
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 4442 - 4458

May 22-27, 2022 c©2022 Association for Computational Linguistics

EPT-X: An Expression-Pointer Transformer model that generates
eXplanations for numbers

Bugeun Kim Kyung Seo Ki Sangkyu Rhim Gahgene Gweon
Department of Intelligence and Information, Seoul National University

Seoul, Republic of Korea
{cd4209, kskee88, sk.rhim, ggweon}@snu.ac.kr

Abstract
In this paper, we propose a neural model EPT-
X (Expression-Pointer Transformer with Ex-
planations), which utilizes natural language ex-
planations to solve an algebraic word problem.
To enhance the explainability of the encoding
process of a neural model, EPT-X adopts the
concepts of plausibility and faithfulness which
are drawn from math word problem solving
strategies by humans. A plausible explanation
is one that includes contextual information for
the numbers and variables that appear in a
given math word problem. A faithful expla-
nation is one that accurately represents the
reasoning process behind the model’s solution
equation. The EPT-X model yields an average
baseline performance of 69.59% on our PEN
dataset and produces explanations with quality
that is comparable to human output. The con-
tribution of this work is two-fold. (1) EPT-X
model: An explainable neural model that sets
a baseline for algebraic word problem solving
task, in terms of model’s correctness, plausi-
bility, and faithfulness. (2) New dataset: We
release a novel dataset PEN (Problems with
Explanations for Numbers), which expands
the existing datasets by attaching explanations
to each number/variable.

1 Introduction

Algebraic word problem solving is a challenging
task for understanding natural language. As shown
in Table 1, a model needs to interpret a word
problem into a solution equation to solve the
problem. Recent neural approaches have employed
encoder-decoder architecture to tackle this task and
achieved remarkable answer correctness (Huang
et al., 2018; Chiang and Chen, 2019; Amini et al.,
2019; Kim et al., 2020; Ki et al., 2020): ranging
from 65% to 84% depending on datasets. So, as the
model delivers a plausible answer, researchers have
a firm belief that an encoder component of a neural
model can comprehend the problem correctly.
However, this belief has less been verified due to

Q. Tom has 12 coins in quarters and nickels. Their
value is $2.20. How many coins of each type does
he have?

Solution x+ y = 12, 0.25x+ 0.05y = 2.20
Equation (∴ x = 8, y = 4)

Explanation 12 = the total number of coins
2.20 = the total value of coins
x = the number of quarters
y = the number of nickels

Table 1: An example algebraic word problem

the opaqueness of an encoder. Thus, this paper
aims to design an architecture that reveals how it
understands a given word problem.

Our novel model, Expression-Pointer Trans-
former with Explanations (EPT-X), is inspired
by some pedagogical studies about human strate-
gies on understanding an algebraic word problem
(Conway and Polya, 1985; Jitendra et al., 2007;
Montague, 2008; Jitendra and Star, 2012). In
classrooms, teachers ask students to make an
explanation or a diagram that depicts the role
of each number written in the problem. Then,
students use these explanations for numbers to
build a correct equation. That is, understanding
a problem produces explanations that satisfy the
following two criteria. (1) plausibility: A plausible
explanation is one that includes contextual infor-
mation for the numbers and variables that appear in
a given math word problem. Especially, as humans
recognize each number/variable individually, the
explanations should reveal what each number or
variable represents in the context of the given
problem. (2) faithfulness: A faithful explanation is
one that accurately represents the reasoning process
behind the model’s solution equation (Jacovi and
Goldberg, 2020). In other words, they should imply
a reason behind selecting operators or operands.

4442

To reflect these two criteria in EPT-X, we adopt
a two-phase architecture: (1) explaining num-
bers/variables and (2) building solution equations.

Though Ling et al. (2017) attempted to generate
explanations, this work is different from ours in that
their model focused on explaining the decoding
process. So, they have less explored the above two
criteria. In contrast, this paper attempts to explain
how the model understands the given word problem
by modifying an encoder component of a neural
model. As humans successfully solve word prob-
lems by explaining their understanding, we expect
our EPT-X model to achieve a good performance
in terms of three criteria: correctness of equations,
plausibility of explanations, and faithfulness of
explanations. Through several analyses, our paper
shows the following two contributions:

1. EPT-X model: We propose a baseline model
that can generate explanations and solve alge-
braic word problems, in terms of correctness,
plausibility, and faithfulness.

2. New dataset: We release a novel dataset PEN
(Problems with Explanations for Numbers),
which expands the existing datasets by attach-
ing explanations to each number/variable.

2 Related work

Correctness: Researchers have attempted to
build a model that solves word problems. Early
attempts used hand-crafted features collected by
experts to make a model understand a word
problem (Kushman et al., 2014; Roy and Roth,
2015; Koncel-Kedziorski et al., 2015; Zhou et al.,
2015; Upadhyay et al., 2016; Roy and Roth, 2017).
Although researchers can interpret these models
using the features, extending these studies to other
datasets is limited as designing features is labor-
intensive. On the other hand, recent studies have
employed neural models (Wang et al., 2017; Huang
et al., 2018; Chiang and Chen, 2019; Amini et al.,
2019; Kim et al., 2020; Ki et al., 2020) and
achieved answer correctness ranging from 62% to
84%. Though their extensibility is better than hand-
crafted features, it becomes harder to interpret how
a neural model understands a word problem.

Plausibility: To make a neural model that ex-
plains its reasoning process, Ling et al. (2017) built
a model that outputs both a computation process
and a rationale behind the process. Though their
model generated a natural language phrase that
explains a computation step in advance, the model

is not enough to meet the plausibility criterion
because of two issues. First, it is not guaranteed
whether their model explains all numbers and
variables required to solve the problem. As they fo-
cused more on explaining the model’s computation,
their model often skips explaining its understand-
ing of numbers and variables stated in a problem.
Second, it is not confirmed whether their model
generates rationale comparable to that of humans.
Though they measured their quality of rationale
using BLEU-4 (Papineni et al., 2002), the reported
score of 27.2 is somewhat low and not compared
with any human-level performance. We suspect
that this low-quality explanation affected the low
correctness of their model: 36.4%. Therefore, it is
worthwhile to build a new model that fulfills the
plausibility criterion.

Faithfulness: As far as we know, studies on solv-
ing algebraic word problems have not measured the
faithfulness of a generated explanation. Existing
studies so far measured the quality of explanations
using plausibility only. Following Jacovi and
Goldberg (2020), we define faithful explanation as
one that accurately represents the reasoning process
behind the model’s solution equation. Humans
expect an explanation to be faithful. However, a
model can generate an explanation that may not
be related to the equations (Jacovi and Goldberg,
2020); it can generate random plausible sentences
independently from the process of generating solu-
tion equations. Therefore, measuring faithfulness
is meaningful in that a highly faithful explanation
reflects a solution equation generation process that
is expected by human problem solvers.

