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Abstract

BERT based ranking models have achieved
superior performance on various information
retrieval tasks. However, the large number
of parameters and complex self-attention op-
erations come at a significant latency over-
head. To remedy this, recent works propose
late-interaction architectures, which allow pre-
computation of intermediate document repre-
sentations, thus reducing latency. Nonetheless,
having solved the immediate latency issue,
these methods now introduce storage costs and
network fetching latency, which limit their
adoption in real-life production systems.

In this work, we propose the Succinct Docu-
ment Representation (SDR) scheme that com-
putes highly compressed intermediate doc-
ument representations, mitigating the stor-
age/network issue. Our approach first reduces
the dimension of token representations by en-
coding them using a novel autoencoder archi-
tecture that uses the document’s textual con-
tent in both the encoding and decoding phases.
After this token encoding step, we further re-
duce the size of the document representations
using modern quantization techniques.

Evaluation on MSMARCO’s passage re-
reranking task show that compared to exist-
ing approaches using compressed document
representations, our method is highly efficient,
achieving 4x–11.6x higher compression rates
for the same ranking quality. Similarly, on the
TREC CAR dataset, we achieve 7.7x higher
compression rate for the same ranking quality.

1 Introduction

Information retrieval (IR) systems traditionally
comprise of two stages: retrieval and ranking.
Given a user query, the role of the retrieval stage
is to quickly retrieve a set of candidate documents
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†Work carried out while working at Amazon.
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Figure 1: MRR@10 performance vs. document cor-
pus size tradeoff, measured on the MSMARCO-DEV
dataset. BERTSPLIT is a distilled late-interaction model
with reduced vector width and no compression (§ 4.2).
For MRR@10 above 0.35, SDR is 4x–11.6x more effi-
cient compared to the baseline.

from a (very large) search index. Retrieval is typi-
cally fast but not accurate enough; in order to im-
prove the quality of the end result for the user, the
candidate documents are re-ranked using a more
accurate but computationally expensive algorithm.

Neural approaches have achieved the state of the
art ranking performance in IR applications (Yates
et al., 2021). Transformer networks such as BERT
(Devlin et al., 2019) consistently show better rank-
ing effectiveness at the cost of a higher computa-
tional cost and latency (Nogueira and Cho, 2019).

To rank k documents, the ranker is called k times
with an input of the form (query, document), where
the query is the same, but the document is different.
Several works (MacAvaney et al., 2020; Gao et al.,
2020b; Chen et al., 2020; Cao et al., 2020; Nie et al.,
2020; Gao et al., 2020b; Khattab and Zaharia, 2020)
have proposed to modify BERT-based rankers in a
way that allows part of the model to compute query
and document representations separately, and then
produce the final score using a low-complexity in-
teraction block; we denote these models as late-
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interaction rankers. Such approaches pre-compute
document representations to improve latency sig-
nificantly. Next, at runtime the model computes
the query representation (once), retrieves the pre-
computed document representations, and is only
required to run a low-complexity interaction block
k times to produce the final ranking score.

Precomputing document representations has
shown to significantly reduce latency and at the
same time retain comparable scores to BERT mod-
els (Gao et al., 2020b). However, this does not ac-
count for additional storage and/or network fetch-
ing latency costs. The representations typically
consist of the contextual token embeddings in a
transformer model, which consume orders of mag-
nitude more storage than storing the entire corpus
search index (cf. § 5.1).

In this work, we propose Succinct Document
Representation (SDR), a general scheme for com-
pressing document representations. It enables late-
interaction rankers to be efficient in both latency
and storage, while maintaining high ranking quality.
SDR is suitable for any ranking scheme that uses
contextual embeddings, and achieves extreme com-
pression ratios (2-3 orders of magnitude) with little
to no impact on retrieval accuracy. SDR consists of
two major components: (1) embedding dimension
reduction using an autoencoder with side informa-
tion and (2) distribution-optimized quantization of
the reduced-dimension vectors.

In SDR, the autoencoder consists of two sub-
networks: an encoder that reduces the vector’s di-
mensions and a decoder that reconstructs the com-
pressed vector. The encoder’s output dimension
represents the tradeoff between reconstruction fi-
delity and storage requirements. To improve the
compression-reliability tradeoff, we leverage static
token embeddings, which are available since the
ranker has access to the document text (as it needs
to render it to the user), and are computationally
cheap to obtain. We feed these embeddings to both
the encoder and decoder as side information, al-
lowing the autoencoder to focus more on storing
“just the context” of a token, and less on its original
meaning that is available in the static embeddings.
Ablation tests verify that adding the static vectors
significantly improves the compression rates for
the same ranking accuracy.

Since data storage is measured in bits rather than
floating-point numbers, SDR uses quantization
techniques to reduce storage size further. Given

that it is hard to evaluate the amount of informa-
tion in each of the encoder’s output dimensions, we
perform a randomized Hadamard transform on the
vectors, resulting in (1) evenly spread information
across all coordinates and (2) transformed vectors
that follow a Gaussian-like distribution. We utilize
known quantization techniques to represent these
vectors using a small number of bits, controlling
for the amount of quantization distortion.

Existing late-interaction schemes either ignore
the storage overhead, or consider basic compres-
sion techniques, such as a simple (1 layer) autoen-
coder and float16 quantization. However, this is
insufficient to reach reasonable storage size (MacA-
vaney et al., 2020); furthermore, this results in an
increased fetching latency. For the MSMARCO
dataset, we used a distilled model with a reduced
vector width (Hofstätter et al., 2020a) as the initial
pre-trained weights for the late-interaction model.
On top of this, we used a non-linear autoencoder
consisting of 2 dense layers followed by float16
quantization, a natural extension of MacAvaney
et al. (2020). This baseline achieves compres-
sion rates of 30x with no noticeable reduction
in retrieval accuracy (measured with the official
MRR@10 metric). In comparison with this strong
baseline, our SDR scheme achieves an additional
compression rate of between 4x to 11.6x with the
same ranking quality, reducing document repre-
sentation size to the same order of magnitude as
the retrieved text itself. In Figure 1 we include a
high-level presentation of the baseline, a variant of
our method with float16 quantization, and our full
method. For the TREC CAR dataset, for which
we do not have a reduced-width baseline, we used
a BERT model as the pre-trained weights for the
late-interaction model. The baseline with 2 dense
layers and float16 quantization achieves a 30x com-
pression rates with a slight reduction in accuracy.
The SDR scheme reaches the same quality while
improving compression rate by another 7.7x.

