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Abstract

In this work, we investigate the knowledge
learned in the embeddings of multimodal-
BERT models. More specifically, we probe
their capabilities of storing the grammatical
structure of linguistic data and the structure
learned over objects in visual data. To reach
that goal, we first make the inherent struc-
ture of language and visuals explicit by a de-
pendency parse of the sentences that describe
the image and by the dependencies between
the object regions in the image, respectively.
We call this explicit visual structure the scene
tree, that is based on the dependency tree
of the language description. Extensive prob-
ing experiments show that the multimodal-
BERT models do not encode these scene
trees. Code available at https://github.
com/VSJMilewski/multimodal-probes.

1 Introduction

In recent years, contextualized embeddings have
become increasingly important. Embeddings cre-
ated by the BERT model and its variants have
been used to get state-of-the-art performance in
many tasks (Devlin et al., 2019; Liu et al., 2019b;
Yang et al., 2019; Radford and Narasimhan, 2018;
Radford et al., 2019; Brown et al., 2020). Sev-
eral multimodal-BERT models have been devel-
oped that learn multimodal contextual embeddings
through training jointly on linguistic data and vi-
sual data (Lu et al., 2019; Su et al., 2019; Li et al.,
2019; Chen et al., 2020). They achieve state-of-
the-art results across many tasks and benchmarks,
such as Visual Question Answering (Goyal et al.,
2017), image and text retrieval (Lin et al., 2014),
and Visual Commonsense Reasoning (Suhr et al.,
2019).1

BERT and multimodal-BERTs are blackbox
models that are not easily interpretable. It is not

1From here on we refer to the text-only BERT models as
’BERT’ and the multimodal-BERT models as ’multimodal-
BERTs’.

trivial to know what knowledge is encoded in the
models and their embeddings. A common method
for getting insight into the embeddings of both tex-
tual and visual content is probing.

Language utterances have an inherent grammati-
cal structure that contributes to their meaning. Nat-
ural images have a characteristic spatial structure
that likewise allows humans to interpret their mean-
ing. In this paper we hypothesize that the textual
and visual embeddings learned from images that
are paired with their descriptions encode structural
knowledge of both the language and the visual data.
Our goal is to reveal this structural knowledge with
the use of probing. More specifically, in order to
perform this probing, we first make the inherent
structure of language and visuals explicit by a map-
ping between a dependency parse of the sentences
that describe the image and by the dependency be-
tween the object regions in the image, respectively.
Because the language truthfully describes the im-
age, and inspired by Draschkow and Võ (2017),
we define a visual structure that correlates with the
dependency tree structure and that arranges object
regions in the image in a tree structure. We call this
visual dependency tree the scene tree. An example
of this mapping to the scene tree is visualized in
Figure 1.

The aligned dependency tree and scene tree al-
low us to conduct a large set of experiments aimed
at discovering encoded structures in neural repre-
sentations obtained from multimodal-BERTs. By
making use of the structural probes proposed by
Hewitt and Manning (2019), we compare the de-
pendency trees learned by models with or without
provided image features. Furthermore, we investi-
gate if scene trees are learned in the object region
embeddings.

Research Questions In this study, we aim to an-
swer the following research questions.

• RQ 1: Do the textual embeddings trained
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Figure 1: Example of the mapping from the linguistic
dependency tree to the visual tree. The borders of the
regions in the image have the same color as the phrase
they are attached to. The rows below the image are the
textual tree depth (in black), the visual tree depth (in
red), the phrase index, and the words in the sentence.

with a multimodal-BERT retain their struc-
tural knowledge?
Sub-RQ 1.1: To what extent does the joint
training in a multimodal-BERT influence the
structures learned in the textual embeddings?

• RQ 2: Do the visual embeddings trained with
a multimodal-BERT learn to encode a scene
tree?

In a broader framework this study might con-
tribute to better representation learning inspired by
how humans acquire language in a perceptual con-
text. It stimulates the learning of representations
that are compositional in nature and are jointly
influenced by the structure of language and the
corresponding structure of objects in visuals.