3 The EPT-X Model

The proposed model, Expression-Pointer Trans-
former with Explanations (EPT-X)1, is a variant of
Expression-Pointer Transformer (EPT; Kim et al.
2020), which is state-of-the-art correctness model.
Figure 1 depicts the two phases EPT-X model. (1)
Plausibility: In phase 1, EPT-X receives a problem
text as an input and generates explanations for each
number/variable. The number of variables is also
predicted in this phase. (2) Faithfulness: In phase 2,
EPT-X receives both the original problem and the
generated explanations as inputs and then builds
an equation using EPT. To jointly train these two
phases, we add up the loss functions for the number

1http://github.com/snucclab/ept-x

4443

http://github.com/snucclab/ept-x

Figure 1: The two-phase pipeline of generating explanations and equations in our EPT-X model. i) shows the
original problem input, and ii) shows the explanations which are recombined at Step 2-1.

of variables, explanations, and equations; all three
use smoothed cross-entropy (Szegedy et al., 2016)
with α = 0.01.

3.1 Phase 1. Explaining numbers/variables

Phase 1 is a three-step procedure for generating
explanations as shown in the top part of Figure 1.
Phase 1 contains two components: text encoder
and explanation decoder.

Step 1-1. Compute problem text vectors The
text encoder receives a natural language problem
as an input and computes problem context vectors.
To utilize world knowledge in the computation
process, we used ELECTRA (Clark et al., 2020),
a pre-trained language model. After applying the
text encoder, we obtain the problem context vector
ws for each token ws in the given problem.

Step 1-2. Predict the number of variables
Using the problem context vectors, EPT-X predicts
the number of required variables N to solve the
given problem. Using the first token’s problem
context vector w0, we compute the probability
distribution of N as follows:

P (N) = softmax (FFn1 (ReLU (FFn2(w0)))) ,

where FF(·) indicates the feed-forward layer. We
set the maximum number of variables to 9.

Step 1-3. Generating plausible explanations
The explanation decoder then produces explana-
tions using problem context vectors as memories.
The decoder uses a Transformer (Vaswani et al.,

2017) decoder and a pointer-generator network
(See et al., 2017). Before predicting the next
explanation token xt+1, the Transformer decoder
computes a hidden state ht based on the prob-
lem context vectors ws and previously generated
explanation tokens x1, · · · , xt. To utilize world
knowledge in generating explanations, we adopt
Rothe et al. (2020) and use ELECTRA (Clark et al.,
2020) as the initial weight.

The pointer-generator head receives the com-
puted ht and predicts the next token. Let pg, Pv,
and Pc be the probability of using the generated
word, the probability of generating from the vo-
cabulary, and the probability of copying from the
problem, respectively. Then, the next token xt+1 is
predicted as follows:

xt+1 = argmax
ω

pgPv(ω) + (1− pg)Pc(ω),

pg = σ (FFg (w
∗
t ⊕ ht ⊕ E(xt−1))) ,

Pv(ω) = softmax (FFv(ht)) ,

Pc(ω) =
∑

ws:ws=ω attn(ws,ht),

w∗
t =

∑
ws

attn(ws,ht),

where σ(·), E(·), and attn(·) indicate the sigmoid,
embedding, and single-head attention scoring func-
tion, respectively. And ⊕ indicates concatenation
of vectors.

Plausibility of explanation is implemented dur-
ing this stage by generating an explanation for each
number/variable separately. We use unique initial
input values for all numbers and variables. This
method has been used in other studies to bind the
decoder to a specific context (Raffel et al., 2020;

4444

Keskar et al., 2019). For numbers, instead of using
the initial input value ‘[CLS]’ of the Transformer
decoder, we use the input “[CLS] explain: context
[SEP],” where the context part depends on the
number or variable. For the numbers, we use a
window of tokens that are near the given number
token. For example, if the window size is three, we
use three tokens placed before and after the given
token. For variables, we use the variable index
because variables do not appear in the problem.
So, for example, the initial input value of the
nth variable becomes “[CLS] explain: variable
n [SEP].”

3.2 Phase 2. Building solution equations

Phase 2 is a three-step procedure for producing
equations as shown in the bottom part of Figure 1.
Phase 2 uses the same text encoder from Phase 1.

Step 2-1. Recombine explanations Inspired by
human paraphrasing strategies (Conway and Polya,
1985; Gagnon and Maccini, 2001; Montague,
2008), EPT-X paraphrases the original problem by
recombining its understanding. First, the model
places each explanation and the corresponding
number token value into a sentence: “explanation
is a number value.” for numbers and “What is
explanation?” for variables. Then, EPT-X creates
a recombined problem by concatenating these
paraphrased sentences. We randomly recombined
one of the reference explanations in the training
process as EPT-X may not generate explanations
ideally.

Step 2-2. Compute recombined context vectors
The text encoder once again receives both the
original problem and the recombined problem
as inputs and computes the recombined context
vectors ri for each input token ri. We designed
EPT-X to use both problems for two reasons. First,
using the original problem can avoid information
loss. Second, using the recombined problem can
make the equation decoder exploit the information
of explanations. We arrange these two problems
into the text encoder as follows: “[CLS] original
[SEP] recombined [SEP].”

Step 2-3. Generate equations faithfully The
equation decoder then produces equations using the
recombined context vectors as memories. Follow-
ing the EPT model (Kim et al., 2020), the decoder
produces equations using expression tokens, each
of which is a tuple of an operator and relevant

operands. So, the equation decoder predicts the
next jth expression as follows. First, the decoder
receives expression tokens generated so far and
converts them into embedding vectors vk (k =
0, · · · , j−1). Then, using these embedding vectors
vk and recombined context vectors ri, the decoder
builds an equation context vector qj for the next
expression. Lastly, the decoder simultaneously
predicts the next operator and its required operands
using qj . Thus, when we translate expressions
into an equation, we can compute an answer to a
problem.

The faithfulness of explanation is implemented
during this stage by using explanations as the
input data source. We change the input format of
numbers and variables in EPT’s equation decoder
to use explanations. Originally, EPT used different
types of vectors to input them: the encoder’s hidden
state for each known number and the decoder’s
hidden state for each unknown variable. However,
in EPT-X, we guide the model to utilize the
information from the explanation when writing an
equation. As all numbers and variables appear in
the recombined problem, EPT-X uses the vector ri
corresponding to each number/variable.

4 The PEN dataset

We release ‘Problems with Explanations for Num-
bers’ (PEN)2, an algebraic word problem dataset
with problem texts, equations, and explanations of
numbers/variables for each problem to train and
evaluate EPT-X. As existing datasets for algebraic
word problems do not contain explanations, we
provided explanations on the existing three bench-
mark datasets on solving algebraic word prob-
lems3: ALG514 (Kushman et al., 2014), DRAW-
1K (Upadhyay and Chang, 2017), and MAWPS
(Koncel-Kedziorski et al., 2016). The following
sections introduce the two stages of building PEN:
preparation for correcting errors and annotation for
collecting explanations.

