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Abstract
Unfamiliar terminology and complex lan-
guage can present barriers to understanding
science. Natural language processing stands
to help address these issues by automatically
defining unfamiliar terms. We introduce a
new task and dataset for defining scientific
terms and controlling the complexity of gen-
erated definitions as a way of adapting to a
specific reader’s background knowledge. We
test four definition generation methods for this
new task, finding that a sequence-to-sequence
approach is most successful. We then explore
the version of the task in which definitions are
generated at a target complexity level. We in-
troduce a novel reranking approach and find
in human evaluations that it offers superior flu-
ency while also controlling complexity, com-
pared to several controllable generation base-
lines.

1 Introduction

Unfamiliar concepts and complex language can
make understanding scientific information difficult
for readers (Brossard and Shanahan, 2006; Shea,
2015; Martínez and Mammola, 2021), especially
because understanding such terms is highly de-
pendent on their domain knowledge. Given the
wide variation in such knowledge, providing a one-
size-fits-all definition may not be sufficiently un-
derstandable for all readers.

We envision a software tool designed to aid read-
ers with varying domain knowledge by automati-
cally defining scientific terms. Such a tool would
afford readers control over generated definitions,
including their complexity. This hypothetical sys-
tem motivates research on automated generation of
scientific definitions and generation-time control
of definition complexity.

Prior work in generating definitions and person-
alizing generations to a reader falls short of these
goals. Most definition generation has focused on
common, general-usage words in English (Noraset
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Figure 1: Example of our task. Definitions are gener-
ated with a controlled amount of complexity based on
the question, “What is (are) X?”

et al., 2017; Balachandran et al., 2018); however,
these approaches and models may not be suitable
for generating scientific definitions (Beltagy et al.,
2019). Scientific terms rarely reach common usage
(Shea, 2015; Britt et al., 2014) and the contexts
in which their definitions might appear (e.g., a re-
search paper) are often much more complex than
general-purpose resources for definitions (e.g., dic-
tionaries or standard word embeddings). Previous
methods focused on reader personalization have
aimed at generating based on a reader’s prior knowl-
edge and interests (Acharya et al., 2018; Murthy
et al., 2021). These approaches work well when
models can leverage a reader profile (Murthy et al.,
2021) or incorporate reader feedback over time.
However, in many cases a model might not have
access to this additional information, such as for
newcomers in an online forum discussing scientific
findings (August et al., 2020a). We are interested
instead in providing readers the ability to explicitly
set definition complexity suited to their technical
comfort (McNamara and Kintsch, 1996; Kintsch,
1994; Kim et al., 2016).

We introduce a new task for generating defini-
tions of scientific and medical terms with varying
complexity (§2; Joshi et al., 2017; Fan et al., 2019).
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Our dataset (§3) is constructed from consumer med-
ical questions and science glossaries containing
words that vary in their complexity and frequency.

We start by evaluating four modeling approaches
for generating definitions, finding that, among
them, a finetuned BART model is most success-
ful at this new task (§4). As a first step to adjusting
definition complexity, we introduce methods to ex-
plicitly set definition complexity as either high or
low at generation time.

To our knowledge, this is the first paper using
decoding-time controllable generation techniques
on text complexity. We operationalize complex-
ity based on readability and science communica-
tion research (Pitler and Nenkova, 2008; Gardner
and Davies, 2013; Leroy et al., 2010) and eval-
uate several state-of-the-art controllable genera-
tion methods on this task (§5). We also develop a
new, lightweight method for controlling generation
based on discriminator ranking.

Our automatic and human evaluations show that
our lightweight method is effective at varying com-
plexity while maintaining high fluency and reduc-
ing factual errors. We release our dataset and code
to encourage future work on this task.1

2 Definition Tasks

Generating definitions has been approached as a
word-to-sequence task, where language models
used a word’s embedding to generate its defini-
tion (Noraset et al., 2017). Recent work used a
sequence-to-sequence setup for generating defini-
tions instead, where the defined word was a high-
lighted token in a sequence (Mickus et al., 2019).

This conceptualization of definition modeling is
an important starting point for addressing our task.
However, new scientific terms are introduced regu-
larly and many never appear in dictionaries or reach
common usage (Shea, 2015; Britt et al., 2014), mak-
ing it difficult to rely on general-purpose dictionar-
ies (Kim et al., 2016). Scientific terms are also
notoriously esoteric (e.g., hidden Markov model)
or else overload definitions of common words (e.g.,
transformer the model architecture versus trans-
former the electrical device), both of which compli-
cate the use of standard word representations from
pretrained models (Beltagy et al., 2019).

We address these issues by drawing inspiration
from abstractive question answering (QA). Specif-

1https://github.com/talaugust/
definition-complexity

ically, we frame our task as generating an answer
to the question “What is (are) X?” This refram-
ing allows us to leverage scientific definitions from
more diverse sources (e.g., QA datasets) and to
incorporate domain-specific knowledge into defi-
nition generation by including supporting informa-
tion (§3.2; Chen et al., 2017; Joshi et al., 2017).

3 Dataset Collection

We collect a new dataset of definitions that are an-
swers to the question “What is (are) X?” where
X is a scientific term or concept (e.g., carbon nan-
otubes). These questions are drawn roughly equally
from an existing QA dataset or templated from sci-
entific glossaries.

3.1 Sources

We draw definitions from two sources.

Medical consumer questions Ben Abacha and
Demner-Fushman (2019) collected 47,457 med-
ical questions from 12 National Institutes of
Health (NIH) websites and collected them into the
MedQuAD dataset. The dataset covers 37 differ-
ent question types. Three question categories are
focused on defining and providing information on
medical terms: “Information,” “How can I learn
more,” and “Other information.”

Manual inspection of these question categories
shows that all questions are of the form “What is
(are) X?” or “Do you have more information on
X?” Responses to the these questions begin with a
brief definition of X. After filtering for this question
type and removing questions with no answer due
to copyright restrictions, we had 4,525 definitions.

Wikipedia The MedQuAD questions are an
excellent source of definitions, but only cover
medical terms. Because we are interested in
tackling scientific terms more broadly, we augment
this set with terms drawn from Wikipedia science
glossaries.2 We extract all science-related terms
and their definitions, yielding another 3,738 terms
for a total dataset of 8,263 terms.

