pseudo-code shown in Alg. 1 the dis-

https://github.com/fractalego/dispatcher
https://github.com/fractalego/dispatcher


25

Algorithm 1: The Dispatcher Layer Algo-
rithm
c← Sigmoid(Linear1(input));
c← c ⊙ mask;
V← Linear2(input);
for row = 0→ log2N − 1 do

V← V + c[row] ⊙ RollRight(V, 2row);
end
output← Linear3(V);

patching coefficients are written as c ∈ RN×log2N ,
whereas V ∈ RN×d is the tensor containing the hid-
den states used as a working memory in the main
loop, with embedding dimension d. The Linear
functions are dense layers, while RollRight shifts
the tokens to the right.

The message coming from the prior tokens fol-
lows a binary tree structure, as depicted in Fig. 1.
The sum is weighed by the dispatching coefficients,
which effectively decide whether information com-
ing from the left of the tree should propagate fur-
ther, and by what amount. These weights are com-
puted through a dense layer applied to the original
tokens. A constant mask is applied to the tensor c
after it has been computed to avoid leakage after
the RollRight operation.

The algorithm presented above describes a
single-head unit. As with self-attention, this layer
can be split into a set of Dispatcher heads to im-
prove performance. The number of heads then
becomes another hyper-parameter to tune during
training. Finally, if the number of input embed-
dings is not a power of two, the loop stops when
the shift value is greater than the input length.

2.1 Dispatcher Dropout

A quick modification of Alg. 1 can introduce an
effective dropout by randomly skipping a shift and
sum step in training with a probability given by a
dropout value between 0 and 1. Notice that in this
procedure dropout makes the algorithm quicker,
albeit with the same computational complexity.

2.2 Computational complexity

The creation of the dispatching coefficients is lin-
ear in time, as a dense layer is a applied to every
input token. The main algorithm repeats log2N
times a weighted sum. If d is the dimension of
the embeddings, the computational complexity is
O(dN logN).

Figure 1: A representation of how information is passed
from the input tokens to the output within the Dispatcher
Layer. At every vertex of this directed graph the embed-
dings are summed together, each sum weighed by the
dispatching coefficients. These weights determine how
much of the message from the left needs to be passed
onto the right. For clarity the paths to the last output
item are painted in a darker color.

2.3 Memory complexity

The system computes the dispatching coeffi-
cients in every layer with a space complexity of
O(N logN). In addition, the algorithm uses at
every step a set of embeddings V with complex-
ity O(N × d). In a typical scenario d ≫ log2N ,
yielding an effective asymptotic linear memory con-
sumption O(N × d).

3 Evaluation

3.1 Datasets

The algorithm is evaluated on the following
datasets: PTB (Mikolov and Zweig, 2012), Wiki-
Text2 and WikiText103 (Merity et al., 2017), and
One Billion Word (Chelba et al., 2013). A simple
pre-processing step uses the special token <EOS>
to indicate the end of each sentence.

Among the sets, PTB and WikiText2 are the
smallest, with only 4.9MB and 11MB of text data
for training respectively. This is to be compared to
the 515MB training set of WikiText103 and 3.9GB
of 1BW. While the larger dataset, 1BW only mod-
els short-term dependency because the sentences
have been shuffled. An additional corpus called
OpenWebText (Cohen and Gokaslan, 2020) is used
to train the larger Dispatcher model. This set was
created as an open alternative to the one used when
training GPT-2 (Radford et al., 2019) and consists
of about 40 GB of text data.



26

Figure 2: Average time in seconds for a single training
step on WikiText2 as a function of the number of input
tokens. Both models are trained on the same single-GPU
instance. The asymptotic behavior appears remarkably
different.

3.2 Training

At first, the Dispatcher algorithm is compared
against a masked self-attention model. Rather than
trying to optimize for the MSA and the Dispatcher
separately, we choose an identical set of hyper-
parameters (embedding size, number of heads, lay-
ers) and compare their perplexity. While this ap-
proach might not give the best results for each
model, it helps to show that the two algorithms
perform similarly under similar conditions.

Secondly, a slightly bigger Dispatcher model
(Sec. 3.4) is trained for one epoch only on the
OpenWebText corpus. The goal is not to achieve
state-of-the-art results, rather to prove that the pro-
posed architecture can reach comparable perplex-
ity to Transformer-based models. In the spirit of
simplicity, we use a single head for all the models,
which are trained on the same single-GPU machine.
All the models are implemented in PyTorch (Paszke
et al., 2019).