2 Related Work

Probing studies Several studies have been
performed that aim at analyzing BERT and
multimodal-BERTs. For BERT, probes are de-
signed that explore gender bias (Bhardwaj et al.,
2021), relational knowledge (Wallat et al., 2020),
linguistic knowledge for downstream tasks (Liu
et al., 2019a), part-of-speech knowledge (Hewitt
and Liang, 2019; Hewitt et al., 2021), and for sen-
tence and dependency structures (Tenney et al.,
2019; Hewitt and Manning, 2019). These studies
have shown that BERT latently learns to encode lin-
guistic structures in its textual embeddings. Basaj
et al. (2021) made a first attempt at converting the

probes to the visual modality and evaluated the in-
formation stored in the features created by visual
models trained with self-supervision.

For multimodal-BERTs, one study by Parcal-
abescu et al. (2021) investigates how well these
models learn to count objects in images and how
well they generalize to new quantities. They found
that the multimodal-BERTs overfit the dataset bias
and fail to generalize to out-of-distribution quan-
tities. Frank et al. (2021) found that visual infor-
mation is much more used for textual tasks than
textual information is used for visual tasks when
using multimodal models. These findings suggest
more needed research into other capabilities of and
knowledge in multimodal-BERT embeddings. We
build on this line of work but aim to discover struc-
tures encoded in the textual and visual embeddings
learned with multimodal-BERTs. This is a first
step towards finding an aligned structure between
text and images. Future work could exploit this
to make textual information more useful for visual
tasks.

Structures in visual data There is large research
interest in identifying structural properties of im-
ages e.g., scene graph annotation of the visual
genome dataset (Krishna et al., 2016). In the
field of psychology, research towards scene gram-
mars (Draschkow and Võ, 2017) evidences that
humans assign certain grammatical structures to
the visual world. Furthermore, some studies inves-
tigate the grounding of textual structures in images,
such as syntax learners (Shi et al., 2019) and visu-
ally grounded grammar inducers (Zhao and Titov,
2020). Here the complete image is used, without
considering object regions and their composing
structure, to aid in predicting linguistic structures.

Closer to our work, Elliott and Keller (2013)
introduced visual dependency relations (VDR),
where spatial relations are created between object
in the image. The VDR can also be created by
locating the object and subject in a caption and
matching it with object annotations in the image
(Elliott and de Vries, 2015). Our scene tree differs,
since it makes use of the entire dependency tree of
the caption to create the visual structure.

3 Background

Multimodal-BERT Many variations of the
BERT model implement a transformer architec-
ture to process both visual and linguistic data,
e.g., images and sentences. These Multimodal-
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BERTs can be categorized into two groups: single-
stream and dual-stream encoders. In the former, a
regular BERT architecture processes the concate-
nated input of the textual description and the im-
age through a transformer stack. This allows for
an "unconstrained fusion of cross-modal features"
(Bugliarello et al., 2021). Some examples of these
models are ViL-BERT (Su et al., 2019), Visual-
BERT (Li et al., 2019), and UNITER (Chen et al.,
2020).

In the dual-stream models, the visual and lin-
guistic features are first processed separately by
different transformer stacks, followed by several
transformer layers with alternating intra-modal and
inter-modal interactions. For the inter-modal inter-
actions, the query-key-value matrices modeling the
multi-head self-attention are computed, and then
the key-value matrices are exchanged between the
modalities. This limits the interactions between the
modalities but increases the expressive power with
separate parameters. Examples of such dual-stream
models are ViLBERT (Lu et al., 2019), LXMERT
(Tan and Bansal, 2019), and ERNIE-ViL (Yu et al.,
2021).2

4 Method

4.1 Tree Structures

In the probing experiments we assume that the
structural knowledge of a sentence is made explicit
by its dependency tree structure and that likewise
the structural knowledge of an image is represented
by a tree featuring the dependencies between object
regions. Further, we assume that the nodes of a
tree (words in the dependency tree of the sentence,
phrase labels in the region dependency tree of the
image) are represented as embeddings obtained
from a layer in BERT or in a multimodal-BERT.