To summarize, here are the contribution of this
work1:

• We propose the Succinct Document Repre-
sentation (SDR) scheme for compressing the
document representations required for fast
Transformer-based rankers. The scheme is based
on a specialized autoencoder architecture and
subsequent quantization.

1Code is available at https://github.com/amzn/
amazon-succinct-doc-representation
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• For the MSMARCO passage retrieval task, SDR
shows compression ratios of 121x with no notice-
able decrease in ranking performance. Compared
to existing approaches for producing compressed
representations, our method attains better com-
pression rates (between 4x and 11.6x) for the
same ranking quality. Similar results are demon-
strated on the TREC CAR dataset.

• We provide a thorough analysis of the SDR sys-
tem, showing that the contribution of each of the
components to the compression-ranking effec-
tiveness is significant.

2 Related Work

Late-interaction models. The idea of running sev-
eral transformer layers for the document and the
query independently, and then combining them in
the last transformer layers, was developed concur-
rently by multiple teams: PreTTR (MacAvaney
et al., 2020), EARL (Gao et al., 2020a), DC-BERT
(Nie et al., 2020), DiPair (Chen et al., 2020), and
the Deformer (Cao et al., 2020). These works
show that only a few layers where the query and
document interact are sufficient to achieve results
close to the performance of a full BERT ranker at
a fraction of the runtime cost. For each document,
the contextual token vectors are stored in a cache
and retrieved during the document ranking phase.
This impacts both storage cost as well as latency
cost of fetching these vectors during the ranking
phase. MORES (Gao et al., 2020b), extends late-
interaction models, where in the last interaction
layers only the query attends to the document (and
not vice-versa). As document are typically much
longer, this results in additional performance im-
provements with similar storage requirements. Col-
BERT (Khattab and Zaharia, 2020) is another vari-
ant that runs all transformer layers independently
for the query and the document, and the interaction
between the final vectors is done through a sum-
of-max operator. A similar work, the Transformer-
Kernel (TK) (Hofstätter et al., 2020b), has an in-
teraction block based on a low-complexity kernel
operation. Both ColBERT and TK result in models
with lower runtime latency at the expense of a drop
in ranking quality. However, the storage require-
ments for both approaches are still significant.

Some of the works above acknowledge the is-
sue of storing the precomputed document repre-
sentations and proposed partial solutions. In Col-
BERT (Khattab and Zaharia, 2020), the authors

proposed to reduce the dimension of the final to-
ken embedding using a linear layer. However, even
moderate compression ratios caused a large drop in
ranking quality. In the PreTTR model (MacAvaney
et al., 2020), it was proposed to address the storage
cost by using a standard auto-encoder architecture
and the float16 format instead of float32. Again,
the ranking quality drops even with moderate com-
pression ratios (they measured up to 12x).

Several other works (Guu et al., 2020; Karpukhin
et al., 2020; Xiong et al., 2021; Qu et al., 2020; Lu
et al., 2020) proposed representing the queries and
documents as vectors (as opposed to a vector per
token), and using dot product as the interaction
block. While this ranker architecture approach is
simple (and can also be used for the retrieval step
via an approximate nearest neighbor search such as
FAISS (Johnson et al., 2017), ScaNN (Guo et al.,
2020) or the Pinecone managed service2), the over-
all ranking quality is generally lower compared
to methods that employ a query-document cross-
attention interaction. For that reason these methods
are used mainly for first-stage retrieval, followed
by a reranking step.

Compressed embeddings. Our work reduces
storage requirements by reducing the number of
bits per floating-point value. Quantization gained
attention and success in reducing the size of neu-
ral network parameters (Gupta et al., 2015; Essam
et al., 2017; Wang et al., 2018; Wu et al., 2018) and
distributed learning communication costs (Suresh
et al., 2017; Alistarh et al., 2017; Konečnỳ and
Richtárik, 2018; Vargaftik et al., 2021, 2022).
Specifically, compressing word embeddings has
been studied as an independent goal. May et al.
(2019) studied the effect of quantized word embed-
dings on downstream applications and proposed a
metric for quantifying this effect with simple linear
models that operate on the word embeddings di-
rectly. As our work is concerned with compressing
contextual embeddings, these methods do not apply
since the set of possible embeddings values is not
bounded by the vocabulary size. Nevertheless, as
in (May et al., 2019), we also observe that simple
quantization schemes are quite effective. Our work
uses recent advances in this area to further reduce
storage requirements for document representation,
which, to the best of our knowledge, were not pre-
viously attempted in this context.

2www.pinecone.io
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3 Succinct Document Representation
(SDR)

Our work is based on the late-interaction architec-
ture (MacAvaney et al., 2020; Gao et al., 2020b;
Chen et al., 2020; Cao et al., 2020; Nie et al., 2020),
which separates BERT into L independent layers
for the documents and the queries, and T − L in-
terleaving layers, where T is the total number of
layers in the original model, e.g., 12 for BERT-
Base. Naively storing all documents embeddings
consumes a huge amount of storage with a total
of m · h · 4 bytes per document, where m is the
average number of tokens per document and h is
the model hidden size (384 for the distilled version
and 768 for the BERT version). For MSMARCO,
with 8.8M documents and m=76.9, it leads to a
high storage cost of over a terabyte, which is not
affordable except in large production systems.

Our compression scheme for the document rep-
resentations consists of two sequential steps, (i)
dimensionality reduction and (ii) block-wise quan-
tization, described in § 3.1 and § 3.2 respectively.