4.1 Preparation: correcting errors

We corrected the errors and organized the data
in three steps. In the first step, we revised the
problems’ typos, grammatical errors, and logical
flaws. For example, we found a problem asking

2http://github.com/snucclab/pen
3Though we considered using AQuA-RAT (Ling et al.,

2017), which includes rationale about computation, we
found that using it is intractable since we have to re-collect
explanations for numbers and variables in most problems.

4445

http://github.com/snucclab/pen

Train Dev. Test Total

Problems 2,581 365 365 3,581
Explanations 36,261 4,569 4,719 45,549

Words/Prob. 31.01 30.81 30.91 30.98
Num/Prob. 4.22 4.09 4.21 4.20
Var/Prob. 1.36 1.35 1.39 1.36
Words/Expl. 7.73 7.76 7.72 7.73

Table 2: Statistics of PEN dataset

about ‘Senators’ after telling a story about ‘the
House of Representatives.’ So we replaced the
out-of-context term with the other one. Second,
we extracted numeric words from the modified
text using WordNet (Fellbaum, 1998); Arabic
numerals, fractions, ordinals, and their synonyms
were extracted. Third, to normalize equations,
we re-formulated them according to nine source
formulas organized by Mayer (1981) and four
formulas organized by Carpenter et al. (1996).

Among 3,886 problems from the three datasets,
we corrected 3,581 problems in the PEN dataset.
We excluded 305 problems because they are (1)
exact duplicates of others (303 problems)4 or (2)
not an algebra problem (2 problems)5. After ex-
cluding 305 problems, we further revised incorrect
equations: 62 of the 3,581 problems (1.73%).

4.2 Annotation: collecting explanations

When collecting natural language explanations, the
explanations can be irrelevant to the given problem
without any guidelines. Thus, we instructed our
workers to follow eight rules, including “Use at
least one word appearing in the problem text when
writing an explanation.” Moreover, we make
workers obey the rules consistently using a web-
based system. Details about all eight rules and the
web-based system are illustrated in Appendix A.

Fourteen skilled workers provided explanations
for numbers and variables in a problem. Before
assigning workloads, we split the entire dataset into
training (80%), development (10%), and test (10%)
sets. Then, we collected multiple explanations for
each problem; 3 for training set and 4 for the other.
Table 2 shows the statistics of the PEN dataset.

4Since we manually corrected errors and flaws in each
problem and combined three different datasets, some problems
become exact duplicates of other problems.

5These problems cannot be solved with a multivariate
equation alone: problems about least common multiples or
counting the number of cases.

PEN has 45,549 explanations, and the average
number of words in an explanation is 7.73.

5 Experimental setup

To verify whether the EPT-X model can solve an
algebraic problem correctly while generating plau-
sible and faithful explanations, we conduct three
types of analyses: model performance analysis,
quantitative error analysis, and qualitative output
analysis. This section illustrates each analysis and
further implementation details.

5.1 Model performance analysis

The model performance analysis measures the
model’s correctness, which is the percentage of
correctly answered problems on the PEN dataset.
We regard an answer to be correct only if the
answer values of all the variables in the problem are
paired and solved correctly. For example, Table 1
shows that a correct answer contains two variables
and answer values of x = 8 and y = 4. Existing
studies regarded x = 4, y = 8 to be a correct
solution(Kushman et al., 2014; Kim et al., 2020;
Lee and Gweon, 2020). However, in the context
of generating explanations along with solutions,
different explanations are generated with different
variables (Conway and Polya, 1985; Montague,
2008). Therefore, we enforce a stricter constraint
that requires that a variable should be matched with
a correct answer value.

Using the correctness, we compare the EPT-
X model with two previous inexplainable models
(EPT (Kim et al., 2020), GEO (Lee and Gweon,
2020)) and human performance. The EPT is a
model that generates one expression at a time
and uses pointers instead of classifiers, and it
achieved state-of-the-art accuracy on MAWPS and
DRAW datasets. The GEO is a model that mixes
encoder and decoder outputs before predicting a
token, and it achieved state-of-the-art accuracy
on DRAW and ALG514 datasets. To establish a
human performance baseline, our research team
manually checked for the answer correctness of the
original datasets of ALG514, DRAW, and MAWPS.
We found that 62 of the 3581 problems were
incorrectly solved, thus yielding a human baseline
performance of 98%.

5.2 Quantitative error analysis

We conduct four types of error analyses to under-
stand the possible cause of EPT-X solution errors:

4446

Figure 2: Two methods on measuring faithfulness,
inspired by DeYoung et al. (2020)

plausibility test, faithfulness test, faithfulness con-
trol test, and error propagation test. Through these
four types of analyses, we show how the generated
explanations by the EPT-X model can be used to
understand the equation generation process.

5.2.1 Plausibility test
To test the plausibility of explanations, we used
BLEU-4 (Papineni et al., 2002), ROUGE-L (Lin,
2004), CIDEr (Vedantam et al., 2015), and
BLEURT (Sellam et al., 2020). These metrics can
measure the extent of similarity between a gener-
ated explanation and the reference explanation in
the dataset.

Using the above four metrics, we compare the
EPT-X model with a baseline model and human
performance. First, we compare EPT-X with a
baseline model which only contains Phase 1 (P1-
only). This model can generate an explanation
for each number/variable but cannot solve a word
problem. Second, we compared EPT-X with human
performance. While collecting explanations for
each number/variable, we collected four sets of
explanations. Of these four, one set is randomly
set aside to serve as a hypothesis sentence and the
other three as reference sentences when measuring
human performance.

5.2.2 Faithfulness test
To measure the faithfulness of EPT-X, we used
two metrics: sufficiency and comprehensiveness
(DeYoung et al., 2020). First, in our context, com-
prehensiveness means “were explanations (Step 1-
3) needed to produce the solution equation (Step 2-
3)?”. Figure 2 (a) shows the measurement setup for
comprehensiveness. Specifically, we examined the
amount of change between the two output solution

equations: the equation from the original Phase 2
setup and the equation that is generated with only
the problem text for the input of Phase 2. Since
the output equation is not a single prediction as in
DeYoung et al. (2020), we measured the change
in the solution equations using tree edit distance
(Zhang and Shasha, 1989).

Secondly, in our context, sufficiency means “do
explanations (Step 1-3) contain enough information
to produce solution equation (Step 2-3)?”. Figure
2 (b) shows the measurement setup for sufficiency.
Here, we examined the amount of change between
the two output solution equations: the equation
from the original Phase 2 setup and the equation
that is generated with only the generated explana-
tion. Similar to the comprehensiveness measure,
the difference in equations was also computed
using tree edit distance.

