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Abstract

Pretrained large generative language models
have shown great performance on many tasks,
but exhibit low compositional generalization
abilities. Scaling such models has been shown
to improve their performance on various NLP
tasks even just by conditioning them on a few
examples to solve the task without any fine-
tuning (also known as in-context learning). In
this work, we look at the gap between the in-
distribution (ID) and out-of-distribution (OOD)
performance of such models in semantic pars-
ing tasks with in-context learning. In the ID
settings, the demonstrations are from the same
split (fest or train) that the model is being eval-
uated on, and in the OOD settings, they are
from the other split. We look at how the rela-
tive generalization gap of in-context learning
evolves as models are scaled up. We evaluate
four model families, OPT, BLOOM, CodeGen
and Codex on three semantic parsing datasets,
CFQ, SCAN and GeoQuery with different num-
ber of exemplars, and observe a trend of de-
creasing relative generalization gap as models
are scaled up.

1 Introduction

Compositional generalization has been a long
sought-after goal in deep learning. Typically, when
a model is trained on a set of combinations of con-
cepts and tested on novel combinations, it exhibits
a lower performance. In contrast, humans excel
at combining previously known concepts to gen-
eralize to unseen settings. In language, if a hu-
man understands the meaning of green plate, black
plate and green vase, then they can understand
the meaning of black vase as well without having
seen the combination before. Big language models
have impressive performance on many language
understanding tasks (Devlin et al., 2019; Raffel
et al., 2020; Chowdhery et al., 2022; Lewis et al.,
2020), but they still fail on tasks that require com-
positional generalization (Shaw et al., 2021; Furrer
et al., 2020).
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Figure 1: GeoQuery-template relative generalization
gap for various models of different sizes across different
number of shots. The relative gap is measured by the
proportion of in-distribution (ID) performance that is
lost when the model receives out-of-distribution (OOD)
inputs, (ID — OOD)/ID, for each model. Results are
averaged over five different seeds.

Prior studies of compositonal generalization use
conventional fine-tuning to adapt large language
models to the downstream task. The largest recent
generative models can be adapted without changing
their parameters using in-context learning, namely
by conditioning them on a prompt with a few ex-
emplars (shots) (Chowdhery et al., 2022; Wang
et al., 2022b; Brown et al., 2020). In-context learn-
ing benefits particularly well from increased model
scale. One can thus wonder whether scaling lan-
guage models and using them with in-context learn-
ing will eventually lead to the disappearance of the
compositional generalization gap.

To answer this question we perform in-context
learning experiments on CFQ (Keysers et al., 2020),
SCAN (Lake and Baroni, 2018), and GeoQuery
(Zelle and Mooney, 1996; Tang and Mooney, 2001)
semantic parsing datasets for compositional gen-
eralization, and study the generalization gap trend
with different number of shots for different models
and sizes. Semantic parsing is the task of translat-
ing a statement to a logical form with certain syntax
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Figure 2: Relative generalization gap on CFQ-MCD1,
SCAN-MCDI1 and GeoQuery-template for different
number of exemplars for Codex DaVinci and Cushman.
Results are averaged over five different seeds.

and semantics. To solve this task, we provide the
model with a prompt constructed of a prefix text
and several exemplars from either a split (train or
test). Details of constructing the prompt and choos-
ing the exemplars are discussed in section 2. We
evaluate Codex (Chen et al., 2021), BLOOM (Big-
Science, 2022) and CodeGen (Nijkamp et al., 2022)
which have been pretrained on code as well as nat-
ural language. We also evaluate OPT (Zhang et al.,
2022) which is only pretrained on natural language
data.

We measure how the relative generalization gap
of in-context learning evolves as the models are
scaled up. We observe a general trend of decreasing
relative gap (figure 1 and figure 2) as models are
scaled up within and across model families with
different number of shots.

2 Method

For our experiments, we generate prompts that con-
sist of a prefix string introducing the task, followed
by a number of exemplars containing inputs and
outputs, and finally the test input for which the
model will generate an output. Inputs and outputs
are prefixed with their types, such as “Command: ”’
and “Actions: ” for inputs and outputs respectively
in the case of SCAN, and “Question: ” and “Query:
” for inputs and outputs respectively in the case
of CFQ and GeoQuery. Each input-output pair is
separated by an empty line. We refer the reader to
Appendix B for the choices of prefix strings and
input-output prefixes for each dataset.