3.1 Dimensionality Reduction using
AutoEncoders with Side Information
(AESI)

To compress document representations, we reduce
the dimensionality of token representations (i.e.,
the output of BERT’s L-th layer) using an autoen-
coder. Standard autoencoder architectures typically
consist of a neural network split into an encoder
and a decoder: the encoder projects the input vec-
tor into a lower-dimension vector, which is then
reconstructed back using the decoder.

Our architecture, AESI, extends the standard
autoencoder by using the document’s text as side
information to both the encoder and decoder. Such
an approach is possible since, no matter how the
document scores are computed, re-ranking systems
have access to the document’s text in order to ren-
der it back to the user. In the rest of this section,
we add the precise details of the AESI architecture.

Side Information. In line with our observation
that the ranker has access to the document’s raw
text, we propose utilizing the token embedding in-
formation, which is computed by the embedding
layer used in BERT’s architecture. The token em-
beddings encode rich semantic information about
the token itself; however, they do not fully capture
the context in which they occur; hence, we refer to

them as static embeddings. For example, through
token embeddings, we cannot disambiguate be-
tween the different meanings of the token bank,
which can refer to either a geographical location
(e.g., “river bank”) or a financial institution, de-
pending on the context.

Static embeddings are key for upper BERT lay-
ers, which learn the contextual representation of
tokens via the self-attention mechanism. We use
the static embeddings as side information to both
the encoder and decoder parts of the autoencoder.
This allows the model to focus on encoding the
distilled context, and less on the token information
since it is already provided to the decoder directly.

AESI Approach. For a token whose representa-
tion we wish to compress, our approach proceeds
as follows. We take the L-th layer’s output con-
textual representation of the token together with
its static embedding and feed both inputs to the
autoencoder. The information to be compressed
(and reconstructed) is the contextual embedding,
and the side-information, which aids in the com-
pression task, is the static embedding. The decoder
takes the encoder output, along with the static em-
bedding, and attempts to reconstruct the contextual
embedding. Figure 2 shows the AESI architecture.

AESI approach has two parameters that are deter-
mined empirically. First, the L-th transformer layer
of the contextual representation provided as input,
which has a direct impact on latency3. Second, the
size of the encoder’s output directly impacts the
compression rate and thus storage costs.

Encoding starts by concatenating the input vec-
tor (i.e., the output of layer L, the vector we com-
press) and the static token embedding (i.e., the out-
put of BERT’s embedding layer), and then passes
the concatenated vector through an encoder net-
work, which outputs a c-dimensional encoded vec-
tor. Decoding starts by concatenating the encoded
vector with the static token embedding, then passes
the concatenated vector through a decoder layer,
which reconstructs the input vector. Specifically,
we use a two-layer dense network for both the en-
coder and the decoder, which can be written using
the following formula:

e = E(v, u) := W e
2 ·

(
gelu

(
W e

1 (v;u)
))

(1)

v′ = D(e, u) := W d
2 ·

(
gelu

(
W d

1 (e;u)
))

(2)

where v ∈ Rh is the contextualized token em-
3A ranker has to compute layers L+ 1 onward online.
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Figure 2: AutoEncoder with Side Information (AESI)
architecture. For our usage, the input is the contextual
token embedding (the L-th layer’s output), and the side
information is the static token embedding (the output
of BERT’s initial embedding layer). The resulting c–
dimensional encoded vector can be thought of as the
distilled context of the input token.

bedding (the output of the L-th layer), u ∈ Rh

is the static token embedding (the output of the
embedding layer, which is the input to BERT’s
layer 0 and includes token position embeddings
and type embeddings), and u; v means concatena-
tion of these vectors. W e

1 ∈ Ri×2h, W e
2 ∈ Rc×i,

W d
1 ∈ Ri×(c+h), W d

2 ∈ Rh×i are trainable param-
eters. h is the dimension of token embeddings
(e.g., 384), i is the intermediate autoencoder size,
and c is the dimension of the projected (encoded)
vector. gelu(·) is an non-linear activation function
(Hendrycks and Gimpel, 2016). Additional autoen-
coder variations are explored in § 5.3.

3.2 Quantization

Storing the compressed contextual representations
in a naive way consumes 32 bits (float32) per coor-
dinate per token, which is still costly. To further re-
duce storage overhead, we propose to apply a quan-
tization technique, which uses a predetermined B
bits per coordinate. However, different coordinates
and different tokens have different importance and
possibly also different scales, so using the same
number of bits and same quantization threshold for
all of them increases the quantization error.

To remedy this issue, we follow an approach
similar to EDEN quantization (Vargaftik et al.,
2022), which uses a randomized Hadamard trans-
form prior to quantization. Loosely speaking, this
shuffles the information across all coordinates. Fur-
thermore, each of the coordinates is guaranteed to
follow Gaussian-like distribution, for which quanti-
zation boundaries can be computed optimally. For
the sake of brevity, the full description of the quan-

tization algorithm is deferred to Appendix A.
Efficiently applying the Hadamard transform

requires the size of the input to be a power of
two. In addition, the input dimension should be
large enough (specifically, larger than the output
of AESI) so that information can be shuffled effec-
tively. Therefore, we concatenate the AESI vectors
of all tokens from a single document, then segment
it to a larger block size (we use 128), padding the
last block with zeros when necessary. The padding
slightly increases space requirements and is consid-
ered when evaluating the compression efficiency.

4 Experimental Settings

In this section we describe the datasets used to eval-
uate the competing approaches for ranking docu-
ments given a query. Next, we describe the baseline
and the different configurations of SDR with em-
phasis on how we measure the compression ratio.