3.3 Masked self-attention (MSA) and Plain
Dispatcher

These models have embedding and inner dimension
size 512, 6 layers, and only 1 head. The training
batch size is 20 and dropout is set to 0.2, using
512 tokens. The only difference between the two
models is the self-attention/Dispatcher layer. To-
kenization is done using a pre-trained WordPiece
tokenizer made available by HuggingFace (Wolf
et al., 2020). On training and evaluation the vo-

cabulary is further restricted on each dataset to im-
prove performance, as a consequence the number
of parameters changes depending on the relevant
dataset’s vocabulary size.

3.4 Dispatcher after OpenWebText
This model has a single head, 480 embedding and
inner dimension size, and 12 layers with a mini-
batch size of 5 and no dropout. A BPE tokenizer -
pre-trained on OpenWebText - is used. The number
of tokens used for this model is 1024. First pre-
trained on OpenWebText, the model is then fine-
tuned onto the relevant sets.

3.5 Discussion
The MSA model and the Plain Dispatcher are eval-
uated against four different datasets, as shown in
the first two rows of Table 1. The results are quite
similar, with the Dispatcher architecture seen per-
forming better on the smaller sets PTB and Wiki-
Text2. This is arguably due to the model having
fewer parameters and being less prone to overfit-
ting. Conversely, the larger MSA model wins on
WikiText103. The Dispatcher overtaking MSA on
1BW is more challenging to explain in terms of
model size and seems to suggest its enhanced abil-
ity to model short-term dependencies, at least in
this one-headed configuration.

A striking difference between the MSA and the
Dispatcher is however shown in Fig. 2, which
plots the average time for a single training step as
a function of the number of input tokens. While
the recorded times are configuration-specific, the
asymptotic behavior looks radically different, sug-
gesting the Dispatcher architecture as a better can-
didate for longer sequences.

A single epoch of training onto the OpenWeb-
Text dataset boosts the Dispatcher performance into
competitive results for a model of this size, after
fine-tuning on the relevant corpus. This is shown in
the third row of Table 1, presenting our top results.

The rest of Table 1 is a showcase of the most
recent self-attention based models. Notably, our
results on PTB and WikiText2 are among the best
in the literature, surpassing the results in (Wang
et al., 2019) which are obtained by fine-tuning a
pre-trained BERT model. This is most likely due
to the OpenWebText corpus being a better set for
language generation than BookCorpus (used by
BERT), but it bodes well for the algorithm pre-
sented here that it can compete against models with
one order of magnitude more parameters. The last



27

Model Type PTB WikiText2 WikiText103 1BW

Masked Self-Attention (18M / 30M / 39M / 41M) 40.58 55.05 22.56 66.52
Plain Dispatcher (17M / 27M / 36M / 38M) 35.40 50.23 24.39 53.32

Dispatcher after OpenWebText (59M) 18.95 22.74 20.38 36.76
(Fan et al., 2020) (44M) - - 22.4 -

(Wang et al., 2019) (395M) 31.34 34.11 20.42 -
(Tay et al., 2021) (100M) - - - 21.5

(Dai et al., 2019) (257M / 0.8B) - - 18.3 21.8
(Radford et al., 2019) (1.5B) 35.7 18.34 17.48 42.16
(Shoeybi et al., 2020) (355M) - - 19.31 -
(Shoeybi et al., 2020) (8.3B) - - 10.81 -

Table 1: Top: The Dispatcher architecture is evaluated concurrently with a masked self-attention model yielding
similar results. Bottom: The Dispatcher pre-trained on OpenWebText compared to some recent results achieved
using a variant of the Transformer architecture. All the results refer to the test perplexity.

three rows relate to zero-shot results. Omninet’s
impressive result (Tay et al., 2021) is achieved by
extending self-attention to all tokens in all the lay-
ers, while here the dispatcher layer is only aware
of the embeddings within a single layer.

4 Related works

The way information is funneled to higher layers
in Fig. 1 is reminiscent of convolutional neural
networks (CNN) (Liu et al., 2020; Gehring et al.,
2017). It is especially evocative of dilated convo-
lutions as presented in (van den Oord et al., 2018).
While similar, the method presented here is not
technically a convolution, which by definition re-
quires the same operator being translated over the
input elements. In this paper the dispatching coeffi-
cients are local to the tokens.