We sample our exemplars to maximally cover
the primitives in the test input and output. Doing
so ensures that our model can use the in-context vo-
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Figure 3: Relative generalization gap with respect to
the average OOD generalization performance for Codex
DaVinci and Cushman with 10 shots. Ideally, models
should be in the lower right corner of this plot. Results
are averaged over five different seeds.

cabulary introduced for the specific task rather than
using alternative lexicon from its pretrained knowl-
edge. For natural language inputs, we consider
each word as an input primitive. For the formal
language outputs, we perform tokenization specific
to the language, and consider each token as an out-
put primitive. Note that this tokenization is part
of dataset-specific pre-processing and is separate
from the tokenization done by the models.

We start selecting exemplars by first greedily
collecting successive input-output pairs with the
rarest test primitive not already covered by the sam-
pled exemplars. Once the exemplars fully cover the
test primitives (in either ID or OOD settings), we
sample the remaining exemplars uniformly at ran-
dom. Table 1 shows the coverage percentage of the
primitives for different models and datasets. With
10 exemplars, we obtain near-complete primitive
coverage for all models and splits.

3 Experiments

We prompt Codex (Cushman and DaVinci), Cod-
Gen (350M, 2B and and 6B), OPT (350M, 1.3B,
2.7B and 6.7B) and BLOOM (350M, 1.3B, 2.5B
and 6.3B) with queries and exemplars which we
sample based on section 2 to solve the tasks. We
measure and report exact match accuracy for CFQ-
MCD1, SCAN-MCD1 and GeoQuery-template
subset. Due to execution time constraints of Codex
we limited the number of examples to solve to 1045,
and compute 95% confidence interval statistics us-
ing 5000 bootstrap samples. Results are averaged
over five different seeds which control the sampling
of test examples. For CFQ and SCAN, accuracies
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for models other than Codex are almost zero for
all the number of exemplars so we do not include
them in our figures and analysis. The models are
evaluated on settings defined as split, — splitg,
which means that the query to be solved is coming
from split 5, and the exemplars added to the prompt
are sampled from split ,. We evaluate on four set-
tings: Test — Test, Train — Train which are
ID, and Test — Train, Train — Test which are
considered OOD. The relative generalization gap
is measured as (ID — OOD)/ID, where ID =
(Acc(Test — Test) + Acc(Train — Train))/2, and
OOD = (Acc(Test — Train) + Acc(Train —
Test))/2. The relative gap is determined by the
proportion of ID performance that is lost when the
model receives OOD inputs.

We also plot the relative generalization gap with
respect to OOD for different tasks and models
to get a better understanding of the gap for each
model. Since higher is better for OO D, and lower
is better for the gap, models closer to the lower right
corner of this figure (e.g. figure 4) are preferred.

CFQ (Compositional Freebase Questions) in-
troduced by Keysers et al. (2020) is a realistic se-
mantic parsing benchmark to measure composi-
tional generalization. The task is to parse a natural
language query, for instance, “Who directed Ely-
sium” to a query in SPARQL. We use the MCD-1
(maximum compound divergence) split of CFQ in
our experiments. In MCD splits, the authors have
maximized the divergence of compound structures
and guaranteed low atom divergence between the
train and test splits. This makes CFQ an appealing
benchmark to measure compositional generaliza-
tion. We follow the post-processing in Herzig et al.
(2021), sorting conjuncts alphabetically and dedu-
plicating conjuncts.

SCAN is an instruction following task intro-
duced by Lake and Baroni (2018) where the task
is to map natural language instructions (e.g. “walk
thrice”) to action sequences (e.g. “WALK WALK
WALK”). We evaluate Codex DaVinci and Cush-
man on the MCD-1 split of SCAN.

GeoQuery is a text-to-SQL dataset (Zelle and
Mooney, 1996). We use the template split intro-
duced by Finegan-Dollak et al. (2018) in which
train and test splits do not share SQL templates.