We also explored using other QA datasets
that included scientific information to expand
our coverage of scientific domains outside of
medicine, such as the Explain Like I am Five (Fan
et al., 2019) and ARC science exam question

2https://en.wikipedia.org/wiki/
Category:Glossaries_of_science

8299

https://github.com/talaugust/definition-complexity
https://github.com/talaugust/definition-complexity
https://en.wikipedia.org/wiki/Category:Glossaries_of_science
https://en.wikipedia.org/wiki/Category:Glossaries_of_science


Source Count Example Questions Example Definitions

MedQuAD 4,525 What is (are) complement
component 2 deficiency?

Complement component 2 deficiency is a disorder that causes
the immune system to malfunction, resulting in a form of im-
munodeficiency.

What is (are) Progressive
Supranuclear Palsy?

Progressive supranuclear palsy (PSP) is a rare brain disorder
that causes serious and progressive problems with control of gait
and balance, along with complex eye movement and thinking
problems.

Wikipedia 3,738 What is (are) rotation pe-
riod?

The time that an object takes to complete a single revolution
about its own axis of rotation relative to the background stars.

What is (are) glaciation? Process or state of being covered with a glacier.
Total 8,263

Table 1: Dataset statistics and examples.

datasets (Clark et al., 2018). We found these
questions to be less focused on definitions, though
future work might find ways to make use of them.

We split our dataset into training, development,
and test sets (8/1/1). Examples of terms in this
dataset are in Table 1.

3.2 Support Documents

We next collect scientific abstracts related to each
term to allow models to incorporate related scien-
tific knowledge (Fan et al., 2019; Clark et al., 2018).
Specifically, given a term question (i.e., “What is
(are) X?”), we query S2ORC (Lo et al., 2020), a
corpus of over 81 million scientific articles, for
the top 10 related abstracts. Query scoring and re-
trieval is done with Elasticsearch.3 These abstracts
are concatenated together and form the input along
with the term question for our models (§4).

We use scientific abstracts, rather than general
audience text like Wikipedia or the Common Crawl,
for two reasons. First, scientific terms are originally
introduced and most commonly used in research
papers, making them the most reliable source for
these terms. Second, terms can be contextual, hav-
ing different meanings in common usage. Addi-
tional details for collecting the dataset and creating
the support documents are in Appendices A.1 and
A.2.

3.3 Why Not Standard Dictionaries?

Our goal is to create a definition dataset with (i)
coverage of scientific and medical terminology and
(ii) diverse levels of complexity, to support the
application envisioned in §1. We conjecture that
general-purpose dictionaries will lack coverage of
such terms and tend to have complex definitions
for those terms that they do include. Indeed, we
found that less than 20% (191) of a sample of

3https://www.elastic.co/

1,000 terms in the medical consumer portion of
our dataset have entries in the Merriam Webster
Dictionary (MW).4 The dictionary definitions also
use substantially more academic vocabulary: an
average of 39% (s.d. 12%) of words in those dictio-
nary definitions were in the Academic Vocabulary
List (Gardner and Davies, 2013)—a list of words
that occur more frequently in academic writing
than common usage—compared to 29% (s.d. 12%)
in the medical consumer definitions. Examples of
definitions from our dataset and from MW are in
Table 2.

While complex definitions are not necessarily
bad, we want diverse complexity levels in our in-
put. While medical consumer questions tend to
use fewer specialized terms than a dictionary, we
also find that a random sample of 1,000 Wikipedia
terms in our dataset use close to as much special-
ized terminology as a dictionary (37%, s.d. 12%).
This provides us with a wider range of complexity
levels than were we to use a single source of scien-
tific definitions. We later explore how this exposure
to different complexity levels in the input makes
it possible to control the complexity of generated
definitions (§5.2).

4 Definition Generation: Basic Models

Our first goal is to generate fluent definitions that
include relevant and accurate information about the
term being defined. Because this is a new task and
there are multiple reasonable approaches to gen-
erating fluent text (Prabhumoye et al., 2020), we
experiment with four methods that have performed
strongly in question answering and general-purpose
definition generation and evaluate their effective-
ness in this novel domain. For additional details on

4For this analysis, we exclude the Wikipedia science glos-
sary terms since Wikipedia is also often used as a general-
purpose resource of definitions, and the Merriam Webster API
restricts us to 1,000 queries.
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Term Dictionary definition Dataset definition
neuroblastoma A malignant tumor formed of embryonic gan-

glion cells
Neuroblastoma is a type of cancer that most
often affects children.

cirrhosis Widespread disruption of normal liver struc-
ture by fibrosis and the formation of regener-
ative nodules that is caused by any of various
chronic progressive conditions affecting the
liver

Cirrhosis is scarring of the liver.

antibiotics A substance able to inhibit or kill microor-
ganisms; specifically : an antibacterial sub-
stance (such as penicillin, cephalosporin, and
ciprofloxacin) that is used to treat or prevent
infections by killing or inhibiting the growth
of bacteria in or on the body

Summary: Antibiotics are powerful
medicines that fight bacterial infections.

Table 2: Example definitions from a general-purpose dictionary (Merriam-Webster) and our dataset.

the training setups and hyperparameter tuning for
the models described below, see Appendix A.3.

4.1 Methods

Sequence-to-Sequence: BART (BART SD and
BART NO SD) BART (Lewis et al., 2020) has
been used to define general English terms in con-
text (Bevilacqua et al., 2020) and reached state-
of-the-art results on the Explain Like I am Five
(ELI5; Lewis et al., 2020) QA dataset, which in-
cludes some questions requiring scientific knowl-
edge (e.g., “What is a Turing Machine and why is
it so important?”).

We experiment with finetuning the BART pre-
trained model on our task and dataset in two ways.
In the first, BART is trained with the term ques-
tion concatenated with the supporting document
(referred to as BART SD). In the second, we train
a BART model with just the term question and
definition answer, without the support documents
(BART NO SD). This second version is included to
assess how important the support documents are for
generating definitions of scientific terms. We use
BART-large as our base model for both versions.5

Out-of-the-Box Causal Language Modeling
(OOTB GPT-2 and OOTB GPT-3) Recent work
has also shown that large pretrained causal lan-
guage models, such as GPT-2 and GPT-3, can gen-
erate fluent answers to factual questions without
finetuning (Brown et al., 2020).