To provide a statistical baseline for interpreting
the two metrics of comprehensiveness and suffi-
ciency, we adopted a bootstrapping method (Koehn,
2004). We sampled 500 bootstrapped samples
(each sample has 50 problems) to estimate the
population distribution of each metric. After the
estimation, we conducted hypothesis testing for
each metric. For comprehensiveness C, we set the
following hypothesis HA : C > 1 as we expect
to observe changes in equations when using only
the problem input compared to using both problem
and explanation input. For sufficiency S, we set
the following hypothesis HA : S < 1 as we expect
to observe no change in equations when only using
the explanation input.

5.2.3 Faithfulness control test

To examine a trade-off relationship between cor-
rectness and faithfulness, we train and analyze two
variants of EPT-X, whose faithfulness is controlled.
The first model is an inherently faithful model
(EPT-XF) that uses only the explanation, but not
the original problem, as an input to Phase 2. As
EPT-XF entirely depends on the explanation to
generate a solution equation, the model passes
the test of faithfulness by definition. The second
model is an inherently unfaithful model (EPT-XU)
that uses only the original problem, but not the
explanation from phase 1, as an input to Phase
2. As EPT-XU ignores the explanation input, the
model fails the test of faithfulness by definition.
Implementation details on these two models are
explained in Appendix B.

4447

5.2.4 Error propagation test

To examine how the quality of explanation affects
the model’s correctness, we used two models, EPT-
X and EPT-XF. Both models employ a two-phase
architecture, thus they are prone to errors in both
phases. For the error propagation test, we examine
how the performance of Phase 1 (plausibility) af-
fects the end-task performance (correctness). Note
that testing EPT-X may not reveal the errors that are
solely propagated from the generated explanation
because EPT-X also uses the original problem as
an input. Therefore, EPT-XF performance was also
measured in order to examine the impact of errors
from the generated explanation only.

We measured the amount of error propagation in
the two models, EPT-X and EPT-XF, by comparing
correctness under two conditions: control and
experiment. Under the control condition, the
models build solution equations based on expla-
nations generated by themselves. On the other
hand, under the experiment condition, they build
solution equations based on the gold standard
explanations. Then, we measure the change of
correctness between these two conditions for each
model. Here, we expect that the change to reveal
the proportion of problems affected by errors that
are propagated from Phase 1.

5.3 Qualitative output analysis

The explanations generated by EPT-X were ana-
lyzed qualitatively using two methods. First, to
measure the quality of the generated explanation
itself, we manually labeled the quality in the
PEN’s development set using two criteria: (1)
plausibility and (2) faithfulness. Human coders
were asked to label an explanation to be plausible
when the explanation and the original problem text
are coherent in meaning. And for faithfulness, we
asked human coders to build a solution equation
using only the explanation produced from the EPT-
X model. If the generated solution equation is
identical to the EPT-X generated solution equation,
the explanation is labeled to be faithful.

Second, to find the primary cause of errors when
generating an explanation, we manually classified
errors in EPT-X’s explanations. The errors were
categorized by comparing the generated explana-
tion with the gold-standard explanation. We also
used the PEN development set for this analysis.

Dev. Test

Human 98.35 98.35
Baselines: EPT 77.26 74.52

GEO 63.01 62.47

Proposed: EPT-X 72.88 69.59

Table 3: Correctness of EPT-X on PEN dataset

5.4 Implementation Details

We describe three major implementation details
used for training EPT-X: encoder, optimizer, and
training epochs. For the text encoder component,
EPT-X uses the base version of ELECTRA (Clark
et al., 2020). We fixed its embedding and tied
the embedding with the weights of FFv in the
explanation decoder to preserve the world knowl-
edge in the embedding and to stabilize the training
procedure. For the optimizer, we used LAMB (You
et al., 2020) with a learning rate of 0.00176, which
was found from a grid search on the development
set. Finally, for the training epochs, we trained
EPT-X for 500 epochs. Appendix C lists additional
details of the model, including hardware, software,
libraries, hyper-parameters, and random seeds.

6 Result and Discussion

The result of three analyses reveals that the EPT-
X can generate an equation correctly based on a
plausible and faithful explanation. First, Section
6.1 presents the result of the model performance
analysis, which shows that EPT-X can achieve
correctness 5% lower than previous inexplainable
models. Second, Section 6.2 shows the result of
error analysis, which reveals that many of EPT-X’s
errors are due to insufficient explanations. And
lastly, Section 6.3 shows the result of qualitative
analysis, which reveals three types of errors found
in the explanation generation process of EPT-X.

6.1 Model performance analysis

The model performance analysis shows that EPT-
X generates equations with 69.59% accuracy on
the PEN dataset, despite being a two-phase model.
Table 3 shows that adding the explanation gen-
eration functionality decreases the accuracy by
approximately 5%, compared to state-of-the-art
model EPT 6. We suspect that this performance

6The results on the whole dataset is reported in this section,
whereas results on each subset are reported in Appendix D.

4448

BLEU ROUGE CIDEr BLEURT

Dev: Human 57.16 78.66 343.0 71.44
P1-Only 60.26 78.02 346.7 69.11
EPT-X 60.07 77.99 347.1 69.61

Test: Human 55.69 78.28 347.3 71.51
P1-Only 59.32 77.99 342.9 69.69
EPT-X 60.49 78.34 341.5 69.59

Table 4: Plausibility of EPT-X on PEN dataset

Dev. Test HA

Comprehensiveness 5.97** 6.56** (C > 1)
Sufficiency 1.20 1.19 (S < 1)

* p < 0.05, ** p < 0.01

Table 5: Mean faithfulness of EPT-X on PEN dataset

drop is due to propagation of the errors in the gen-
erated explanations. Regardless, the results of EPT-
X are meaningful since the model automatically
generates explanations of problems without too
much decrease in correctness. The difference of 5%
is quite promising compared to that of the previous
explainable model (Ling et al., 2017), about 40%,
although a direct comparison is not possible due to
differences in datasets.

6.2 Quantitative error analysis
6.2.1 Plausibility test
EPT-X achieved plausibility scores that are compa-
rable to humans and the P1-only model, as shown
in Table 4. The differences in plausibility scores
between EPT-X and the other two baselines range
between 1 to 2 points. This result indicates that
EPT-X can select proper words to generate an ex-
planation. In fact, BLEU-4 score of 60 is promising
compared to Ling et al. (2017) (27.2). Given that
EPT-X achieved human-level performance in terms
of plausibility, but not for correctness, we explored
the faithfulness metric to examine additional causes
for the low model performance.

6.2.2 Faithfulness test
The results of the faithfulness test showed two
characteristics of the explanation output of EPT-
X. In terms of comprehensiveness, the generated
explanation contains some information required
to generate a solution equation, as evidenced by
Table 2. Here, we observe that EPT-X passed the
comprehensiveness test for the 99% confidence

Dev. Test

Proposed: EPT-X 72.88 69.59

Variants: EPT-XF 66.03 62.19
EPT-XU 76.16 73.70

Table 6: Result of faithfulness control test

level. That is, compared to using both inputs in
Phase 2, forcing EPT-X to use only the original
problem input made EPT-X generate a different
solution equation. This result suggests that the
generated explanation provides information, which
is not provided by the original problem but con-
tributes to generating a solution equation.