To generate the depths and distances values from
the tree, we use properties of the embedding repre-
sentation space (Mikolov et al., 2013). For exam-
ple, similar types of relations between embeddings
have a similar distance between them, such as coun-
ties and their capital city. The properties we use
are that the length (the norm) of a vector which
describes the depth in a tree and the distance be-
tween nodes that can be translated as the distance
between vectors.

2The ERNIE-ViL model is trained with scene graphs of
the visual genome dataset. We do not probe this model as
there is an overlap between the training data of ERNIE-ViL
and our evaluation data.

Algorithm 1 ConstructSceneTree(Tt, P, I)

Input: Language dependency tree Tt = {Et, Vt},
with Vt the set of TextIDs for words in a
sentence and Et the set of edges such that each
et = (vt,j , vt,k), where vt,k is a child node of
vt,j

Input: Set of phrases P , each pi describes one or
more regions and covers multiple words

Input: Image I
Output: Scene tree Ts

1: Vs = {}, set of Nodes in Scene Tree Ts

2: Es = {}, set of Edges in Scene Tree Ts

3: vs,0 = I , set Image as root node
4: D0 = 0, set root node depth as 0
5: add(Vs, vs,0)
6: vt,0 = FindRootNode(Tt)
7: PhraseID2TextID(0) = vt,0
8: for pi ∈ P do
9: vt,k = FindHighestNode(pi)

10: PhraseID2TextID(pi) = vt,k
11: Di = DepthInTree(Tt, vt,k)
12: for pi ∈ P ordered by D do
13: vt,k = PhraseID2TextID(pi)
14: while True do
15: et = EdgeWithChildNode(E, vt,k)
16: vt,j = SelectParentNode(et)
17: pp = TextID2PhraseID(vt,j)
18: if pp ∈ Vs then
19: add(Vs, pi), add(Es, (pp, pi))
20: Di = Dp + 1
21: break while loop
22: else
23: vt,k = vt,j
24: return Ts

Generating distance values For the distance la-
bels, a matrix D ∈ Nn×n is required, with each
Dij describing the distance between nodes i and j.
To fill the matrix, we iterate over all possible pairs
of nodes. For nodes i and j, it is computed by start-
ing at node i in the tree and traverse it until node
j is reached while ensuring a minimum distance.
This is achieved by using the breadth-first search
algorithm.

Generating depth values For the depth labels,
we generate a vector d ∈ Nn, with n the number
of nodes in the tree. There is a single node that is
the root of the tree, to which we assign a depth of
zero. The depth increases at every level below.

4.2 Constructing the Trees
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Language dependency tree We use the depen-
dency tree as linguistic structure. The tree anno-
tations are according to the Stanford dependency
guidelines (De Marneffe and Manning, 2008).
They can either be provided as gold-standard in the
dataset, or generated using the spacy dependency
parser (Honnibal et al., 2020).

Scene tree Draschkow and Võ (2017) found that
there are commonalities between words in lan-
guage and objects in scenes, allowing to construct
a scene grammar. Furthermore, Zhao and Titov
(2020) have shown that an image provides clues
that improve grammar induction. In line with these
works, we want a visual structure that aligns with a
linguistic representation like the dependency tree.

As visual structure, a scene graph could be used
for the relations between regions (Krishna et al.,
2016). However, the unconstrained graph is diffi-
cult to align with the dependency tree. Therefore,
we propose a novel visual structure, the scene tree,
that is created by mapping a textual dependency
tree to the object regions of an image. An exam-
ple of such a mapping for an image-sentence pair
is given in Figure 1. This process requires a tree
for the sentence and paired data for images and
sentences.