Another way to visualize the Dispatcher algo-
rithm is as a set of overlapping Recursive NN acting
on binary trees (Goller and Kuchler, 1996; Socher
et al., 2011) which share parameters where the trees
overlap. It is however important to keep in mind
that the shift and sum iteration only performs a
weighted sum of the input embeddings, achieving
competing performance only when repeated within
a multi-layer structure.

The computational cost of large models has be-
come a source of concern in terms of scalability as
well as energy consumption (Strubell et al., 2019).
For this reason, a growing number of approxima-
tions (Wang et al., 2020; Kitaev et al., 2020; Za-
heer et al., 2021; Choromanski et al., 2020; Zhai
et al., 2021) have appeared in the literature, suggest-
ing modifications to the main self-attention layer.

These approximations tend to leverage linear alge-
bra properties to speed up calculations, capturing
the essence of the Transformer architecture into
more efficient algorithms. In many cases the ap-
proximation makes the model irreducibly bidirec-
tional, thus hindering language generation tasks.

More recently, inductive biases alternative to
self-attention have been shown to achieve compa-
rable results on language tasks using the Fourier
Transform in place of the MSA layer (Lee-Thorp
et al., 2021) and on vision tasks by means of spatial
MLPs (Yu et al., 2021).

Finally, the concept of message passing is under-
stood to describe Graph Convolutional Networks
(Kipf and Welling, 2017; Geerts et al., 2020) and
by extension the self-attention mechanism in the
Transformer architecture. The Dispatcher algo-
rithm makes message passing explicit by keeping
the routing topology constant while relying on the
coefficients to distribute the message within a set
of binary trees.

5 Conclusions

A novel architecture dedicated to language mod-
elling is introduced and shown to achieve compara-
ble perplexity with self-attention based models, re-
quiring less computational and memory resources.
A larger number of tokens can allow for a wider
context window and more detailed grounding of
the model’s predictions.

Finally, low perplexity in the task of language
modelling is often predictive of high-quality text
generation. This intriguing possibility will be pur-
sued in a future work.



28

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Ciprian Chelba, Tomás Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, and Phillipp Koehn. 2013. One
billion word benchmark for measuring progress in
statistical language modeling. CoRR, abs/1312.3005.

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamas Sar-
los, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, David Belanger, Lucy Colwell, and
Adrian Weller. 2020. Rethinking attention with per-
formers.

Vanya Cohen and Aaron Gokaslan. 2020. Opengpt-2:
Open language models and implications of generated
text. XRDS, 27(1):26–30.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2978–2988, Florence, Italy. Asso-
ciation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Angela Fan, Thibaut Lavril, Edouard Grave, Armand
Joulin, and Sainbayar Sukhbaatar. 2020. Accessing
higher-level representations in sequential transform-
ers with feedback memory.

Floris Geerts, Filip Mazowiecki, and Guillermo A.
Pérez. 2020. Let’s agree to degree: Comparing
graph convolutional networks in the message-passing
framework. CoRR, abs/2004.02593.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N. Dauphin. 2017. Convolutional
sequence to sequence learning. In Proceedings of
the 34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learning
Research, pages 1243–1252. PMLR.

C. Goller and A. Kuchler. 1996. Learning task-
dependent distributed representations by backprop-
agation through structure. In Proceedings of Inter-
national Conference on Neural Networks (ICNN’96),
volume 1, pages 347–352 vol.1.

Alex Graves. 2014. Generating sequences with recur-
rent neural networks.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. ICLR 2017.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and
Santiago Ontanon. 2021. Fnet: Mixing tokens with
fourier transforms.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Zhouyong Liu, Shun Luo, Wubin Li, Jingben Lu, Yufan
Wu, Chunguo Li, and Luxi Yang. 2020. Convtrans-
former: A convolutional transformer network for
video frame synthesis. CoRR, abs/2011.10185.

Gábor Melis, Chris Dyer, and Phil Blunsom. 2018. On
the state of the art of evaluation in neural language
models. In International Conference on Learning
Representations.

Stephen Merity, Caiming Xiong, James Bradbury, and
R. Socher. 2017. Pointer sentinel mixture models.
ArXiv, abs/1609.07843.

Tomas Mikolov and Geoffrey Zweig. 2012. Context de-
pendent recurrent neural network language model. In
2012 IEEE Spoken Language Technology Workshop
(SLT), pages 234–239.