4.1 Tasks and Datasets

To evaluate the effectiveness of our proposed ap-
proach (SDR) and the competing baseline, we con-
sider two information retrieval datasets, each with
different characteristics.
MSMARCO passage re-ranking In this
task (Nguyen et al., 2016), we are given a query
and a list of 1,000 passages (retrieved via BM25),
and the task is to rerank the passages according to
their relevance to the query. The corpus consists
of 8.8M passages, downloaded from the web. We
consider two query sets:

(1) MSMARCO-DEV, the development set for
the MSMARCO passage reranking task, which con-
sists of 6,980 queries. On average, each query has
a single relevant passage, and other passages are
not annotated. The models are measured using the
mean reciprocal rank metric (MRR@10).

(2) TREC 2019 DL Track. Here we consider the
test queries from TREC 2019 DL Track passage
reranking dataset. Unlike MSMARCO-DEV, there
are multiple passages annotated for each query with
graded relevance labels (instead of binary labels),
allowing us to use the more informative nDCG@10
metric. Due to the excessive annotation overhead,
this dataset consists of just 200 queries, so results
are noisier compared to MSMARCO-DEV.
TREC Complex Answer Retrieval (CAR) is a
dataset (Dietz et al., 2017) curated from Wikipedia.
It maps from article and section titles to relevant
paragraphs. Following Nogueira and Cho (2019),
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we use the automatic by-article annotations variant,
which considers all paragraphs within the same
article as relevant. The dataset consists of 30M
passages, making storage requirements a more
significant challenge compared to the MSMARCO
task. The test query set consists of 2,254 queries
with an average of 2.74 positive passages per query.
We use the MAP@1K official metric.

For both datasets, in addition to the quality met-
rics, we also measure the Compression Ratio (CR)
as the amount of storage required to store the token
embeddings when compared to the baseline model.
E.g., CR = 10 implies storage size that is one tenth
of the baseline vectors.

4.2 Baseline – BERTSPLIT

Our algorithm is based on the late-interaction ar-
chitecture (MacAvaney et al., 2020; Gao et al.,
2020a; Nie et al., 2020; Chen et al., 2020; Cao
et al., 2020). We created a model based on this
architecture, which we name BERTSPLIT, consist-
ing of 10 layers that are computed independently
for the query and the document with an additional
two late-interaction layers that are executed jointly.
For MSMARCO, we initialized the model from
reduced width pre-trained weights4 and fine-tuned
it using knowledge distillation from an ensemble
of BERT-Large, BERT-Base, and ALBERT-Large
(Hofstätter et al., 2020b) on the MSMARCO small
training dataset, which consists of almost 40M tu-
ples of query, a relevant document, and an irrele-
vant document. For CAR, the model is initialized
from pre-trained BERT-base model and trained on
50M samples curated by Nogueira and Cho (2019).

4.3 SDR Configuration and Training

We trained autoencoder variants on a random sub-
set of 500k documents to reduce training time. We
incorporate the quantization overhead into the com-
putation of the compression ratios, including meta-
data and the overhead of padding (cf. Appendix A).

In the following sections, we denote the SDR
variants as “AESI-{c}-{B}b” where {c} is re-
placed with the width of the encoded vector and
{B} is replaced with the number of bits in the quan-
tization scheme. When discussing AESI with no
quantization, we simply write “AESI-{c}”.

4https://huggingface.co/cross-encoder/
ms-marco-MiniLM-L-12-v2

MSMARCO Distil
bert

Late+
AE-24

AESI-
16-6b

Distilbert
+toks

AESI-16
-6b+toks

latency (s) 2.424 1.221 1.106 2.234 1.049
- retrieval 0.106 0.708 0.419 0.126 0.461
- ranking 2.318 0.513 0.687 2.108 0.588

index size (GB) 5.8 90.2 28.6 9.0 31.9

MRR@10 0.390 0.375 0.375 0.390 0.375

CAR BERT Late+
AE-24

AESI-
16-6b

BERT
+toks

AESI-16
-6b+toks

latency (s) 6.537 1.847 1.750 6.242 1.720
- retrieval 0.390 0.957 0.650 0.492 0.723
- ranking 6.146 0.891 1.100 5.750 0.997

index size (GB) 26.6 372.1 106.9 38.1 119.0

MAP@1K 0.337 0.189 0.312 0.337 0.312

Table 1: End to end latency comparison with SDR

4.4 End to end Latency Measurement

To measure end to end latency, we configured an
OpenSearch5 cluster in AWS. We used default “pro-
duction” configurations, with 3 r6g.large datanode
machines; disk space was set to 0.5TB. For ranking,
we used a single g4dn.xlarge machine, featuring a
single T4 GPU instance. This makes the cost of
these two components similar.

5 Evaluation Results

In this section, we present the end to end latency
results (§ 5.1), show compression ratios and quality
tradeoff of the SDR scheme (§ 5.2). We then ex-
amine how the proposed autoencoder (§ 5.3) com-
pares with other baselines and present additional
measurements (§ 5.4).

5.1 End to End Latency Evaluation

Table 1 (top) shows the latency benefits of SDR on
the MSMARCO dataset, assuming document em-
beddings are stored in the OpenSearch retrieval sys-
tem and 1k documents are retrieved per query. The
Distilbert model (full interaction architecture) has
the highest quality and smallest index size (since it
is only executed online). However, ranking latency
is prohibitively expensive. As a baseline, we use
a late interaction model, a two-layer autoencoder
with code dimension 24 and float16 quantization,
denoted Late+AE-24. For this baseline, the ranking
latency is significantly reduced at a cost in terms
of quality. However, the document representation

5https://aws.amazon.com/
opensearch-service/. OpenSearch is a succes-
sor to Elasticsearch and based on Lucene.
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is large, causing retrieval and overall latency to in-
crease to 0.7 and 1.22 seconds, respectively. SDR,
with a dimension of 16 and 6-bits quantization,
reaches the same quality as the baseline while strik-
ing a better balance between retrieval and ranking
latency, reaching overall latency of 1.1 seconds.
The index size is also significantly reduced com-
pared to the baseline compression algorithm.