We experiment with using both GPT-2 and GPT-
3 out-of-the-box (OOTB GPT-2 and OOTB GPT-3).
We use GPT-2 medium6 and GPT-3 davinci7 for

5https://huggingface.co/facebook/
bart-large

6https://huggingface.co/gpt2-medium. We
obtain similar results when using GPT2-large.

7https://beta.openai.com/

these experiments. For OOTB GPT-3, we evaluate
with 100 terms due to OpenAI API limits. For gen-
eration, we follow the few-shot setting proposed
in Brown et al. (2020) and prepend two held-out
question term and definition pairs before each gen-
eration.

We do not include the support documents in this
few shot setting since doing so extends beyond
GPT-2’s context window of 1024 tokens and pre-
liminary results showed that the additional text led
to fewer definitions and more repetition from the
abstracts.

Finetuning GPT-2 (FT GPT-2): Because OOTB

GPT-2 and OOTB GPT-3 involve no finetuning or
use of the support documents, we suspect that they
will underperform BART SD. We experiment with
finetuning the GPT-2 medium model (FT GPT-2)
with the question and support document, separated
by new special tokens.

Information Retrieval (OOTB BIDAF): Infor-
mation retrieval (IR) methods are an important part
of many open-domain QA systems and have pre-
sented a strong baseline in scientific question an-
swering (Clark et al., 2018). We experiment using
a pretrained BiDAF model (Seo et al., 2018) to
extract the highest scoring span in the support doc-
ument based on the term question (OOTB BIDAF).
We use AllenNLP’s implementation of BiDAF
trained on SQuAD.8

4.2 Results
Table 4 shows the ROUGE scores and BERTscore
for each modeling method on the development set
of our dataset.9 BART SD outperforms all other

8https://docs.allennlp.org/models/
main/models/rc/predictors/bidaf/

9We reserve our test for the experiments on complexity
control to avoid selecting models based on a test set that they
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Model Response
BART SD Acanthoma is a skin lesion that develops from cells in the skin.
BART NO SD Aanthoma is a type of skin cancer.
FT GPT-2 Acanthoma (cancer) is a type of cancer.
OOTB GPT-2 Acanthoma is a type of skin cancer that is caused by the fungus Acanthamoeba histolytica. It is a

common skin cancer in the United States, and it is also found in other parts of the world, such
as the United Kingdom, Australia, and New Zealand.

OOTB GPT-3 An Acanthoma is a form of skin cancer which can also be termed as a skin tumor that arises from
the cells of the epidermis, is usually pinkish in color and may or may not be itchy. Acanthomas are
classified in various ways based on their histological appearance, such as:

OOTB BIDAF Broad Line Region

Table 3: Generated definitions from each modeling approach for the question: “What is (are) Acanthoma?” Factu-
ally incorrect information is labelled in bold red.

Model ROUGE (↑) BERT (↑)
1 2 L

BART SD 0.33 0.16 0.30 0.89
BART NO SD 0.32 0.15 0.29 0.89
FT GPT-2 0.27 0.08 0.24 0.87
OOTB GPT-2 0.20 0.05 0.16 0.85
OOTB GPT-3 0.30 0.14 0.27 0.87
OOTB BIDAF 0.03 0.00 0.03 0.80

Table 4: ROUGE and BERT scores for basic definition
generation methods..

models. OOTB GPT-3 performs surprisingly well,
outperforming even FT GPT-2. BART NO SD also
performs closely to BART SD, suggesting that while
the support documents can boost performance in
this task, the effect can be small. OOTB BIDAF ex-
tracts spans that don’t answer the question.

Table 3 provides examples of the generated defi-
nitions for each modeling approach. BART SD pro-
vides the most concise answer while also remain-
ing informative, compared to FT GPT-2’s definition,
which is circular (e.g., “Acanthoma (cancer) is a
type of cancer”). While most models show impres-
sive background knowledge, there is evidence of
incorrect or hallucinated information, such as acan-
thoma being a type of skin cancer (OOTB GPT-2
and BART NO SD), these hallucinations are marked
in Table 3. We explore the amount of hallucinated
information further in §7.2. For the rest of the pa-
per we use the BART SD model since it outperforms
other methods.

5 Controlling Definition Complexity

Automatically generating definitions is an impor-
tant first step in supporting readers who come

are later evaluated on. Hyperparameter tuning and finetuning
were done on split subsets of the training data.

across unfamiliar scientific terms, but individuals
can have different tolerances for the complexity of
a definition depending on their domain knowledge
(Britt et al., 2014). The models we tested in §4 were
not trained to vary the complexity of definitions;
they do not adapt definitions to different readers.
Here we explore how to control the complexity of
generated definitions.

Controlling or guiding text generation is an ac-
tive research area with important applications like
toxicity control (Gehman et al., 2020) and language
debiasing (Ma et al., 2020). For a review, see Prab-
humoye et al., 2020. To the best of our knowledge,
ours is the first work to evaluate decoding-time con-
trollable generation methods for text complexity.

One task that has considered changing text com-
plexity is text simplification. Work on text simplifi-
cation has mostly used a machine translation setup
based on parallel corpora (Zhu et al., 2010; Cao
et al., 2020) to translate complex sentences into
simple ones. These parallel corpora are rare and
often expensive to create (Xu et al., 2015). This
setup also assumes an input text to be simplified
(Surya et al., 2019), whereas our task expects that
the text will be generated with varying complexity.

5.1 Baseline Generation Control Methods

Below we describe prior methods, used as baseline
generation control methods. In each case, we focus
on a binary distinction between “low complexity”
and “high complexity” definitions, leaving more
fine-grained distinctions to future work. We also
introduce a novel lightweight approach based on
reranking candidate generations in §5.2. Additional
details for training are in Appendix A.4.

Plug-and-play language models PPLM
(Dathathri et al., 2020) is a technique to guide
generation using the gradients of a classifier for a
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particular desired text attribute. At each generation
step, the classifier’s gradients are used to update
the language model’s hidden representations.
Due to the computational expense of PPLM, we
evaluate with 100 randomly sampled test set terms.