Each node in the scene tree directly matches one
or more visual regions. The node description is a
phrase that covers multiple words in the sentence
(or nodes in the dependency tree). The output of
this method is a tree that contains the phrase trees
that directly correspond to the regions. The algo-
rithm is completely described as pseudo-code in
Algorithm 1.

The algorithm starts by initializing the scene
tree. We set the full image as the root node. For
each phrase that describes an image region, we
select the dependency tree node (or word with a
TextID) that is closest to the root and assign this
a phrase ID. This creates a mapping between the
phrases (Phrase IDs) and dependency tree nodes
(Text IDs) PhraseID2TextID, and its reverse
TextID2PhraseID. We assign each phrase an
initial depth, based on the word it maps to in
PhraseID2TextID. On line 12, the loop over
the phrases that describe the object regions starts,
to find the direct parent for each phrase so it can
be added to the new scene tree. For each phrase
pi, we select the matching dependency tree node
the vt,k from PhraseID2TextID. From vt,k we
follow the chain of parent nodes, until an ancestor

vt,l is found that points back to a phrase pj (using
TextID2PhraseID) that is already a member of
the scene tree. Phrase pi is added to the tree as
child of pj . The completed tree of phrases is our
scene tree.

4.3 Embeddings

Textual embeddings For each sentence l, every
word becomes a node ni in the tree, such that we
have a sequence of s nodes nl

1:s. To obtain the
textual embeddings hl

1:s ∈ Rm, we do a word-
piece tokenization (Wu et al., 2016) and pass the
sentence into BERT. Depending on the requested
layer, we take the output of that BERT layer as the
embeddings. For nodes with multiple embeddings
because of the wordpiece tokenization, we take the
average of those embeddings.

To obtain the textual embeddings hl
1:s for a

multimodal-BERT, we use the same process but
also provide visual features. When an image is
present, we enter the visual features (as described
in the next paragraph), otherwise, a single masked
all-zero feature is entered.

Visual embeddings For sentence with image l,
the sequence of s nodes nl

1:s consists of the number
of regions plus the full image. The visual embed-
dings hl

1:s ∈ Rm are obtained by passing the raw
Faster R-CNN features (Ren et al., 2015) into the
multimodal-BERT. Depending on the requested
layer, we take the output of that multimodal-BERT
layer as the embeddings.

4.4 Structural Probes

Here we shortly describe the structural probes as
defined by Hewitt and Manning (2019). Originally
designed for text, we use these probes to map from
an embedding space (either textual embeddings or
visual embeddings) to depth or distance values as
defined in Section 4.1.

Distance probe Given a sequence of s nodes
nl
1:s (words or objects) and their embeddings

hl
1:s ∈ Rm, where l identifies the sequence and

m the embedding size, we predict a matrix of s× s
distances. First, we define a linear transformation
B ∈ Rk×m with k the probe rank, such that BTB
is a positive semi-definite, symmetric matrix. By
first transforming a vector h with matrix B, we
get its norm like this: (Bh)T (Bh). To get the
squared distance between two nodes i and j in se-
quence l, we compute the difference between node
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embeddings hi and hj and take the norm following
equation 1:

Dij = (B(hl
i − hl

j))
T (B(hl

i − hl
j)) (1)

The only parameters of the distance probe are now
the transformation matrix B, which can easily be
implemented as a fully connected linear layer. Iden-
tical to the work by Hewitt and Manning (2019),
the probe is trained through stochastic gradient de-
scent.

Depth probe For the depth probe, we transform
the embedding of each node ni to their norm, so
we can construct the vector d. This imposes a total
order on the elements and results in the depths. We
compute the squared vector norm ‖hi‖2B with the
following equation:

di = ‖hi‖2B = (Bhl
i)
T (Bhl

i) (2)

5 Experimental Setup

5.1 Data

By using a text-only dataset, we can test how the
textual embeddings of the multimodal-BERTs per-
form compared to the BERT model, without the in-
terference from the visual embeddings. This allows
us to see how much information the multimodal-
BERTs encode in the visual embeddings.