We also consider variants of the algorithms
where the documents are pre-tokenized, and the
tokenization output is retrieved instead of comput-
ing at runtime (marked as +tok in the table). This
further improves the ranking latency at the expense
of a slight increase in index size. Note that the
baseline does not use the raw text and therefore
does not benefit from precomputed tokens.

Table 1 (bottom) shows the latency results on
the CAR dataset. Here too, the BERT baseline
has the highest ranking quality, at the cost of pro-
hibitive latency. The late interaction variants we
consider have the same configuration as in the MS-
MARCO case, where the baseline uses 24 features
(with float16 quantization) and SDR uses 16 fea-
tures (with 6 bits EDEN quantization). Unlike in
the MSMARCO case, the quality (i.e., MAP@1k
score) of these two options is not similar. This
makes SDR better than the baseline in latency, in-
dex size, as well as quality (by a large margin of
over 14%).

In Appendix D we explore additional configura-
tions and show that the baseline with 52 features
reaches the same quality as SDR-16-6b. However,
we do not measure end-to-end latency for this case
due to the excessive storage size and indexing time.
Note that using 52 features for the baseline is ex-
pected to have a negative impact on retrieval la-
tency, making the benefits of SDR even more pro-
nounced.

5.2 Compression Rate and Quality Tradeoff

Table 2 shows the results on the MSMARCO query
sets for SDR and its compression ratio against stor-
ing contextual token embeddings uncompressed. In
terms of compression ratio, it can be seen that AESI
allows us to massively reduce storage requirements
both with and without quantization.

AESI-16-6b reduces storage requirements by
121x, while at the same time showing no significant
ranking performance drop. Using AESI-16-6b, a
document’s embedding can be stored with only 947
bytes and the entire MSMARCO collection can

Quant.
bits (B)

AESI
dim. (c)

Comp.
ratio (CR)

MSMARCO-DEV

MRR@10
TREC19-DL
nDCG@10

32
(float)

16 24 0.3759 (-0.0009)† 0.772 (-0.002)
12 32 0.3725 (-0.0043)∗† 0.784 (+0.01)
8 48 0.3711 (-0.0057)∗† 0.781 (+0.007)
4 96 0.3660 (-0.0108)∗ 0.775 (+0.001)

6

16 121 0.3753 (-0.0015)† 0.772 (-0.002)
12 159 0.3728 (-0.004)∗† 0.780 (+0.006)
8 231 0.3689 (-0.0079)∗† 0.775 (+0.001)
4 423 0.3624 (-0.0144)∗ 0.766 (-0.008)

5

16 145 0.3735 (-0.0033)∗† 0.772 (-0.002)
12 190 0.3714 (-0.0054)∗† 0.778 (+0.004)
8 277 0.3649 (-0.0119)∗ 0.770 (-0.004)
4 506 0.3540 (-0.0228)∗ 0.767 (-0.007)

4

16 181 0.3665 (-0.0103)∗ 0.766 (-0.008)
12 236 0.3639 (-0.0129)∗ 0.764 (-0.01)
8 344 0.3544 (-0.0224)∗ 0.765 (-0.009)
4 629 0.3408 (-0.036)∗ 0.752 (-0.022)∗

BERTSPLIT (Baseline) 1 0.3768 0.774
BM25 (No re-ranking) 1 0.194 0.689

Table 2: SDR performance in various configurations:
MRR@10 and nDCG@10 are measured over MS-
MARCO, as described in § 4.1. The absolute difference
w.r.t. the BERTSPLIT baseline is shown in parentheses.
We measured statistical significance in two ways: (1)
non-inferiority test with a margin of 0.02, denoted by
† when p < 0.05, implying that the method is non-
inferior to BERTSPLIT; (2) standard t-test, denoted by
∗ when p < 0.05, implying that the difference is statis-
tically significant. The compression ratios indicate the
reduction in storage size, including padding and nor-
malization overheads.

be stored within 8.6GB. There are several advan-
tages of fitting the entire collection’s representation
into the main memory of the hosting machine, al-
lowing for fast access, further fine-tuning, etc. If
further compression rates are required, AESI-8-5b
uses just 5 bytes per token, reaching a compres-
sion rate of 277x and 487 bytes per document on
average. At this level of compression, the entire
MSMARCO corpus fits in 3.8GB. The MRR@10
drop is noticeable (0.0119) but still quite low. Fi-
nally, for TREC19-DL, the impact of compressing
token embeddings is less evident. Only in the most
extreme cases such as AESI-4-4b we see a signif-
icant drop in nDCG@10 performance. These re-
sults demonstrate that the performance drop is very
small, showing the effectiveness of our method.

5.3 Autoencoder Evaluation

To better understand the impact of the autoencoder,
we present MRR@10 results as a function of au-
toencoder dimensions (i.e., number of floats stored
per token) and with the different autoencoder
configurations. In addition to the 2-layer AESI
architecture we described in § 3.1 (AESI-2L), we
consider the following variations:
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Figure 3: MRR@10 was measured on the MSMARCO-
DEV-25 dataset as a function of autoencoder dimen-
sions. The results are shown for standard autoencoders
(AE) and our approach (AESI), with single or two-layer
encoder and decoder networks. The x–axis shows the
dimension of the encoded vector c.

AutoEncoder with 2 Layers (AE-2L). Stan-
dard 2-layer autoencoder with gelu activation.
This is the same as AESI, only without the side
information.
AutoEncoder with 1 Layer (AE-1L). Standard
autoencoder with a single dense layer in the en-
coder and decoder.
AESI with 1 Layer (AESI-1L). AESI with a sin-
gle dense encoder and decoder layer.
DECoder-only AESI (AESI-DEC-2L). Provides
side information to the decoder but not the encoder.