Meanwhile, in terms of sufficiency, the gener-
ated explanation may not provide sufficient nu-
meric information to generate a solution equation.
Table 2 shows that EPT-X failed the sufficiency
test under the confidence level of 95%. That is,
EPT-X generates different solution equations when
it only receives the generated explanation as input
in Phase 2. So, the explanation generated in Phase
1 does not contain sufficient information, which
is contained in the original problem, to generate a
solution equation.

6.2.3 Faithfulness control test
As the generated explanation fails to capture some
information from the original problem, the correct-
ness may change when we control the faithfulness
of a model. Specifically, the control test shows that
there is a trade-off between faithfulness and cor-
rectness; as faithfulness increases, the correctness
decreases. Table 6 shows that the most faithful
model EPT-XF achieves the lowest correctness
score, which is 6% lower than EPT-X. Conversely,
the most unfaithful model EPT-XU achieves the
highest correctness score, which is 4% greater than
EPT-X. Thus, the results of the faithfulness test
and the faithfulness control test imply that in order
to achieve a higher correctness score, we should
verify whether the explanation contains “sufficient"
information to build a correct equation.

6.2.4 Error propagation analysis
The error propagation test shows that the generated
explanation does not contain sufficient information
to build a correct equation for some problems.
Table 7 shows that both EPT-X and EPT-XF can
outperform the EPT model by 8% when using a
gold standard explanation as an input. However,

4449

Generated Gold Change

Dev.: EPT-XF 66.03 83.29 +17.26
EPT-X 72.88 86.03 +13.15

Test: EPT-XF 62.19 85.20 +23.01
EPT-X 69.59 85.21 +15.62

Table 7: Result of error propagation test of explanation

using explanations generated by the EPT-X model
may decrease the correctness by more than 15%.
That is, more than 15% of errors are due to
information loss in Phase 1.

6.3 Qualitative output analysis
Quality of explanations: The qualitative anal-
ysis showed that the quality of the generated
explanations could be improved given that in-
formation required for solving word problems is
missing. When we manually labeled the generated
explanations for plausibility, 167 of 365 problems
(45.8%) were labeled as plausible. Thus, the
majority of the explanations are insufficient or
contain incorrect information to generate a correct
equation. Similarly, when we manually labeled the
generated explanations for faithfulness, 201 of 365
problems (55.1%) were labeled as faithful. That is,
when the same yet insufficient explanations were
used to generate equations, the equations generated
by EPT-X and humans were different.

Three categories of errors: Additional qualita-
tive analysis found three possible causes for the
EPT-X errors. Here, we will briefly discuss the
causes, and the detailed examples are illustrated in
Appendix E. First, when a problem mentions sev-
eral entities with similar properties (e.g., Heather’s
weight and Emily’s weight), the difference between
entities is ignored in the encoder (69 of 118
incorrect problems; 58.5%). This error implies
that the context window used in Step 1-3 may
not be big enough to distinguish two different
entities. Second, if a problem provides multiple
situations related to an entity (e.g., outward trip
versus return trip), assigning a corresponding
number to the correct situation fails in the encoding
process. Detailed explanations of situations of a
word problem were often omitted in the encoder
(57 of 118 problems; 48.3%). Third, when a
problem contains some irrelevant numbers, which
are not used in solving the problem (e.g., year),
sometimes an explanation for an irrelevant number

was generated instead of the relevant one in the
encoding process (32 of 118 problems; 27.1%).
The second and third error types imply that sharing
the encoder in Phases 1 and 2 might have caused
confusion. The goal of the encoder in Phase 1
was to provide a detailed explanation of a given
number, whereas the goal in Phase 2 was to build
an equation, which involves ignoring some details
to build an abstraction in the form of an equation.

7 Conclusion

This study proposed a novel neural model EPT-X,
Expression Pointer Transformer with Explanations,
which generates explanations along with solution
equations. The EPT-X model was designed to
address two criteria of plausibility and faithfulness
when generating an explanation. To address
plausibility, the model generates explanations for
each number/variable in the solution equation
separately. And to address faithfulness, the model
produces equations based on the information in the
generated explanation. In addition to EPT-X, we
release a new dataset, Problem with Explanations
for Numbers (PEN), which extends existing three
algebraic word problem datasets by augmenting
explanations for numbers/variables. Using the PEN
dataset, we conducted three analyses. The model
performance analysis revealed that EPT-X could
produce a correct equation with 69.59% accuracy.
The quantitative error analysis showed that the
EPT-X model could produce a plausible albeit
insufficient explanation. Lastly, the qualitative
output analysis identified three categories of errors
made when generating explanations. Despite the
insufficiency of explanations generated by the EPT-
X model, our work is significant in that we demon-
strated the possibility of generating explanations
while solving an algebraic word problem. For
future work, we plan to improve the correctness
and faithfulness of EPT-X to enhance the existing
state-of-the-art model.

Acknowledgements

This work was supported by the National Re-
search Foundation of Korea (NRF) grant (No.
2020R1C1C1010162) and the Institute for Infor-
mation & communications Technology Promotion
(IITP) grant (No. 2021-0-02146), both funded by
the Korean government (MSIT). Also, we thank S.
Oh, Y. Lee, J. An, J. Kim, and H. Rhim who helped
in building the PEN dataset.

4450

References
Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik

Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. MathQA: Towards interpretable
math word problem solving with operation-based
formalisms. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 2357–2367, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Thomas P Carpenter, Elizabeth Fennema, and Megan L
Franke. 1996. Cognitively guided instruction: A
knowledge base for reform in primary mathemat-
ics instruction. The elementary school journal.,
97(1):3–20.

Ting-Rui Chiang and Yun-Nung Chen. 2019.
Semantically-aligned equation generation for
solving and reasoning math word problems.
In Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 2656–2668, Minneapolis, Minnesota.
Association for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-
training text encoders as discriminators rather than
generators. In International Conference on Learn-
ing Representations.

John H Conway and G. Polya. 1985. How to solve it,
volume 85. Princeton university press.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani,
Eric Lehman, Caiming Xiong, Richard Socher, and
Byron C. Wallace. 2020. ERASER: A benchmark to
evaluate rationalized NLP models. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4443–4458, On-
line. Association for Computational Linguistics.

Christine Fellbaum. 1998. WordNet: an electronic
lexical database. MIT Press.

Joseph Calvin Gagnon and Paula Maccini. 2001.
Preparing students with disabilities for algebra.
TEACHING Exceptional Children, 34(1):8–15.

Danqing Huang, Jing Liu, Chin-Yew Lin, and Jian
Yin. 2018. Neural math word problem solver with
reinforcement learning. In Proceedings of the 27th
International Conference on Computational Linguis-
tics, pages 213–223, Santa Fe, New Mexico, USA.
Association for Computational Linguistics.