Therefore, we use the Penn Treebank (PTB3)
(Marcus et al., 1999). It is commonly used for
dependency parsing (also by Hewitt and Manning
(2019) from whom we borrow the probes) and con-
sists of gold-standard dependency tree annotations
according to the Stanford dependency guidelines
(De Marneffe and Manning, 2008). We use the
default training/validation/testing split, that is, the
subsets 2-21 for training, 22 for validation and 23
for testing of the Wall Street Journal sentences.
This provides us with 39.8k/1.7k/2.4k sentences
for the splits, respectively.

The second dataset is the Flickr30k dataset
(Young et al., 2014), which consists of multimodal
image captioning data. It has five caption annota-
tions for each of the 30k images. An additional
benefit of this dataset are the existing extensions,
specifically the Flickr30k-Entities (F30E) (Plum-
mer et al., 2015). In F30E all the phrases in the
captions are annotated and match with region an-
notations in the image. This paired dataset is used
to create the scene trees proposed in Section 4.2.

The Flickr30k dataset does not provide gold-
standard dependency trees. Therefore, the trans-
former based Spacy dependency parser (Honnibal
et al., 2020) is used to generate silver-standard
dependency trees according to the Stanford de-
pendency guidelines (De Marneffe and Manning,
2008). The dataset consists of 30k images, with
(mostly) 5 captions each, resulting in 148.9k/5k/5k
sentences for the training/validation/testing splits,
respectively.

5.2 Models

We use two different multimodal-BERTs, one
single-stream and one dual-stream model. As im-
plementation for the multimodal-BERTs, we make
use of the VOLTA library (Bugliarello et al., 2021).
Here, all the models are implemented and trained
under a controlled and unified setup with regard
to hyperparameters and training data. Based on
the performance under this unified setup on the
Flickr30k image-sentence matching task, we have
chosen the best performing models: ViLBERT (Lu
et al., 2019) as single-stream model and UNITER
(Chen et al., 2020) as dual-stream model.

When probing the textual embeddings, we also
use a text-only BERT-base model (from here on
referred to as BERT) (Devlin et al., 2019). Hewitt
and Manning (2019) use the same model, allowing
for easy comparability. The implementation used is
from the HuggingFace Transformer library (Wolf
et al., 2020).

Hyperparameters For our setup and metrics, we
follow the setup from Hewitt and Manning (2019).
The batch size is set to 32 and we train for a max-
imum of 40 epochs. Early stopping is used to ter-
minate training after no improvement on the vali-
dation L1-loss for 5 epochs.

5.3 Metrics

The main metric used for both the distance and
the depth probes is the Spearman rank coefficient
correlation. This indicates if the predicted depth
vector of the nodes, or the predicted distance ma-
trix of the nodes, correlate with the gold-standard
(or silver) depths and distances generated accord-
ing to the method in Section 4.4. The Spearman
correlation is computed for each length sequence
separately. We take the average over the scores of
the lengths between 5 and 50 and call this the Dis-
tance Spearman (DSpr.) for the distance probe and
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Figure 2: Comparison for the depth probe on the PTB3 test set, with textual embeddings.
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Figure 3: Comparison for the distance probe on the PTB3 test set, with textual embeddings.

the Norm Spearman (NSpr.) for the depth probe.3

For the depth probes, we also use the root ac-
curacy (root_acc). This computes the accuracy of
predicting the root of the sequence. This metric
is only applicable for the textual embeddings, due
to our method of generating the visual tree, where
the root is always the full image at the start of the
sequence.

For the distance probe, we make use of the undi-
rected unlabelled attachment score (UUAS). This
directly tests how accurate the predicted tree is
compared to the ground-truth (or silver) tree by
computing the accuracy of predicted connections
between nodes in the tree. It does not consider
the label for the connection or the direction of the
connection (Jurafsky and Martin, 2021).