We train our attribute classifier on sentences
from scientific journal abstracts and scientific news
articles. Journal abstracts are sampled from the
ArXiv dataset (Clement et al., 2019) and used to
guide to more complex language. Scientific news
articles are sampled from a corpus of science news
articles (August et al., 2020b) and used to guide
towards less complex language.

Generative discriminators The GeDi method
(Krause et al., 2021) uses a class-conditioned lan-
guage model trained on text with a certain desired
(or undesired) feature (e.g., toxicity) to guide gener-
ation. At each generation step, the model provides
next token probabilities to the generator via Bayes’
rule. We train a new GeDi on the same dataset of
science news and journal articles as for PPLM.

Ensemble of language models DExperts (Liu
et al., 2021) combines multiple pretrained language
models in an ensemble of “experts” and “anti-
experts.” Specifically, a base language model is
combined with a language model trained on text
with desirable attributes (expert) and text with un-
desirable attributes (anti-expert). At generation
time, the base model’s logits are combined with the
difference of the expert’s and anti-expert’s logits.

Our expert and anti-expert are pretrained BART-
large models that we continue to pretrain on the
data used to train the PPLM discriminator. One
model is pretrained on the journal abstracts and
one on the science news articles. To generate more
complex definitions, the expert is the model trained
on journal abstracts while the anti-expert is the
model trained on science news. To generate less
complex definitions, the roles are reversed.

5.2 Novel Approach: Reranking

We introduce a new, lightweight method to generate
definitions with different complexity via reranking.
Past work has explored selecting candidate gen-
erations based discriminator scores to control for
specific topics or discourse structure but found that
it did not provide strong control (Dathathri et al.,
2020; Gabriel et al., 2021). Because our generation
task does not require topic shifts and our input has
naturally varying complexity (§3.3), we adapt this

method by scoring and selecting candidates based
on complexity discriminators.

Specifically, at test time we use our BART model
(BART SD) to generate 100 candidate definitions
for each definition. We then rerank these candidate
generations based on logits from a discriminator
trained to distinguish scientific journal text from
science news text. While this method requires re-
generating the definition many times, it does not
require gradient or probability distribution updating
during generation or any prior pretraining, allowing
for much greater flexibility during generation (e.g.,
generating from a language model without access
to vocabulary logits during generation). We con-
sider two discriminators. Both are trained on the
same dataset of science news and journal articles
as PPLM.

BERT We use the SciBERT uncased pretrained
model (Beltagy et al., 2019). For more complex
definitions we select definitions with high predicted
probability for journal text, and for less complex
definitions we select definitions with high predic-
tion probability for science news text.

Linear We also experiment with using a linear
SVM classifier. The SVM’s features are complexity
measures drawn from science communication and
readability literature, discussed in §5.3.

5.3 Complexity Measures

The complexity of scientific writing is affected by
many factors and it is difficult to operationalize it
into a single dimension. We therefore use multiple
measures of scientific writing complexity based on
prior work in science communication and readabil-
ity. These measures are not meant to be an exhaus-
tive list (for a review, see Pitler and Nenkova, 2008),
but a selection of measures that capture different
elements of complexity important to definitions.
Table 17 in the Appendix has examples of model
outputs that scored either very high or very low for
each measure.

Scientific language is often associated with lan-
guage formality (Lahiri, 2016; Heylighen et al.,
1999). This might lead to some methods intro-
duced in §5.1 to generate definition with higher
formality when guided towards higher complexity.
We therefore focus our measures on aspects of com-
plexity important for reader comprehension (e.g.,
unfamiliar terminology or dense text) rather than
the formality of the definition.

We use most of these measures in two different

8303



Model AVL ↑ TE ↑ Function Words ↓ GPT ppl. ↑ Sent. Length ↓ Flesch-Kincaid ↑
Rerank-SVM 0.10 0.12 –0.04 128.71 –0.53 1.60
Rerank-BERT 0.01 0.04 –0.01 –4.36 0.20 0.68
DExperts –0.06 0.05 0.01 1130.29 –3.23 –4.01
GeDi –0.01 0.01 –0.01 –40.45 –1.14 –0.48
PPLM (100) –0.02 0.03 –0.01 123.16 –0.67 –0.04
Journal - News 0.10 0.08 –0.04 238.07 2.94 2.68

Table 5: Differences between high and low complexity generations. Bolded values are statistically significant in
the correct direction using independent samples t-test corrected with the Bonferroni-Holm correction for multiple
hypothesis testing (Holm, 1979). Flesch-Kincaid is a single score and so not tested for significance.

ways. Five of them are the features in our linear
SVM reranker. We also use them as a preliminary
automatic evaluation of the various controllable
generation approaches in §5.1 and §5.2. Obviously,
we expect the linear SVM reranker to outperform
the other approaches in this automatic evaluation
since it was trained with these complexity features;
it should be considered something like an upper
bound for these complexity measures. Our human
evaluations (§6.2 and §7) provide a more complete
picture of the systems’ performance.

Academic Vocabulary List (AVL) occurrences
The AVL is a list of academic vocabulary drawn
from corpora spanning many scientific disciplines
(Gardner and Davies, 2013). We measure the frac-
tion of AVL words in a generated definition.

Thing Explainer out-of-vocabulary The popu-
lar book Thing Explainer explains scientific con-
cepts using only the 1,000 most frequent words in
English (measured by Wiktionary’s contemporary
fiction frequency list; Munroe, 2017).10 We mea-
sure the fraction of words in the definition outside
of the top 1,000 used in Thing Explainer.

Function words In health communication, func-
tion words (e.g., prepositions, auxiliary verbs, or
question words) positively correlate with perceived
and actual readability (Leroy et al., 2008, 2010).

Sentence length Sentence length is a commonly
used metric for document level complexity and is
part of many classic readability measures (Pitler
and Nenkova, 2008; Feng et al., 2010). While we
set a maximum generation length for our defini-
tions (64 tokens), we enable early stopping. While
longer sentences are often considered more com-
plex, we hypothesize that in our dataset longer
definitions will be associated with less complex

10https://en.wiktionary.org/wiki/
Wiktionary:Frequency_lists/Contemporary_
fiction

language due to elaborative simplification, where
complex terms are explained as a way of simplify-
ing them (Srikanth and Li, 2021).