Alon Jacovi and Yoav Goldberg. 2020. Towards
faithfully interpretable NLP systems: How should
we define and evaluate faithfulness? In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4198–4205, On-
line. Association for Computational Linguistics.

Asha K. Jitendra, Edward Sczesniak, Cynthia C. Grif-
fin, and Andria Deatline-Buchman. 2007. Mathe-
matical word problem solving in third-grade class-
rooms. The Journal of Educational Research,
100(5):283–302.

Asha K. Jitendra and Jon R. Star. 2012. An exploratory
study contrasting high- and low-achieving students’
percent word problem solving. Learning and Indi-
vidual Differences, 22(1):151–158.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varsh-
ney, Caiming Xiong, and Richard Socher. 2019.
Ctrl: A conditional transformer language model for
controllable generation.

Kyung Seo Ki, Donggeon Lee, Bugeun Kim, and
Gahgene Gweon. 2020. Generating equation by
utilizing operators : GEO model. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 426–436, Barcelona, Spain (On-
line). International Committee on Computational
Linguistics.

Bugeun Kim, Kyung Seo Ki, Donggeon Lee, and Gah-
gene Gweon. 2020. Point to the Expression: Solv-
ing Algebraic Word Problems using the Expression-
Pointer Transformer Model. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 3768–3779,
Online. Association for Computational Linguistics.

Philipp Koehn. 2004. Statistical significance tests
for machine translation evaluation. In Proceed-
ings of the 2004 Conference on Empirical Methods
in Natural Language Processing, pages 388–395,
Barcelona, Spain. Association for Computational
Linguistics.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. Transactions of the Association for Computa-
tional Linguistics, 3:585–597.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini,
Nate Kushman, and Hannaneh Hajishirzi. 2016.
MAWPS: A math word problem repository. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1152–1157, San Diego, California. Association for
Computational Linguistics.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In Proceedings of
the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 271–281, Baltimore, Maryland. Association
for Computational Linguistics.

D. Lee and G. Gweon. 2020. Solving arithmetic word
problems with a templatebased multi-task deep neu-
ral network (t-mtdnn). In 2020 IEEE International

4451

https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1272
https://doi.org/10.18653/v1/N19-1272
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.1177/004005990103400101
https://www.aclweb.org/anthology/C18-1018
https://www.aclweb.org/anthology/C18-1018
https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.18653/v1/2020.acl-main.386
http://www.jstor.org/stable/27548193
http://www.jstor.org/stable/27548193
http://www.jstor.org/stable/27548193
https://doi.org/https://doi.org/10.1016/j.lindif.2011.11.003
https://doi.org/https://doi.org/10.1016/j.lindif.2011.11.003
https://doi.org/https://doi.org/10.1016/j.lindif.2011.11.003
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
https://doi.org/10.18653/v1/2020.coling-main.38
https://doi.org/10.18653/v1/2020.coling-main.38
https://doi.org/10.18653/v1/2020.emnlp-main.308
https://doi.org/10.18653/v1/2020.emnlp-main.308
https://doi.org/10.18653/v1/2020.emnlp-main.308
https://aclanthology.org/W04-3250
https://aclanthology.org/W04-3250
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.3115/v1/P14-1026
https://doi.org/10.3115/v1/P14-1026

Conference on Big Data and Smart Computing (Big-
Comp), pages 271–274.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil
Blunsom. 2017. Program induction by rationale
generation: Learning to solve and explain algebraic
word problems. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 158–167,
Vancouver, Canada. Association for Computational
Linguistics.

Richard E. Mayer. 1981. Frequency norms and struc-
tural analysis of algebra story problems into families,
categories, and templates. Instructional Science,
10(2):135–175.

Marjorie Montague. 2008. Self-regulation strategies to
improve mathematical problem solving for students
with learning disabilities. Learning Disability Quar-
terly, 31(1):37–44.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning
Research, 21(140):1–67.

Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
2020. Leveraging pre-trained checkpoints for se-
quence generation tasks. Transactions of the Asso-
ciation for Computational Linguistics, 8:264–280.

Subhro Roy and Dan Roth. 2015. Solving general
arithmetic word problems. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1743–1752, Lisbon,
Portugal. Association for Computational Linguis-
tics.

Subhro Roy and Dan Roth. 2017. Unit dependency
graph and its application to arithmetic word problem
solving. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, AAAI’17,
page 3082–3088. AAAI Press.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Thibault Sellam, Dipanjan Das, and Ankur Parikh.
2020. BLEURT: Learning robust metrics for text
generation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7881–7892, Online. Association for
Computational Linguistics.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).

Shyam Upadhyay and Ming-Wei Chang. 2017. An-
notating derivations: A new evaluation strategy and
dataset for algebra word problems. In Proceedings
of the 15th Conference of the European Chapter
of the Association for Computational Linguistics:
Volume 1, Long Papers, pages 494–504, Valencia,
Spain. Association for Computational Linguistics.

Shyam Upadhyay, Ming-Wei Chang, Kai-Wei Chang,
and Wen-tau Yih. 2016. Learning from explicit
and implicit supervision jointly for algebra word
problems. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Process-
ing, pages 297–306, Austin, Texas. Association for
Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Advances in neural information
processing systems, pages 5998–6008.

R. Vedantam, C. L. Zitnick, and D. Parikh. 2015. Cider:
Consensus-based image description evaluation. In
2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4566–4575.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
845–854, Copenhagen, Denmark. Association for
Computational Linguistics.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu,
Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, and Cho-Jui Hsieh.
2020. Large batch optimization for deep learning:
Training bert in 76 minutes. In International Con-
ference on Learning Representations.

Kaizhong Zhang and Dennis Shasha. 1989. Simple
fast algorithms for the editing distance between trees
and related problems. SIAM Journal on Computing,
18(6):1245–1262.

Lipu Zhou, Shuaixiang Dai, and Liwei Chen. 2015.
Learn to solve algebra word problems using
quadratic programming. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 817–822, Lisbon, Portugal.
Association for Computational Linguistics.

4452

https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
http://www.jstor.org/stable/23368357
http://www.jstor.org/stable/23368357
http://www.jstor.org/stable/23368357
https://doi.org/10.2307/30035524
https://doi.org/10.2307/30035524
https://doi.org/10.2307/30035524
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1162/tacl_a_00313
https://doi.org/10.1162/tacl_a_00313
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://www.aclweb.org/anthology/E17-1047
https://www.aclweb.org/anthology/E17-1047
https://www.aclweb.org/anthology/E17-1047
https://doi.org/10.18653/v1/D16-1029
https://doi.org/10.18653/v1/D16-1029
https://doi.org/10.18653/v1/D16-1029
https://doi.org/10.1109/CVPR.2015.7299087
https://doi.org/10.1109/CVPR.2015.7299087
https://doi.org/10.18653/v1/D17-1088
https://openreview.net/forum?id=Syx4wnEtvH
https://openreview.net/forum?id=Syx4wnEtvH
https://doi.org/10.1137/0218082
https://doi.org/10.1137/0218082
https://doi.org/10.1137/0218082
https://doi.org/10.18653/v1/D15-1096
https://doi.org/10.18653/v1/D15-1096

Figure 3: A screenshot of the system used for annotat-
ing explanations on the PEN dataset

A Annotating explanations for PEN
dataset

This section describes the detailed process of
annotating explanations. Using a web-based sys-
tem shown in Figure 3, coders inputted a natural
language explanation for each number/variable.
To provide situational information for each num-
ber/variable, we highlighted text snippets and
equations related to the target number/variable.
Based on the given information, the coder needed
to complete the following sentence: “number
means ..."