Aaron van den Oord, Yazhe Li, Igor Babuschkin,
Karen Simonyan, Oriol Vinyals, Koray Kavukcuoglu,
George van den Driessche, Edward Lockhart, Luis
Cobo, Florian Stimberg, Norman Casagrande, Do-
minik Grewe, Seb Noury, Sander Dieleman, Erich
Elsen, Nal Kalchbrenner, Heiga Zen, Alex Graves,
Helen King, Tom Walters, Dan Belov, and Demis
Hassabis. 2018. Parallel WaveNet: Fast high-fidelity
speech synthesis. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages
3918–3926. PMLR.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning

http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/2009.14794
http://arxiv.org/abs/2009.14794
https://doi.org/10.1145/3416063
https://doi.org/10.1145/3416063
https://doi.org/10.1145/3416063
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2002.09402
http://arxiv.org/abs/2002.09402
http://arxiv.org/abs/2002.09402
http://arxiv.org/abs/2004.02593
http://arxiv.org/abs/2004.02593
http://arxiv.org/abs/2004.02593
http://proceedings.mlr.press/v70/gehring17a.html
http://proceedings.mlr.press/v70/gehring17a.html
https://doi.org/10.1109/ICNN.1996.548916
https://doi.org/10.1109/ICNN.1996.548916
https://doi.org/10.1109/ICNN.1996.548916
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/2001.04451
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942
https://doi.org/10.48550/ARXIV.2105.03824
https://doi.org/10.48550/ARXIV.2105.03824
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2011.10185
http://arxiv.org/abs/2011.10185
http://arxiv.org/abs/2011.10185
https://openreview.net/forum?id=ByJHuTgA-
https://openreview.net/forum?id=ByJHuTgA-
https://openreview.net/forum?id=ByJHuTgA-
https://doi.org/10.1109/SLT.2012.6424228
https://doi.org/10.1109/SLT.2012.6424228
http://proceedings.mlr.press/v80/oord18a.html
http://proceedings.mlr.press/v80/oord18a.html
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


29

library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2020. Megatron-lm: Training multi-billion
parameter language models using model parallelism.

Richard Socher, Cliff Chiung-Yu Lin, Andrew Y. Ng,
and Christopher D. Manning. 2011. Parsing natural
scenes and natural language with recursive neural
networks. In Proceedings of the 28th International
Conference on International Conference on Machine
Learning, ICML’11, page 129–136, Madison, WI,
USA. Omnipress.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 3645–3650, Florence, Italy. Asso-
ciation for Computational Linguistics.

Ilya Sutskever, James Martens, and Geoffrey Hinton.
2011. Generating text with recurrent neural networks.
In Proceedings of the 28th International Conference
on International Conference on Machine Learning,
ICML’11, page 1017–1024, Madison, WI, USA. Om-
nipress.

Yi Tay, Mostafa Dehghani, Vamsi Aribandi, Jai Prakash
Gupta, Philip Pham, Zhen Qin, Dara Bahri, Da-
Cheng Juan, and Don Metzler. 2021. Omninet: Om-
nidirectional representations from transformers. In
ICML 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Chenguang Wang, Mu Li, and Alexander J. Smola.
2019. Language models with transformers. ArXiv,
abs/1904.09408.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020. Linformer: Self-attention with
linear complexity.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,

Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In Advances in Neural Infor-
mation Processing Systems, volume 32, pages 5753–
5763. Curran Associates, Inc.

Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen
Zhou, Xinchao Wang, Jiashi Feng, and Shuicheng
Yan. 2021. Metaformer is actually what you need for
vision.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey,
Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
and Amr Ahmed. 2021. Big bird: Transformers for
longer sequences.

Shuangfei Zhai, Walter Talbott, Nitish Srivastava, Chen
Huang, Hanlin Goh, Ruixiang Zhang, and Josh
Susskind. 2021. An attention free transformer.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/1909.08053
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://proceedings.mlr.press/v139/tay21b.html
https://proceedings.mlr.press/v139/tay21b.html
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://arxiv.org/abs/2006.04768
http://arxiv.org/abs/2006.04768
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://doi.org/10.48550/ARXIV.2111.11418
https://doi.org/10.48550/ARXIV.2111.11418
http://arxiv.org/abs/2007.14062
http://arxiv.org/abs/2007.14062
http://arxiv.org/abs/2105.14103