Language model perplexity Language model
perplexity has been found to correlate with per-
ceived and actual reading difficulty (Pitler and
Nenkova, 2008; Collins-Thompson, 2014). We
use the GPT model to measure language model
perplexity, as it was trained on common English
(as opposed to scientific text).

Flesch-Kincaid grade level This score (FK)
uses simple calculations based on sentence length,
word length, and syllable counts (Kincaid et al.,
1975). Although findings are mixed on how well
the FK predicts readability in science or medical
documents (Leroy et al., 2008), it is a standard,
widely used measure of text complexity (Redmiles
et al., 2019). The FK expects a document with
multiple sentences, but our definitions are a sin-
gle sentence. To address this, we calculate the FK
based on the concatenation of all definitions gener-
ated by a particular method. For the same reason,
we do not include the FK score as a feature in our
SVM reranker (§5.1).

5.4 Complexity in Journal Abstracts and
News Articles

As a preliminary analysis of complexity using our
measures, we evaluate how the journal abstracts
and science news articles used for guiding complex-
ity generation (described in §5.1) vary across our
measures. Table 5 includes a row representing the
difference in each measure between the training set
of journal abstracts and science news articles (Jour-
nal - News). We see that all the measure behave
in the expected direction except sentence length,
which goes in the opposite direction. This might
signify that journal abstracts still use longer sen-
tences even if science news articles are explaining
complex topics to simplify them (Srikanth and Li,
2021).
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Control Method Direction
Low (News) High (Journal)

SVM-
Rerank

A type of computing in which there are many
computers running at the same time in differ-
ent parts of the world.

In computer science, distributed computing
is the process of computing on a large scale
without a single centralized data center.

BERT-
Rerank

A type of computer system in which there are
more than a few computers working together.

In computer science, distributed computing
is the process of computing on a large scale
without a single centralized data center.

GeDi Is the implementation of computer programs
across multiple computers on similar hard-
ware and/or software resources.

In computer science, a concept that states
that data must be shared across comput-
ing resources.

DExpert An Internet-driven by-computing that por-
tion of different computers from start to fin-
ish.

In computer science and communication
between-Consequently-integrates.

PPLM Easeless, self-organized, and often self-
organizing networked computer systems in-
tended for the purposes of optimization.

Multi-purpose, distributed system software
with or without a single datum storage sys-
tem.

Table 6: Generated definitions from each complexity control method for the question: What is (are) distributed
computing? Factually incorrect information is labelled in bolded red.

6 Evaluating Complexity

Here we evaluate how well our baseline and novel
generation control methods can vary the complex-
ity of definitions. For each generation method, we
generate and evaluate 10 definitions for each term.

6.1 Automatic Evaluation

We automatically evaluate each control method by
calculating the difference in each complexity mea-
sure (§5.3) for the high and low complexity genera-
tions. Table 5 details these differences. While each
measure captures a different element of complexity,
counting the number of words outside of the top
1,000 most common English words (TE) seems to
be one of the most consistent measures, with all
higher complexity generations having differences
in the expected direction. DExperts and the BERT
reranker have the largest differences, with 5% and
4% more words per sentence. Higher complexity
generations also have higher GPT perplexity, with
DExperts having the largest difference.

The two rerankers (BERT and SVM) perform
better than other models on most measures. This is
unsurprising for the SVM since it was trained with
these complexity features, but it is interesting that
reranking with the BERT classifier also provides
effective control over complexity. Table 6 provides
example generations based on each approach.

6.2 Human Evaluation

Automatic classification of text complexity is diffi-
cult and domain-specific (Collins-Thompson, 2014;
Redmiles et al., 2019); even in combination, we
believe the measures in §5.3 are insufficient for a

full evaluation of our approaches. We therefore
carry out a human evaluation to assess how each
method influences perceived definition complexity.

We select the models that performed best over-
all in our automatic evaluation: DExperts, GeDi,
and the SVM reranker.11 We randomly sample 50
terms from our test split to evaluate. We use a high
and low complexity generation from each model,
leaving us with 50× 2× 3 = 300 definitions.

We broke down complexity into two ratings:
how complicated a definition was and how difficult
to understand the definition was. For each, partic-
ipants rated definitions on a 1–4 Likert scale. We
recruited participants on Amazon Mechanical Turk.
Each participant was payed US$0.50 cents based
on US$10 dollars/hour. This study was approved
by our institution’s internal review board.

Participants 233 participants took part in our
evaluation (mean age 35 years, s.d. 11). Table
18 in the Appendix provides more details on their
demographics. We removed 4 participants due to
low effort responses (i.e., responding to all prompts
with the same rating within 15 seconds).

Results Figure 2 shows the average ratings for
each model type. DExperts generations differenti-
ate most between high and low complexity. GeDi
definitions behave in a way that is the opposite of
what we expected, with the low complexity gener-
ations rated as more complicated and difficult to
understand than the high complexity generations.
The SVM-reranked definitions perform in the ex-
pected direction, with high complexity generations

11We do not include PPLM in this analysis due to its com-
putational cost and similar performance to GeDi.
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Figure 2: Average ratings for how complicated (“How
complicated is the definition’s text?”) and difficult to
understand (“Imagine you are looking up this term,
how hard is it for you to understand this definition?”)
definitions are for each model on each complexity level.
Range is from 1 = “Not at all” to 4 = “Very”. No differ-
ences are statistically significant.

being rated as more complicated and difficult to
understand. Examples of ratings and raw counts
are in Table 19 and Figure 4 in the Appendix.

7 Evaluating Fluency, Relevance, and
Factuality

Our results suggest that our reranking method is
a simple intervention that can control complexity
with similar performance as other state-of-the-art
methods. However, definitions of scientific terms
also must be fluent, relevant, and factual. Factuality
can be especially difficult to achieve in generations
(Maynez et al., 2020). In science communication
such failures could spread misinformation with flu-
ent but incorrect definitions (Britt et al., 2019).

We do two additional human evaluations for flu-
ency and relevance (§7.1), and factuality (§7.2).
We used two trained annotators, one of them an
author, to rate the same 300 definitions used in
the complexity evaluation (§6.2). Neither annota-
tor saw the model generations before evaluation or
knew which method had generated each definition.