Baseline comparisons We design one baseline
for the textual data and two for the visual data.
For the textual baseline, we use the initial word
piece textual embeddings (from either BERT or
a multimodal-BERT) before inserting them into
the transformer stack. We simply refer to it as
baseline.

The first visual baseline implements the raw
Faster R-CNN features (Ren et al., 2015) of each
object region. However, they have a larger dimen-

3Just as done by Hewitt and Manning (2019).

sion than the BERT embeddings. We refer to it
as R-CNN baseline. The second baseline uses the
visual embeddings before they are fed to the trans-
former stack. This is a mapping from the Faster
R-CNN features to the BERT embedding size. We
refer to it as baseline.

5.4 Hypotheses

First, we want to determine the probe rank of the
linear transformation used on the textual or the vi-
sual embeddings. Based on results by Hewitt and
Manning (2019), we set the probe rank for BERT
to 128. We run a comparison with several probe
ranks on UNITER and ViLBERT to find the opti-
mal setting for the textual and visual embeddings.
The results are shown and discussed in Appendix A.
We use a rank of 128 for all our following experi-
ments.

RQ 1 The multimodal-BERT models are pre-
trained on language data. We assume that the result-
ing embeddings integrate structural grammatical
knowledge and hypothesize that this knowledge
will not be forgotten during multimodal training.

To determine if training on multimodal data af-
fects the quality of predicting the dependency tree
when trained solely with textual data, we train the
probes with BERT and both multimodal-BERTs
and evaluate on the PTB3 dataset (Marcus et al.,

5663



DSpr. Root Acc Baseline DSpr. Baseline RootAcc

0 1 2 3 4 5 6 7 8 9 10110.6

0.7

0.8

0.9
NS

pr
.

(a) BERT

0 1 2 3 4 5 6 7 8 9 1011
(b) UNITER

0 1 2 3 4 5 6 7 8 9 1011 0.5

0.6

0.7

0.8

0.9

Ro
ot

 A
cc

(c) ViLBERT

Figure 4: Comparison for the depth probe on the Flickr30k test set, with textual embeddings.
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Figure 5: Comparison for the distance probe on the Flickr30k test set, with textual embeddings.

1999).

Sub-RQ 1.1 We expect that more interaction be-
tween the regions and the text will have a stronger
impact. Some dependency attachments that are
hard to predict might require visual knowledge.
Next to the effect on the linguistic knowledge,
we also want to discover if the multimodal data
helps the multimodal-BERTs in learning structural
knowledge. We run the probes on Flickr30k dataset
(Young et al., 2014) with the textual embeddings
for all our models. Furthermore, we compare these
to the difference in scores on the PTB3 dataset
(Marcus et al., 1999).

RQ 2 The Multimodal-BERTs learn highly con-
textualized embeddings. Therefore, we hypothe-
size that a model should be able to discover im-
portant interactions between object regions in the
image. To see if the model has learned to encode
the scene tree in the visual region embeddings, we
run the probes on the Flickr30k dataset (Young
et al., 2014) with the visual embeddings. Further-
more, to see if the scene tree is learned mainly
through joint interaction with the textual embed-
dings, we compare the scores between the single-
stream model UNITER (with many cross-modal
interactions) and the dual-stream model ViLBERT
(with limited cross-modal interactions).

6 Results and Discussion

This discussion is based on the results from the
test split. The results on the validation split (see
Appendix B), lead to the same observations.

RQ 1: Do the textual embeddings trained
with a multimodal-BERT retain their struc-
tural knowledge? To answer RQ 1, we report
the results for both structural probes on the PTB3
dataset. Here we only use the textual embeddings,
since no visual features are available. The results
for the depth probe are in Figure 2, and for the
distance probe in Figure 3.