As the coders input natural language explana-
tions, a coder’s explanation may not be coherent
with the given word problem. To make the
explanation coherent with the problem, we used
two strategies: rules and validation. For the rules,
we instructed the coders to follow the eight rules
below:

Rule 1. Please write an explanation of the situation
that the number/variable denotes, using the
words appearing in the text.

Rule 2. Each explanation is a simple noun phrase
that has 3 to 25 words. Try to be concise.

Rule 3. Use at least one word appearing in the
problem text when writing an explanation.

Rule 4. Do not use the same explanation for differ-
ent objects.

Rule 5. You should be able to formulate equations
for solving the problem, using your expla-
nations only.

Figure 4: A screenshot of the system used for validat-
ing explanations on the PEN dataset

Rule 6. We suggest writing a difference A-B as
“the value of A minus B."

Rule 7. We suggest writing a ratio A/B as “the
ratio of A to B."

Rule 8. We suggest writing a numera-
tor[denominator] of A/B as “the
numerator[denominator] of the ratio of A
to B."

Moreover, to assist the coders in obeying the eight
rules, the system consistently checked whether the
coders followed the rules. If one of the first four
rules is broken, the system mandates the coder to
obey the broken rule before proceeding to the next
problem. For the other four rules, the system shows
hints to make the coder manually verify the rules.

For the validation, we asked coders to validate
their work by solving a problem reconstructed from
the annotated explanations. For example, Figure
4 shows that the system synthesizes a problem by
concatenating a coder’s explanations and requests
the coder to solve the synthesized problem. The
coder can proceed to the next problem if an answer
to the synthesized problem is the same as the
original problem.

B Two variants of EPT-X

To investigate how the faithfulness of a model
affects its correctness, we designed two variants
of EPT-X: EPT-XF and EPT-XU. The following
paragraphs illustrate each model.

EPT-XF is an inherently faithful variant of EPT-
X. This model utilizes only the recombined prob-
lem in Step 2-2. So, the text encoder receives the
following input in Step 2-2: “[CLS] recombined
problem [SEP].” As the recombined problem
contains information required in Step 2-3, the

4453

Figure 5: Two variants of EPT-X model: EPT-XF (top) and EPT-XU (bottom).

4454

Model Datasets # of
PEN ALG DRAW MAWPS Param.

EPT .00088 .00176 .00176 .00125 122M
EPT-X .00176 .00176 .00176 .00088 263M
EPT-XF .00176 .00088 .00088 .00176 263M
EPT-XU .00176 .00125 .00176 .00125 263M

Table 8: Selected learning rates and training infor-
mation for the EPT and EPT-X model. Best rates
are selected using the development split on PEN and
DRAW dataset, and fold 0 split for the others.

other steps are unchanged. Note that, in this
model, the model is more prone to errors in the
generated explanation since the equation decoder
solely depends on the output of the explanation
decoder.

EPT-XU is an inherently unfaithful variant of
EPT-X. This model utilizes only the original prob-
lem in Step 2-2. So, the text encoder receives the
following input in Step 2-2: “[CLS] original prob-
lem [SEP] X_0 X_1 · · · X_N [SEP]” where N
is the predicted number of variables from Step 1-2.
We concatenated ‘X_0 X_1 · · · X_N ’ in order to
keep Step 2-3 unchanged. Step 2-3 requires vectors
representing either a written number or a required
variable to predict an operand. However, if we
remove the recombined problem from the input of
Step 2-2, the output of Step 2-2 could not provide
such vectors, especially for the variables. Thus,
for each variable, the list of variables is added to
produce a vector value that Step 2-3 can use. And,
for each number, the vector corresponding to the
number written in the original text is used in Step
2-3 as the EPT model did.

C Implementation details

In this section, we describe the implementation
details of EPT-X.

• Hardware:

CPU: AMD Ryzen Threadripper 3970X
GPU: GeForce RTX 3090, four cards
Memory: 192GB

• Software:

OS: Ubuntu 20.04.2 LTS (kernel 5.4.0-80)
CUDA: 11.1
Graphic Driver: 460.73.01

Python: 3.8.10 (with virtualenv)

• Python libraries:

PyTorch 1.8.1+cu111
transformers 4.6.1 (for ELECTRA)
torch-optimizer 0.1.0 (for LAMB)
ray 1.3.0 (for hyperparameter search with

ray[tune])
bleurt git+https://github.com/

google-research/bleurt
Commit c6f2375
(Oct 15th, 2021; for BLEURT)

tensorflow 2.7.0 (for BLEURT)
numpy 1.21.0
scipy 1.7.0
sympy 1.8
pycocoevalcap 1.2
pycocotools 2.0.2
zss 1.2.0

• Hyperparameters and options for EPT-X:

text encoder: google/electra-base-
discriminator. We fixed the embedding
layer to preserve the world knowledge
in the embedding and to stabilize the
training procedure.

explanation decoder: Following (Rothe
et al., 2020), we inserted randomly
initialized cross-attention layers in an
ELECTRA model of google/electra-
base-discriminator.

equation decoder: 6 layers of Transformer
decoder. We tied weights across these
layers.

training epoch: 500
optimizer: LAMB (You et al., 2020) with

β1 = 0.9, β2 = 0.999, and ε = 10−12.
learning rate: To find the best learing

rate for each dataset and model,
we conducted grid-search. Among
the possible learning rates in
{0.00088, 0.00125, 0.00176, 0.0025},
we selected a model with the highest
answer correctness. For P1-Only models,
we used EPT-X’s learning rate. Table
8 shows the selected learning rates.
Also, we applied linear warm-up for 10
epochs and linear decay for the rest of
the epochs.

4455

ALG514 DRAW MAWPS

Total counts

Problems 514 998 2,372
Explanations 8,493 15,291 24,852

Average across problems

Words 38.82 32.70 27.92
Numbers 5.78 4.96 3.41
Variables 1.82 1.85 1.02
Words/Expl. 7.61 8.32 7.37

Table 9: Statistics of PEN’s subsets

MAWPS DRAW ALG514

Human 98.78 96.70 100.0
EPT 88.70 63.5 73.91
GEO* 84.51 62.5 82.1

EPT-X 84.57 56.0 67.07
* Copied from the published result.