7.1 Fluency & Relevance

Annotators rated definitions for fluency and rele-
vance using 1–4 Likert scales (1 = “Not at all” to 4
= “Very”). Table 7 shows the average fluency and
relevance ratings. The SVM-reranked definitions
were rated close to “Very” fluent and relevant (both
above 3.5 on a 4 point scale), and significantly more
fluent compared to GeDi (t198 = 5.99 p < 0.001,
Cohen’s d = 0.60) and DExperts (t198 = 18.85
p < 0.001, d = 1.88).

Model Fluency
(s.d.)↑

Relevence
(s.d.)↑

Factuality
(s.d.)↓

SVM 3.71 (0.59) 3.51 (0.78) 1.81 (0.81)
GeDi 3.20 (1.06)* 2.86 (1.22)* 2.38 (1.12)*
DExpert 2.33 (0.85)* 2.80 (0.91)* 2.59 (0.97)*

Table 7: Fluency, relevance, and factuality ratings from
our human evaluation. More details are in Appendices
A.7.2 and A.7.3. * =Significant compared to SVM rat-
ings using independent t-tests corrected for multiple hy-
pothesis testing using the Bonferroni-Holm correction.

7.2 Factuality

For each definition, annotators identified if there
was any factually incorrect information in the defi-
nition (a binary label) and if so, rated how extensive
these errors were on the same 1–4 scale. Table 7 re-
ports on the average rating for how extensive these
errors were. Below we report on the binary label.

Overall 60% of our generations were labeled as
factually incorrect by at least one annotator (40%
by both). The SVM had significantly fewer fac-
tual errors (38% by one annotator, 16% by both),
compared to GeDi (52% and 33%, t198 = 4.71
p < 0.001, Cohen’s d = 0.47) and DExperts (86%
and 67%, t198 = 12.29 p < 0.001, d = 1.24).

8 Conclusion

We introduce a new task and dataset for gener-
ating definitions of scientific terms with control-
lable complexity as a way of adapting to differ-
ent readers’ scientific background. We evaluate
conventional generation methods and introduce a
lightweight approach of reranking candidate gen-
erations based on a discriminator to control com-
plexity. We find that this reranking is effective at
controlling text complexity while also maintaining
fluency and factuality. We release our dataset and
code to encourage more work on making scien-
tific terms more accessible to readers of diverse
background knowledge.12

9 Ethical Considerations

The goal of this paper is to enable a wider audience
of readers to understand and engage with scien-
tific writing. A risk, though, is that such attempts
might instead widen the gap to accessing scientific
information. The texts in the datasets we train our
models on are in General or Academic American

12https://github.com/talaugust/
definition-complexity
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English. Many people, especially those who have
been historically underrepresented in STEM disci-
plines and medicine, may not be comfortable with
this dialect of English. This risks further alienating
the readers we hope to serve. This is a common
issue in NLP systems (Sap et al., 2019), since the
majority of datasets are in General American En-
glish. An important and exciting direction in NLP
is making models more flexible to dialects and low-
resource languages (e.g., the ACL 2022 special
theme being “Language Diversity”).

While our results suggest that the lighter control
of reranking generations leads to less hallucinated
information, strong supervision of definition fac-
tuality is important for any future deployment of
such a system. While hallucinated information
can be damaging in any generation context, in-
correct scientific definitions could mislead read-
ers and potentially contribute to broader scientific
misinformation. Furthermore, a bad actor could
use these models to generate fluent but incorrect
definitions at scale, potentially contributing to mis-
information campaigns with a veneer of scientific
language (Britt et al., 2019). We trained our models
on data we believe is trustworthy (e.g., questions
and answers from NIH websites); and we release
our training data and models to allow for further
work on encouraging factuality in these model gen-
erations.
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A Appendix

A.1 Data Collection
We downloaded all terms from the Wikipedia sci-
ence glossaries.13 We included the first definition
for each term, and cleaned Wikipedia text of URL
and image references. Note that since the glos-
saries provide definitions of all terms on a single
page, we did not use the full Wikipedia articles for
each term. For each Wikipedia term, X, we format
the term as the question “What is (are) X?”.

Because our definitions often include additional
information beyond a definition (e.g., recommen-
dations for checking if you have the disease being
defined), we use the first sentence of each response,
which is commonly used in constructing definition
datasets (Fahmi and Bouma, 2006).

A.2 Support Documents
Following Fan et al. (2019), we concatenate the
abstracts together using a <P> token to create a
support document for each term question. We filter
all retrieved journal abstracts for each question to
make sure that none of the same abstracts occur
across the train, development, and test splits in our
data.

We analyze how often definitions occur in our
support documents by searching the documents for
the phrase “X is a/an.” We find that around 20%
of the support documents contain at least one sen-
tence with this phrase. Manual inspection of these
sentences revealed that many of them are heavily
jargoned, usually containing very few of the same
words as our gold definitions. When removing
these examples from our test and development set
we see no drop in performance. We view these
embedded definitions as an additional source of
complexity that our models can leverage to vary
the generated definitions’ complexity.

A.3 Definition Generation Finetuning

All training and finetuning was done on a
NVIDIA Titan X 12GB GPU. We select 1,000 ex-
amples from our training dataset and seperate them
into a 75/25 split for training and testing each hy-
perparameter setting. For our model evaluations
in §4, we train on a 75/25 split of the full training
data and reserve the original development split for
testing.

13https://en.wikipedia.org/wiki/
Category:Glossaries_of_science

Finetuning BART (BART SD and BART NO SD)
For finetuning the BART model on our dataset, we
do a random search for hyperparameter tuning with
a subset of our training data. We ran a total of 10
search trials. During training and generation we
concatenate the template question with the support
document in the format “question: What is (are)
X? context: <SUPPORT DOC>” for BART SD. For
BART NO SD, we instead use only the question.

Table 8 details the final hyperparameters. We
use the training code provided by HuggingFace for
sequence-to-sequence summarization finetuning.14

Out-of-the-Box (OOTB) Language Modeling
(OOTB GPT-2 and OOTB GPT-3) For genera-
tion, we follow the few-shot setting proposed
in Brown et al. (2020). We prepend two held-out
question term and definition pairs, shown in Ta-
ble 9. The two examples are separated by two
newlines and a separator token used during genera-
tion as the stop symbol (i.e., ###). At generation
time we append the question for the term. Some
GPT-3 outputs were empty, which we ignore for
evaluation.