The results of both multimodal-BERTs (Fig-
ures 2c and 3c for ViLBERT and Figures 2b and 3b
for UNITER) in terms of NSpr. and Root Acc are
very comparable showing similar curves and scores.
For both, the seventh layer is the best performing
one. The shape of the curves across the layers is
similar to those for the BERT model in Figures 2a
and 3a. However, the scores of the multimodal-
BERTs drop significantly. While the multimodal-
BERTs were initialized with weights from BERT,
they were trained longer on additional multimodal
data with a different multimodal objective. This
shows that the multimodal training hampers the
storing of grammatical structural knowledge in the
resulting embeddings.
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Figure 6: Ablation comparison for the depth probe on the Flickr30k test set while just providing textual embeddings
to the multimodal-BERTs.
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Figure 7: Ablation comparison for the distance probe on the Flickr30k test set while just providing textual embed-
dings to the multimodal-BERTs.

Sub-RQ 1.1: To what extent does the joint train-
ing in a multimodal-BERT influence the struc-
tures learned in the textual embeddings? For
this experiment, we compare the effect of having
visual features present when using the structural
probes on the textual embeddings. We run the
probes on Flickr30k. The results for the depth
probe are in Figure 4, and for the distance probe in
Figure 5.

First, we see that for all models (BERT and
multimodal-BERTs) the scores increase compared
to the results on the PTB3 dataset (see discussion of
RQ 1), but still follow a similar trend across the lay-
ers. The latter is most likely due to the complexity
of the sentences and language of the PTB3 dataset,
which is simpler for the captions. For ViLBERT,
there is a drop in performance for the earlier lay-
ers. We believe this is caused by the early stopping
method firing early with these settings. Another
explanation is that it is more difficult for the dual-
stream model to use the additional parameters.

BERT outperforms the multimodal-BERTs on
PTB3, however, this is not the case on Flickr30k.
For the depth probe (Figure 4) and the UUAS met-
ric on the distance probe (Figure 5), the results
obtained on these two datasets are almost equal.

This can be due to the additional pretraining of
the multimodal-BERTs on similar captioning sen-
tences. Another explanation is that, during such
pretraining, the models learned to store relevant
information in the visual embeddings.

We run an additional experiment where we use
the pretrained multimodal-BERT, but while prob-
ing we only provide the sentence to the model, and
mask out the image. The results for the depth probe
are in Figure 6, and for the distance probe in Fig-
ure 7. Here we can see that the results are almost
identical to when we provide the model with the
visual embeddings. This indicates that the model
does not have any benefit from the visual data when
predicting the structures for textual embeddings,
and it seems that the model uses the extra parame-
ters of the vision layers to store knowledge about
the text.

RQ 2: Do the visual embeddings trained with a
multimodal-BERT learn to encode a scene tree?
We aim to find the layer with the most structural
knowledge learned when applied to multimodal
data. See the results in Figures 8 and 9.

Regarding the results for the depth probe (Fig-
ure 8), the scores between layers fluctuate incon-
sistently. The scores do improve slightly over the
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Figure 8: Comparison for the depth probe on the
Flickr30k test set, with visual embeddings. Note that
the scale is different in this Figure.
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Figure 9: Comparison for the distance probe on the
Flickr30k test set, with visual embeddings. Note that
the scale is different in this Figure.

baselines, indicating that the multimodal-BERT en-
codes some knowledge of depth in the layers.

With regard to the distance probe (Figure 9), the
trend in the curves across the layers indicate that
this is a type of knowledge that can be learned for
the regions. The multimodal-BERTs seem to disre-
gard scene trees. There is a strong downward trend
across the layers. Furthermore, all the scores are
much lower than the baseline and the R-CNN base-
line scores. This lack of learning of the scene tree
can be caused by the chosen training objective of
the multimodal-BERTs. These objectives require
an abstract type of information, where only basic
features are needed to predict the masked items.

For the distance probe, there is a noticeable dif-
ference between the single-stream (Figure 13a) and
the dual-stream (Figure 13b) models, where single
stream models benefit from the multimodal interac-
tions to retain structural knowledge. For UNITER,
the scores in the first layers are very close to the
baseline, showing that the single stream interaction
benefits the memorizing of the scene tree structure.