4 Results

We study the compositional generalization gap of
in-context learning in different large language mod-

OOD coverage ID coverage
Model 1 shot 5 shot 1 shot 5 shot
Codex GQ 7534% 9991% 80.61% 99.91%
CodeGen GQ  7526% 9991% 80.59% 99.91%
OPT GQ 74.69% 99.89% 80.04%  99.92%
BLOOM GQ 74.78% 9991% 80.61% 99.88%
Codex CFQ 54.09% 95.81% 59.03% 98.09%
Codex SCAN  69.45% 100% 69.67% 100%

Table 1: Primitive coverage percentage with oracle sam-
pling for GeoQuery-template, CFQ-MCD1 and SCAN-
MCDI1 splits for Codex, CodeGen, OPT and BLOOM
models. The coverage when using 10 shots is 100% for
all models and all splits.

els of different scale. Desirable models should
perform well OOD and have a low relative gener-
alization gap. Figure 1 shows the relative general-
ization gap for models of different sizes from four
model families on the GeoQuery-template dataset
for different number of shots. We can observe
that the relative generalization gap is smaller for
larger models across the four model families. In
addition to scale alone, we also find a significant
difference in the in-context compositional general-
ization behavior between different model families.
Particularly, Codex exhibits a higher OOD perfor-
mance with a low relative generalization gap (see
in figure 4). Interestingly, Codex is also the only
model family out of the ones we considered that
achieves ID or OOD performance greater than 1%
on CFQ or SCAN. We acknowledge that the two
Codex models have the largest amount of param-
eters amongst the models tested. Figure 2 shows
that as we increase the number of exemplars from
1 to 10 for Codex model family, the relative gen-
eralization gap decreases for CFQ and GeoQuery,
but increases for SCAN. In figure 3, we can see
that Codex Cushman generally struggles with both
SCAN and CFQ tasks because of the low aver-
age OOD generalization score. It is interesting to
note that, for SCAN, Codex DaVinci outperforms
Codex Cushman by ~14 points (0.16 vs 0.02) in
average OOD generalization performance, albeit
their relative generalization gap is similar (as seen
in figure 2). For reference, we report OOD vs. ID
performance in appendix A.

We observe a larger set of models performing
above near-zero on the GeoQuery dataset, allow-
ing us to compare the generalization gap behavior
of other models with increasing scale and number
of exemplars. Figure 4 illustrates relative gener-
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Figure 4: Relative generalization gap with respect
to the average OOD generalization performance for
GeoQuery-template using 10 exemplars. Ideally, mod-
els should be in the lower right corner of this plot. Re-
sults are averaged over five different seeds.

alization gap with respect to average OOD per-
formance for GeoQuery. In general, we see that
models trained on code (Codex and CodeGen) are
able to achieve higher OOD generalization with
lower relative generalization gap on the GeoQuery
dataset, with improvements scaling with model
size. Since the outputs for GeoQuery dataset con-
tain constructs common in programming languages
(appendix B), these models might have better pre-
trained knowledge to compositionally generalize
to similar tasks with few demonstrations.

5 Related Work

Many approaches have tried to improve seman-
tic parsing compositional generalization (Russin
et al., 2019; Li et al., 2019; Gordon et al., 2020).
Herzig et al. (2021) propose intermediate represen-
tations to improve compositional generalization of
pretrained seq2seq models. Many have proposed
specialized architectures for semantic parsing tasks
(Gupta and Lewis, 2018; Lake, 2019). Shin et al.
(2021) study the adaption of large language mod-
els to semantic parsers through few-shot learning.
Herzig and Berant (2021) propose a parser which
infers a span tree over the input sequence. The tree
specifies how spans are composed together in the
input. A line of work studies the use of secondary
objectives to improve compositional generalization
(Yin et al., 2021; Jiang and Bansal, 2021).

Furrer et al. (2020) Study special architectures
compared to pretrained language models for se-
mantic parsing. Tsarkov et al. (2021) investigate

the compositional generalization abilities of Trans-
formers by scaling the training data size with fixed
computational cost.