To reduce measurement overhead, we ran the
experiment only over the MSMARCO dataset. In
addition, we took only the top 25 BERTSPLIT pas-
sages for each query, denoted MSMARCO-DEV-25,
which has a negligible impact on the results. Fig-
ure 3 shows the results for the different autoencoder
configurations. Providing the side information to
the autoencoder proves to be very effective in re-
ducing storage costs, especially when the encoded
vector size is small. A 2-layer encoder/decoder
model, as expected, is more effective than a single-
layer model. The gap is especially large when us-
ing side information, showing that the interaction
between the encoded vector and the static token
embeddings is highly nonlinear. Finally, providing
the static embeddings only to the decoder is slightly
inferior to providing it also to the encoder.

5.4 Additional Measurements

Quantization Techniques we compare the quan-
tization technique we use to several other tech-
niques, including Deterministic Rounding (Gersho

and Gray, 1992), Stochastic Rounding (Connolly
et al., 2021), and Subtractive Dithering (Roberts,
1962; Gray and Stockham, 1993). Due to lack of
space, the results appear in Appendix B. We found
that a randomized Hadamard transform improves
quality (assuming similar bit rate), especially in the
low-bits regime. Using a quantization technique fit-
ted to the Gaussian distribution of post randomized
Hadamard transform data further improve quality,
making the EDEN quantization superior to other
quantization techniques in our case.

Our scheme uses a fixed number of bits per co-
ordinate, which is essential for performance. How-
ever, variable-rate compression can further reduce
storage. We used rate-distortion theory (from the
information theory field) to upper bound the ben-
efits of such techniques by 11%, which does not
seem to justify the added system complexity (cf.
Appendix B).

Intrinsic Evaluation of AESI-Encoded Vectors
To better understand the impact of side informa-
tion, we measure the error rate between an input
vector and its reconstructed vector (i.e., after en-
coding and decoding). As expected, in practically
all cases, adding the side information reduces error
rate compared to a 2-layer autoencoder (AE-2L)
with the same code dimension.

In IR, the document frequency of a token is
known to be negatively correlated with the token’s
importance. We found that the error rate for AE-2L
decreases with frequency, while the error rate for
AESI increases with frequency. This shows that
the AESI scheme can better focus on tokens that
are important for ranking. A possible explanation
for this phenomena is that the static embeddings for
infrequent tokens are more informative (i.e., more
helpful as side information) compared to static em-
beddings for frequent tokens (e.g., ‘the’). We also
found AESI excels more in compressing nouns,
verbs, and adjectives, while AE-2L excels more
in compressing punctuation, determiners, and ad-
positions. Again, this demonstrate that the static
embeddings is most helpful in encoding tokens that
are crucial for ranking. The details of this evalua-
tion are provided in Appendix C.

6 Conclusion

In this paper, we proposed a system called SDR to
solve the storage cost and latency overhead of ex-
isting late-interaction transformer based models for
passage re-ranking. The SDR scheme uses a novel
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autoencoder architecture that uses static token em-
beddings as side information to improve encoding
quality. In addition, we explored different quan-
tization techniques and showed that the recently
proposed EDEN performs well in our use case and
presented extensive experimentation. Overall, the
SDR scheme reduces pre-computed document rep-
resentation size by 4x–11.6x compared to a base-
line that uses existing approaches.

In future work, we plan to continue investigating
means to reduce pre-computed document represen-
tation size.We believe that additional analysis of
BERT’s vector and their interaction with the con-
text would be fundamental in such an advancement.
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A EDEN Quantization

In this Appendix, we include an overview of the
quantization method we adapted to our use case.
The algorithm is summarized in Algorithm 1, for
full details see Vargaftik et al., 2022, Section 3.

We start by introducing the following definitions:

Definition 1 (Horadam, 2012). A normalized
Walsh-Hadamard matrix,
H2k ∈ {+1,−1}2k×2k , is recursively defined as

H1 = 1; H2k =
1√
2

(
H2k−1 H2k−1

H2k−1 −H2k−1

)
.

Definition 2 (Ailon and Chazelle, 2006). A ran-
domized Hadamard transform, H, of a vector,
x ∈ R2k , is defined as H(x) := H2kDx, where
H2k is a normazlized Walsh-Hadmard matrix,
and D is a diagonal matrix whose diagonal en-
tries are i.i.d. Rademacher random variables
(i.e., taken uniformly from {+1,−1}). While
H is randomized and thus defines a distribu-
tion, when D is known, we abuse the notation
and define the inverse Hadamard transform as
H−1(x) := (H2kD)−1x = DH2kx.

The quantization operates as follows. Given a
vector, denoted x ∈ Rd, we first precondition it
using a randomized Hadamard transform,H, and
normalize by multiplying by

√
d/‖x‖2. There are

several desired outcomes of this transform6. First,
the dynamic range of the values is reduced (mea-
sured, for instance, by the ratio of the `∞ and the
`2 norms). Loosely speaking, we can think of the
transform as spreading the vector’s information
evenly among its coordinates. Second, regardless
of the distribution of the input vector, each coordi-
nate of the transformed vector will have a distribu-
tion that is close to the standard Gaussian distribu-
tion (as an outcome of the central limit theorem).
After the transform, we perform scalar quantiza-
tion that is optimized for the N (0, 1) distribution,
using K-means (also known as Max-Lloyd in the
quantization literature (Gersho and Gray, 1992)),
with K = 2B . The vector X of cluster assignments
together with the original vector’s `2 norm can now
be stored as the compressed representation of the
original vector.

To retrieve an estimate of the original vector,
we perform the same steps in reverse. We replace

6We also note that the transform has the advantage of
having a vectorized, in-place, O(d log d)-time implementa-
tion (Fino and Algazi, 1976).

Algorithm 1 B-bits Vector Quantization (EDEN)
(Vargaftik et al., 2022, Section 3)

H - A randomized Hadamard transform
c - K-Means centroids over the normal
distribution, where K = 2B

Quantize(x ∈ Rd):
y :=

√
d

‖x‖2
H(x)

Compute X ∈ {0, . . . , 2B − 1}d
s.t. Xi = argmink |yi − ck|

return X , ‖x‖2

Dequantize(X , ‖x‖2):
Compute ŷ ∈ {c0, . . . ,c2B−1}d s.t. ŷi = cXi

return x̂ = H−1
(
‖x‖2√

d
ŷ
)

the vector of cluster assignments X with a vector
ŷ containing each assigned cluster’s centroid, de-
normalize, and then apply the inverse randomized
Hadamard transform, H−1. To avoid encoding
D directly, we recreate it using shared random-
ness (Newman, 1991) (e.g., a shared pseudoran-
dom number generator seeded from a hash of the
vector’s text).