7 Conclusion and Future Work

We made a first attempt at investigating whether
the current Multimodal-BERT models encode struc-
tural grammatical knowledge in their textual em-
beddings, in a similar way as text-only BERT mod-
els encode this knowledge. Furthermore, we were
the first to investigate the existence of encoded
structural compositional knowledge of the object
regions in image embeddings. For this purpose, we
created a novel scene tree structure that is mapped
from the textual dependency tree of the paired cap-
tion. We discovered that the multimodal-BERTs
encode less structural grammatical knowledge than
BERT. However, with image features present, it is

still possible to achieve similar results. The cause
for this requires more research.

While tree depths from the scene tree are not
natively present in the features, we found that this
could be a potential method of finding connections
and distances between regions, already decently
predicted with the Faster R-CNN features. The
Multimodal-BERT models are currently trained
with an objective that does not enforce the learning
or storing of these types of structural information.
Hence we assume that the models learn to encode
more abstract knowledge in their features.

Our work opens possibilities to further research
on scene trees as a joint representation of object
compositions in an image and the grammatical
structure of its caption. Furthermore, we rec-
ommend investigating the training of multimodal-
BERTs with objectives that enforce the encoding
of structural knowledge.
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Figure 10: Tuning the depth probe rank on the textual
embeddings.
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Figure 11: Tuning the distance probe rank on the textual
embeddings.
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Figure 12: Tuning the depth probe rank on the visual
embeddings.
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Figure 13: Tuning the distance probe rank on the visual
embeddings.

A Tuning Probe Rank

To find the dimensionality needed for the
multimodal-BERTS, we made a comparison be-
tween several probes. The results for the textual
embeddings are in Figures 10 and 11. Here we see
that the probe rank does not have any significant
effect of changing the performance of the mod-
els. Therefore, we decided it is best to follow the
optimal rank found for the BERT model: 128.

The results for the visual embeddings are in Fig-
ures 12 and 13. Here we also see only very small
changes. Therefore, we also keep the probe rank at
128 for the visual features.

B Results on Validation Split

The same graphs as for our experiments discussed
in Section 6 using the validation set instead of the
test set. The graphs created for the test set are
very similar to those the validation set. The results
lead to an identical conclusion. One difference is
the performance of the ViLBERT model. On the
textual features, the score for earlier layers is again
comparable with the other models. This indicates
that the early stopping indead fired to early.

Furthermore, ViLBERT is less capable to pre-
dict the scene trees, which confirms the hypothesis

that inter-modal interaction is needed to learn the
structural knowledge that is implicitly present in
the image and its captions.
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Figure 14: Comparison for the depth probe on the PTB3 validation set, with textual embeddings.
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Figure 15: Comparison for the distance probe on the PTB3 validation set, with textual embeddings.
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Figure 16: Comparison for the depth probe on the Flickr30k validation set, with textual embeddings.
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Figure 17: Comparison for the distance probe on the Flickr30k validation set, with textual embeddings.
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Figure 18: Ablation comparison for the depth probe on the Flickr30k validation set while just providing textual
embeddings to the multimodal-BERTs.
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Figure 19: Ablation comparison for the distance probe on the Flickr30k validation set while just providing textual
embeddings to the multimodal-BERTs.

DSpr. RCNN DSpr. Baseline DSpr.

0 1 2 3 4 5 6 7 8 9 10110.40
0.42
0.44
0.46
0.48
0.50

NS
pr

.

(a) UNITER

6 7 8 9 10 11

(b) ViLBERT

Figure 20: Comparison for the depth probe on the
Flickr30k validation set, with visual embeddings. Note
that the scale is different in this Figure.
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Figure 21: Comparison for the distance probe on the
Flickr30k validation set, with visual embeddings. Note
that the scale is different in this Figure.
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