Large language models are used in different
ways to solve downstream tasks. Aside from fine-
tuning the model, in-context learning, which is the
ability of the model to solve the task by seeing
a few exemplars during inference (no weight up-
dates) has gained attention (Brown et al., 2020;
Wang et al., 2022a). Another popular approach,
called prompt tuning, is to update a small part of
the model’s parameters only (Houlsby et al., 2019;
Schick and Schiitze, 2021; Han et al., 2021; Liu
et al., 2021; Chen et al., 2022; Ding et al., 2022).
We focus on in-context learning and do not update
any parameters. Qiu et al. (2022) study whether
scaling improves compositional generalization in
semantic parsing for in-context learning, prompt
tuning, and fine-tuning all parameters of the mod-
els. We consider their work concurrent to ours with
the major difference being that this paper focuses
on measuring the relative generalization gap for
different model families. As described in detail in
section 3, we evaluate on four settings (2 ID and
2 OOD). To the best of our knowledge, Qiu et al.
(2022) only evaluate the Train — Test setting.

6 Conclusion

We have studied the effect of scaling on the gap be-
tween compositional ID and OOD generalization.
We find that the relative generalization gap follows
a decreasing trend as models are scaled up for dif-
ferent model families and for different number of
support examples. One factor that limited our study
is that in-context learning performance on CFQ and
SCAN benchmarks is still very small for almost
all publicly available models. One thing worth in-
vestigating in future research is why Codex model
family, including the smaller Cushman model, is
the only family in this study that achieves above 1%
ID or OOD performance on CFQ or SCAN datasets.
Another interesting future direction is studying the
effects of pretraining on code and natural language,
rather than natural language alone, on composi-
tional generalization with scaling. Would pretrain-
ing on code provide more benefits with increased
model scale? Such questions can be answered in
the future when the research community has access
to more large generative models that are equal in
size and amount of training but differ only in data
composition.
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Figure 5: Average OOD generalization vs. average
ID generalization performance on GeoQuery-template
using 10 exemplars. Results are averaged over five
different seeds.
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Figure 6: Average OOD generalization vs. average ID
generalization performance on CFQ-MCD1 and SCAN-
MCD1 using 10 exemplars for Codex DaVinci and Cush-
man. Results are averaged over five different seeds.
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B Prompt design

Our prompts include a prefix string that introduces
the task, followed by a number of input-output
examples where inputs and outputs have dataset-
specific prefixes. The templates used for producing
the prompts are illustrated in Table 2.



Dataset Prompt template

As a programmer, I can correctly translate any complicated question to a
SPARQL query.

Question: Was a employer of M1l a film distributor?
Query: SELECT count (x) WHERE { ?x0 a film.film_distributor
?x0 employment_tenure.person M1 }

CFQ Question: <example 2 input>
Query: <example 2 output>
Question: <evaluation input>
Query:
Here are some examples of converting complicated commands to correct
navigation actions.
Command: run opposite right thrice and jump around right thrice.
Actions: TURN_RIGHT TURN_RIGHT RUN TURN_RIGHT TURN_RIGHT RUN
TURN_RIGHT TURN_RIGHT RUN TURN_RIGHT JUMP TURN_RIGHT JUMP
TURN_RIGHT JUMP TURN_RIGHT JUMP TURN_RIGHT JUMP TURN_RIGHT JUMP
TURN_RIGHT JUMP TURN_RIGHT JUMP TURN_RIGHT JUMP TURN_RIGHT
SCAN JUMP TURN_RIGHT JUMP TURN_RIGHT JUMP.
Command: <example 2 input>
Actions: <example 2 output>
Command: <evaluation input>
Actions:
As a programmer, I can correctly translate any complicated question to a
meaning representation query.
Question: how high is the highest point in m0.
Query: answer ( elevation_1 ( highest ( intersection
( place , loc_2 (m0 ) ) ) ) ).
GeoQuery

Question: <example 2 input>
Query: <example 2 output>

Question: <evaluation input>
Query:

Table 2: Templates used for generating the prompts for CFQ, SCAN, and GeoQuery.
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