Finetuning GPT-2 (FT GPT-2) Each part of the
input (supporting document, question, definition)
is prepended with a new special symbol (i.e., <con-
text>, <question>, <definition>) and the model is
trained in the standard causal language model loss.
At generation time, the model is conditioned on the
support document, question, and the <definition>
tag.

We do the same random search for hyperparam-
eter tuning for the GPT-2 model as for BART with
the same subset of data. One difference is that we
finetune on the standard causal language modeling
objective for GPT-2 rather than the sequence-to-
sequence summarization task. We use the training
code provided by HuggingFace for causal language
model training.15 Table 8 details the final hyperpa-
rameters for our GPT-2 model.

A.4 Discriminator Training

We filter out all sentences sampled from the journal
abstracts and scientific news articles that are less
than 5 words, as these sentences are usually bylines

14https://github.com/huggingface/
transformers/tree/master/examples/
seq2seq

15https://github.com/huggingface/
transformers/tree/master/examples/
language-modeling

8311

https://en.wikipedia.org/wiki/Category:Glossaries_of_science
https://en.wikipedia.org/wiki/Category:Glossaries_of_science
https://github.com/huggingface/transformers/tree/master/examples/seq2seq
https://github.com/huggingface/transformers/tree/master/examples/seq2seq
https://github.com/huggingface/transformers/tree/master/examples/seq2seq
https://github.com/huggingface/transformers/tree/master/examples/language-modeling
https://github.com/huggingface/transformers/tree/master/examples/language-modeling
https://github.com/huggingface/transformers/tree/master/examples/language-modeling


Table 8: Final hyperparameters for finetuning the BART and GPT-2 models on definition generation and bounds
for hyperparameter tuning random search.

Hyperparameter BART Assignment GPT-2 Assignment Bounds

Number of epochs 3 3 [3, 5]

Effective batch size 8 16 [4, 8, 16]

Learning rate 5e-05 4e-04 [4e-3, 4e-4, 4e-5, 5e-05, 4e-6]

Adam Epsilon 1e-08 1e-07 [1e-7, 1e-8, 1e-9]

Source length/Block size 1024 1024 [1024]

Target length 64 NA [64]

Table 9: Held out QA pairs for OOTB GPT-2 and OOTB GPT-3.

Question Answer
What is (are) complement component 2
deficiency?

Complement component 2 deficiency is a disorder
that causes the immune system to malfunction, re-
sulting in a form of immunodeficiency.

What is (are) entrepreneurship? The efforts by a person, known as an ‘entrepreneur,’
in organizing resources for the creation of something
new or taking risks to create new innovations and
production.

or headers, and randomly sample 50k sentences
from each set (100k total) for training, and another
5k each for the development and testing splits.

Even some science news articles require back-
ground knowledge not shared among all possible
readers (Shea, 2015). We try to address this is-
sue by sampling sentences from science venues
that reach a broader audience (e.g., magazines) and
have been shown to have lower jargon levels (Au-
gust et al., 2020b).

PPLM For training the PPLM attribute classi-
fier, we adapt the HuggingFace training code16 to
work with the sequence-to-sequence architecture
of BART. Our attribute classifier is trained from the
BART-large pretrained model. We use the default
training hyperparameters, shown in Table 10.

GeDi For training the GeDi discriminator we
adapt the authors’ original training code17 to
work with the sequence-to-sequence architecture of
BART. Our GeDi is trained from the BART-large
pretrained model. We use the default training hy-
perparameters, shown in Table 11.

16https://github.com/huggingface/
transformers/tree/master/examples/
research_projects/pplm

17https://github.com/salesforce/GeDi/

Table 10: Hyperparameters for BART-large PPLM
training.

Hyperparameter Assignment

Batch size 64

Embedding size 1024

Number of steps 10 epochs

Learning rate 1e-4

Table 11: Hyperparameters for BART-large GeDi train-
ing.

Hyperparameter Assignment

Number of epochs 1

Max length 192

Effective batch size 4

Learning rate 2e-5

Lambda 0.80
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Table 12: Hyperparameters for additional BART-large
pretraining for DExperts.

Hyperparameter Assignment

Number of epochs 3

Source length 512

Target length 512

Effective batch size 8

Learning rate 5e-05

Learning rate optimizer Adam

Adam epsilon 1e-08

learning rate scheduler linear

weight decay 0

DExperts For the expert and anti-expert models,
we continue to pretrain the BART-large model on
science journal text or science news text. Because
there is no official script for BART’s pretraining,
we re-implement the text corruption described in
the original paper (Lewis et al., 2020). We specifi-
cally create a text-infilling approach, where a num-
ber of tokens are masked from each sentence. The
number of tokens is drawn from a Poisson dis-
tribution (λ = 3), and they are replaced with a
single [MASK] token. We use one mask per sen-
tence in the dataset. We use the default pretraining
hyperparameters from HuggingFace’s sequence-
to-sequence summarization script, detailed in Ta-
ble 12. We again start from the BART-large pre-
trained language model.

BERT Reranker We use the SciBERT
model (Beltagy et al., 2019) to train our BERT
reranker. The training data is identical for
training our other discriminators. Table 13 details
hyperparameter settings.

SVM Reranker We train our SVM with com-
plexity features from Section 5.3 to classify sen-
tences from academic journal abstracts and science
news text using the same dataset for training our
discriminators. The SVM reaches 79% accuracy
on held out data, showing that these features can
be strong differentiators of scientific text.

Table 13: Hyperparameters for BERT reranker training.

Hyperparameter Assignment

Number of epochs 3

Max input length 1024

Effective batch size 16

Learning rate 5e-05

Learning rate optimizer Adam

Adam epsilon 1e-08

Learning rate scheduler linear

Weight decay 0.01

Warmup steps 500

Table 14: Hyperparameters shared among all models
for generation. For reranking, the top 10 samples are
taken out of 100 total returned sequences.

Hyperparameter Assignment

Number of samples 10

Number of beams 5

Top-p (sampling) 0.9

Top-k 50

Temperature 1

Max length 64

Min length 8

A.5 Complexity Generation
Hyperparameters

We use the same generation hyperparameters across
all models where possible. Shared generation hy-
perparameters are detailed in Table 14, while those
specific to PPLM and GeDi are in Table 15, and
Table 16, respectively. For DExperts, there is
one additional hyperparameter, α, which we set
to α = 2.0 based on the authors original exper-
iments (Liu et al., 2021). For reranking, the top
10 samples are taken out of 100 total returned se-
quences.