Block-wise Quantization. The AESI encoder
reduces the dimension of the contextual embed-
dings from hundreds (e.g., 384) to a much smaller
number (e.g., 12). On the other hand, the ran-
domized Hadamard transform’s preconditioning
effect works best in higher dimensions (Ailon and
Chazelle, 2006). In order to resolve this conflict,
we first concatenate the reduced-dimension vectors
of all the tokens from a single document. We then
apply the Hadamard transform with a larger block
size (e.g., 128) on the concatenated vector, block-
by-block (padding the last block with zeros when
necessary). When evaluating the compression ef-
ficiency, we consider the overhead incurred from
(a) the need to store the vectors’ `2 norms and (b)
the padding of the final Hadamard block in a con-
catenated vector. Balancing these factors should
be done per use case. We empirically measured
the padding overhead (for a block size of 128) for
AESI 4, 8, 12, and 16 to be 20.1%, 9.7%, 6.7%,
and 4.5% for the MSMARCO dataset and 41%,
18.5%, 12.5%, and 8.4% for the CAR dataset.
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B Quantization Evaluation

To study the impact of quantization, we fix AESI-
16 as our baseline and measure how different quan-
tization strategies and number of bits affect the
MRR@10 score. Note that we do not measure
quantization over the baseline BERTSPLIT since
it can only achieve a compression ratio of up to
32x per coordinate (using 1 bit per coordinate). In
addition to EDEN (Appendix A, Algorithm 1), we
consider the following quantization strategies:

Deterministic Rounding (DR) (Gersho and
Gray, 1992). Maps the input coordinates into the
[0, 2B−1] range using min-max normalization and
rounds to the nearest integer.
Stochastic Rounding (SR) (Barnes et al., 1951;
Connolly et al., 2021). Normalizes as before us-
ing min-max normalization, and additionally adds
a uniform dither noise in (−0.5, 0.5) and then
rounds to the nearest integer. This provides an
unbiased estimate of each coordinate.
Subtractive Dithering (SD) (Roberts, 1962;
Gray and Stockham, 1993). Same as SR, only
now before denormalization, instead of just using
the values in {0, . . . , 2B − 1}, we first subtract the
original dither noise, which we assume can be re-
generated using shared randomness. This is an
unbiased estimator with reduced variance.
Hadamard Variants (H-DR, H-SR, and H-SD).
These variants correspond to the previous methods;
only they are preceded by a randomized Hadamard
transform.
EDEN with Bias Correction (EDEN-BC) (Var-
gaftik et al., 2022, Section 2.3). This variant of
EDEN optimizes for lower bias over the mean
squared error (MSE) by multiplying the dequanti-
zation result in Algorithm 1 by a bias correction
scalar: ‖x‖22 / 〈H(x), ŷ〉 .

Figure 4 shows the results for the different
quantization methods. First, we observe that the
Hadamard variants perform better than their non-
Hadamard counterparts. Second, we see that
EDEN performs better than all other schemes. The
differences are more pronounced in the low-bit
regime, where the choice of quantization scheme
has a drastic impact on quality. We also note that
unlike in other use cases, such as distributed mean
estimation, bias correction is inappropriate here
and should not be performed at the cost of increased
mean squared error (MSE). This conclusion fol-

lows by observing that EDEN and the determinis-
tic rounding methods (DR, H-DR) are respectively
better than EDEN-BC and the stochastic rounding
methods (SR, H-SR). We add that the subtractive
dithering methods (SD, H-SD), expectedly, work
the same or better than their deterministic counter-
parts since they produce a similar MSE while also
being unbiased.

The current quantization scheme requires
padding to full 128 blocks. For AESI with a small
code size, the padding overhead may reach 10% –
20% percent. In addition, we send a normalization
value per 128-block, which we currently send as
a float32 value, adding 4% – 5% additional over-
head. Padding can be reduced by treating the last
128-block separately, e.g., applying a method that
does not require Hadamard transform. Normal-
ization overhead can be reduced, e.g., by send-
ing normalization factors as float16 instead of full
float32. However, such solutions complicate the
implementation while providing limited storage
benefits, hence, they were not explored in the con-
text of this paper.

Beyond Scalar Quantization. Scalar quanti-
zation using a fixed number of bits is a subopti-
mal technique in general since it does not allocate
fewer bits for more frequent cases. Entropy cod-
ing(Gersho and Gray, 1992) can do better in this
aspect. However, this improvement seems may
not justify the added complexity: For the case of
6-bit quantization, the entropy of the quantization
indices turned out to be 5.71bit, indicating that the
compression gain is limited to about 5% in this
case (even before accounting for the overhead in-
curred from the entropy coding algorithm itself).
Additional directions include quantizing multiple
values together (vector quantization), as well as
designing the quantizer with entropy consideration
in mind (entropy-constrained vector quantization).
In order to estimate the potential gains of all these
methods combined, we turn to information theory,
and rate-distortion theory in particular, which stud-
ies the optimal tradeoffs between distortion and
compression rate (Cover and Thomas, 2006). For a
Gaussian source, which is a reasonable approxima-
tion of the vectors that are compressed in our case
(following the randomized Hadamard transform),
it is known that the optimal (lossy) compression
rate is given by 1

2 log2(
1

MSE ), where MSE is the
mean squared error of the compressed source. We
computed the optimal rate that is achievable for the
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Figure 4: MRR@10 for different quantization methods.
Each run quantizes and dequantizes AESI-16 encoded
documents over the MSMARCO-DEV-25 dataset. For
each randomized quantization method and number of
bits, we take the average of 10 runs (the error bars show
the standard deviation).

MSE that our system achieved for 6 bits, and the
optimal rate was 5.35bit, indicating a potential gain
of 11%. Given these results, and also given that
for other bit rates the results were similar, we con-
clude that further quantization improvements have
limited gain, which most likely does not justify the
added system complexity.

C Intrinsic Evaluation of AESI-Encoded
Vectors

In the body of the paper, we showed the effective-
ness in ranking and utility in compression rates of
AESI over AE architectures. However, such evalua-
tions do not capture the encoded information at the
token-level. In this intrinsic evaluation we try to
discern when and why adding the static embedding
as side information contributes to better capturing
the token meaning.

We study the effectiveness of different autoen-
coder configurations in reconstructing back the
original token vector, as measured through the
MSE between the original vector and the recon-
structed vector:

MSE (v,D (E(v, u), u)) ,

where v is a contextualized vector (BERTSPLIT
output at layer 10), u is the static embedding, and
the encoder E(v, u) and the decoder D(e, u) are
as defined in § 3.1. High MSE scores indicate the
inability of the autoencoder to encode the original
vector’s information.

Document Frequency: One way to assess the
importance of a document w.r.t. a query is through

the inverse document frequency of query tokens,
typically measured through TF-IDF or BM25
schemes (Robertson and Zaragoza, 2009). In prin-
ciple, the more infrequent a query token is in a doc-
ument collection, the higher the ranking of a doc-
ument containing that token will be. Tokens with
(very) high frequencies are typically stop words or
punctuation symbols, which have lower importance
when determining the query-document relevance.

Based on this premise, we study how MSE varies
across token frequency. We selected a random
sample of 256k documents from MSMARCO, to-
kenized them, and run them through BERTSPLIT
to get 20M contextualized token representations.
Then, for each token we measured their document
frequency as DF (t) = log10(|{d ∈ D : t ∈
d}|/|D|) (where D is our document collection),
and in Figure 5 we plot the average MSE against
the rounded DF scores. From this experiment, we
make the following observations.
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Figure 5: Reconstruction Error vs. DF for the differ-
ent AE and AESI configurations. AESI shows robust
performance in recovering back the token’s representa-
tion with a MSE score (y-axis), which is constant for
documents with varying DF scores. It is interesting to
note that for frequent tokens (i.e., tokens that are func-
tion words, hence play a marginal role in retrieval), the
error rate is higher when compared to the rest of the
tokens.

First, on all encoded width configurations, our
approach, AESI, consistently achieves lower MSE
compared to the AE architecture (for all DF values).
Lower MSE correlates to a better ranking quality,
as shown in § 5.3. Furthermore, for tokens with
low DF, adding the static side information during
the training of AESI for compression provides a
huge advantage, which shrinks when the token is
present in many documents in the collection.

Second, on the end spectrum of high-frequency
tokens, we note a downwards trend for AE and
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an upwards trend for AESI, especially for DF ∈
[−1, 0]. The MSE decrease for AE is expected
since the training data contains more frequent to-
kens. The increase for AESI can be explained given
that in this frequency range, we deal with tokens
that are function words (e.g., ‘the’) whose role is
more in tying up content within a sentence and has
less standalone meaning. In this case, static embed-
dings cannot capture context, which reduces the
contribution provided by the side information.

D Compression Results on TREC CAR

In Table 3 we show MAP@1K results on the TREC
CAR dataset for a varying number of features. We
compare the baseline – an autoencoder with 2 lay-
ers and float16 quantization – to SDR scheme, with
the same number of features and EDEN 6bits quan-
tization. The SDR scheme is able to provide solid
results even for 3 features with a MAP@1K score
of 0.268. With the baseline method, similar results
are achieved only with 36 features. As a compari-
son, this is much higher than BM25 using the An-
swerini system (Yang et al., 2017), which reaches
0.156 MAP@1K score. With 16 features (the con-
figuration we used for Table 1), SDR reaches a
score of 0.311, compared to 0.312 for the base-
line with 52 features. Finally, with the largest
size of features we tested, 64, the baseline reached
a MAP@1K score of 0.313, similar to the score
achieved by SDR-20 (0.314), demonstrating the
effectiveness of the static embeddings as side infor-
mation.

E Late Interaction Model Illustration

In Figure 6 we illustrate the architecture of the late
interaction model vs. the standard BERT model. In
standard BERT, the query and documents are con-
catenated before the first BERT layer. Therefore, if
K documents are ranked, all BERT transformers
layers are applied K times. In the late interaction
architecture, the bottom L layers (e.g., 10 trans-
former layers shown in the figure) are executed
independently for the query and the documents.
The document representation is precomputed and
stored in the index. During online execution, the
query representation is computed once, and the
document representations are retrieved from the in-
dex. Only the interaction block (e.g., 2 transformer
layers) are executed K times, once for each ranked
document.

Num features AE-2L-float16 AESI-{X}-6b

1 0.0617* 0.1993*
2 0.0411* 0.2064*
3 0.0479* 0.2682*
4 0.0448* 0.2790*
6 0.0461* 0.2968*
8 0.0573* 0.2987*
12 0.0795* 0.3106*
16 0.1197* 0.3116*
20 0.1530* 0.3146*
24 0.1889* 0.3166
28 0.2317* 0.3162*
32 0.2464* 0.3188
36 0.2668* 0.3195†
40 0.2877* 0.3205†
44 0.2967* 0.3206†
48 0.3018* 0.3211†
52 0.3127* 0.3212†
56 0.3135* 0.3212†
60 0.3156* 0.3202†
64 0.3137* 0.3218†

BERTSPLIT 0.3217

Table 3: Comparing SDR and the baseline (2 layer au-
toencoder with float16 quantization) on TREC CAR.
We present MAP@1K score for a varying number of
code size between 1 and 64.
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Figure 6: Left: BERT ranker. Right: late-interaction
ranker (with two transformer layers as the interaction
block).
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