A.6 Complexity Features
To calculate complexity features, we tokenized and
lemmatized all generated definitions using Spacy.18

We lemmatized all words in the AVL and Thing
18https://spacy.io/
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Table 15: Hyperparameters specific to PPLM for gen-
eration. Details of each hyperparameters can be found
in (Dathathri et al., 2020).

Hyperparameter Assignment

Number of samples 10

Stepsize 0.06

Gamma 1

GM-scale 0.9

KL-scale 0.01

Repetition penalty 1.0

Grad length 10,000

Horizon length 1

Window length 0

Table 16: Hyperparameters specific to GeDi for gener-
ation. Details of each hyperparameters can be found
in (Krause et al., 2021).

Hyperparameter Assignment

Posterior weighting exponent 30

Filter p (1 - p) 0.8

Target p (τ ) 0.8

Repetition penalty scale 10

Repetition penalty 1.2

Explainer list to search for AVL word occurances
and Thing Explainer out-of-vocabulary words.

For function words, we used Spacy’s POS
tags. The following tags we considered func-
tion words: [‘DET’, ‘ADP’, ‘PRON’, ‘CONJ’,
‘SCONJ’, ‘AUX’, ‘PART’, ‘INTJ’]. For the Flesch-
Kincaid grade level, we use the py-readability-
metrics package.19

Table 17 provides examples of definitions that
scored high and low for each complexity feature.

A.7 Human Evaluations

We select our number of samples (50) based on
a power analysis with an expected medium effect
and power β = 0.8 (for more information on power
and statistical tests in NLP, see Card et al., 2020).

19https://pypi.org/project/
py-readability-metrics/

A.7.1 Complexity & Understandability
The participant demographics for the complexity
evaluation (§6.2) are shown in Table 18.

Before beginning, participants filled out a short
demographics questionnaire detailing their age,
highest degree attained, and STEM (Science, Tech-
nology, Engineering, and Math) education. They
then reviewed instructions that provided examples
of very complex and not at all complex definitions
(Figure 5). Each participant rated 3 definitions
randomly drawn from different terms. Figure 3
provides an example of the interface for the com-
plexity evaluation. Raw counts of complexity and
understandability ratings are provided in Figure 4.

Interrater agreement was relatively low for com-
plexity (Krippendorff’s α = 0.14) and understand-
ability (α = 0.14). This is unsurprising given that
we used untrained annotators and perceived com-
plexity and understandability are often based on a
reader’s domain knowledge (Kintsch, 1994).

A.7.2 Fluency and Relevance
Annotators were given examples of very fluent and
relevant definitions, and not at all fluent and rel-
evant definitions before starting the task. For flu-
ency, annotators were asked, “How fluent is this
definition?” and for relevance, they were asked,
“How relevant is this definition for the term?” In-
terrater agreement was high for both fluency (Krip-
pendorff’s α = 0.63) and relevance (α = 0.58).

A.7.3 Factuality
Annotators were given examples of very extensive
factual errors and and not at all extensive factual
errors before starting the task. For each definition,
annotators checked a box if there was any factually
incorrect information in the definition based on the
question, “Does this definition contain factually
incorrect information?” and if so, rated how exten-
sive these errors were based on the question, “If the
definition contains factually incorrect information,
how extensive are these errors?” Annotators were
encouraged to use the internet if they did not know
if a definition was correct.

Interrater agreement was high for both whether a
definition contained factually incorrect information
(Krippendorff’s α = 0.59) and how extensive these
errors were (α = 0.55).
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Table 17: Examples of sentences with high or low values of each complexity feature. The Flesch-Kincaid reading
level score is not included since it is calculated over all responses for a model.

Feature High Low
AVL Occu-
rances

The process by which organic mate-
rial dissolves in soil.

Your gallbladder is part of your liver.

Thing Ex-
plainer OOV

Rock composed mostly yellow
tolukalaceous organic material
composed mostly marine calcite.

Your brain changes as you age.

Function Words A place to shelter from the elements
of a storm.

See kin genealogy.

GPT Perplexity A metamorphism consisting mainly
pyroxenesiloclinic pyroxene.

Your body is made up of many types
of muscles.

Sentence
Length

An area of machine-readable dig-
ital forerunners or virtual reality-
generally enhanced with the goal
of gathering, organizing artificial
intelligence and guiding artificial
neural networks in-depth (machine
learning from artificial neural net-
work technology, machine learning
and/machine learning and machine
learning.

See asteroid impact.

Table 18: Participant demographics for the complexity
evaluation.

Age

0-19 0
20-29 74
30-39 106
40-49 32
50-59 10
60-69 7
70-79 4
80+ 0

English
proficiency

Elementary 6
Limited working 5
Professional working 7
Full professional 25
Native/bilingual 190

Education

Pre-high school 1
High School 45
College 118
Graduate school 60
Professional school 9

# STEM courses
after high school

0 44
1-3 84
4-6 55
7-9 18
10+ 32
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Figure 3: Human evaluation interface for definition complexity. The fluency and factuality evaluations
had the same interface.

Table 19: Example generations and their ratings. Examples are selected to show a range of ratings.

Model Term Definition Complexity Understandability
DEXPERT
High

Bayesian Program-
ming

A formalism for problem-solving in
computer programming.

1 4

DEXPERT
Low

Zirconium A rock mineral that crystallises on rock
beds or minerals silicate beds.

3 1

GeDi Low Sexually Transmit-
ted Diseases

There are a number of sexually trans-
mitted diseases.

1 1

GeDi High Tsunamis Summary : Tsunamis are oceanic
tsunamis.

2 4

SVM Low Paroxysmal ex-
treme pain disorder

Paroxysmal extreme pain disorder
(PEPD) is a rare form of erythrome-
lalgia.

4 2

SVM High Kelvin–Helmholtz
instability

A condition in which the flow of
charged particles in a fluid is unstable.

4 4

Figure 4: Counts of complexity and understandability ratings for each controllable generation method. 1 = Not at
all and 4 = Very.
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Figure 5: Instructions page for the human complexity evaluation.
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