Table 10: Correctness of EPT-X on PEN’s subsets

window size in Step 1-3: 3 tokens
batch size: 16 problems per batch
BLEURT checkpoint: BLEURT-20-D6

To ensure the reproducibility of our experiment,
we used separate random number generators with
seed ‘1’ in the following places:

• Code where building mini-batches for training

• Code where selecting gold set explanations
randomly for training Phase 2

• Code where inputting gold set explanations
for the error propagation analysis

D Result of correctness, plausibility, and
faithfulness on subsets

Correctness: The PEN dataset contains three
subsets corresponding to each benchmark dataset:
ALG514, DRAW, and MAWPS. To make the
performance on these datasets be compatible with
previous benchmarks, we retained duplicated prob-
lems in these subsets. Table 9 also shows the
statistics of these three subsets. DRAW is the most
difficult subset to generate explanations since its
explanation is the longest (8.32 words) among the
three subsets while its text is the shortest (32.70

BLEU ROUGE CIDEr BLEURT

MAWPS subset

Human 54.80 79.07 334.7 70.81
EPT-X 79.36 88.01 448.0 82.12

DRAW subset

Human 58.04 79.81 368.5 73.92
EPT-X 58.01 75.32 314.5 66.77

ALG514 subset

Human 56.57 77.82 346.9 76.76
EPT-X 56.25 75.49 310.0 67.48

Table 11: Plausibility of EPT-X on PEN’s subsets

MAWPS DRAW ALG514
(fold 0) (test) (fold 0)

Sufficiency 0.69+ 1.74 1.55
Comprehensive. 4.83** 9.57** 10.33**

+ p < 0.1, * p < 0.05, ** p < 0.01

Table 12: Mean faithfulness of EPT-X on PEN’s sub-
sets

words). Likewise, MAWPS is the easiest subset
among the three subsets.

For each subset, we conducted the same compar-
ative analysis to evaluate EPT-X. Tables 10 to 12
shows the EPT-X’s performance on these subsets.
Note that as we manually corrected problems and
equations in PEN, the results cannot be directly
compared with previous state-of-the-art models.

Table 10 reveals that EPT-X’s correctness is com-
parable to the inexplainable models when generat-
ing explanations is simple. On the simplest subset
MAWPS, EPT-X achieved answer correctness of
84.57%, which is 4% lower than to EPT (88.7%).
Similarly, on the most difficult subset DRAW, EPT-
X achieved an answer correctness of 56.0%, which
is 7.5% lower than EPT (63.5%). As we discussed
in Section 6, this performance decrease may be
due to error propagation. On a subset whose
explanation is difficult to generate (such as DRAW
or ALG514), the chance of generating incorrect
explanation increases. So, EPT-X can be swayed
by wrong explanations considering the model’s
dependency on explanation.

Plausibility: Table 11 illustrates that EPT-X’s
plausibility scores are comparable to humans. On

4456

https://github.com/google-research/bleurt/blob/c6f2375c7c178e1480840cf27cb9e2af851394f9/checkpoints.md#distilled-models

Case 1. Encoder is confused an entity with others (69 of 118 problems)
Q. The Sears tower in Chicago is 1450 feet tall. The John Hancock center in Chicago is 1127 feet tall.
Suppose you are asked to build a small-scale replica of each. If you make the Sears tower 3 meter tall,
what would be the approximate height of the John Hancock replica?

Gold-standard EPT-X
“How tall Sears tower is" is 1127. “The height of the Sears tower in meter" is

1127.
“How tall Hancock center is" is 1450. “The height of the Sears tower in meter" is

1450.
“Height of the Sears tower replica" is 3. “The height of the Sears tower" is 3.
What[x0] is “the height of Hancock replica?" What[x0] is “the height of the Sears tower?"

What[x1] is “the height of John Hancock cen-
ter?"

Equation: 1127/1450 = 3/x0 Equation: x1 = 3× (1127 + 1450)

Case 2. Encoder forgets to explain detailed situations (57 of 118 problems)
Q. Juan drives to work. Because of traffic conditions, he averages 22 miles per hour. He returns home,
averaging 32 miles per hour. The total travel time is 2.25 hours. Write and solve an equation to find the
time Juan spends driving to work.

Gold-standard EPT-X
“The speed of Juan driving to work" is 22. “The speed of Juan" is 22.
“The speed returning home" is 32. “The speed of Juan"" is 32.
“The total travel time" is 2.25. “The total travel time"" is 2.25.
What[x0] is “the time traveled to work?" What[x0] is “the time Juan rowe spends?"
What[x1] is “the time returning from work?"
Equation: 22x0 = 32x1 Equation: 22x0 = 32x0

2.25 = x0 + x1

Case 3. Encoder fails to identify numbers required to solve a problem (32 of 118 problems)
Q. There are 48 erasers in the drawer and 30 erasers on the desk. Alyssa placed 39 erasers and 45 rulers
on the desk. How many erasers are now there in total?

Gold-standard EPT-X
“The number of erasers in the drawer" is 48. “The number of erasers in the drawer" is 48.
“The number of erasers on the desk" is 30.
“The number of erasers added on the desk" is
39.

“The number of erasers placed on the desk" is
39.

What[x0] is “the total number of erasers?" What[x0] is “the total number of erasers?"
Equation: x0 = 48 + 30 + 39 Equation: x0 = 48 + 39

Table 13: Three representative erroneous cases of EPT-X

4457

the ALG514 and DRAW subsets, EPT-X showed
slightly lower but comparable scores: at most 1%
lower on BLEU, 2-5% lower on ROUGE, about
30-50 less on CIDEr, and 7-9% less on BLEURT.
Meanwhile, on the MAWPS subset, EPT-X showed
much higher plausibility scores than humans: about
20% more on BLEU, 8-10% more on ROUGE,
about 110 more on CIDEr, and 11% more on
BLEURT. These results imply that EPT-X could
quickly learn how to generate explanations as the
MAWPS dataset has more examples with simpler
explanations than the other two subsets.

Faithfulness: Table 12 implies that the generated
explanation is insufficient to produce a correct
equation. EPT-X model passed both tests only on
MAWPS subset, which has simpler explanations
than the other two subsets. On the other hand,
the model only passed the comprehensiveness test
on DRAW and ALG514 subsets. This result
implies that though EPT-X can generate a simple
explanation appropriately, EPT-X may forget to
explain some essential information when the target
explanation is complicated.

E Example error cases

Table 13 shows the three error cases of EPT-X.
First, Case 1 shows that the encoder is often
confused with an entity to others. In this example,
the model mistakenly equated ‘Sears tower’ and
‘John Hancock center.’ So, the EPT-X cannot
utilize the concept of reduced scale, which is a key
concept to solve the given problem. Second, Case
2 shows that the encoder often forgets to explain
detailed situations of a word problem. In this
example, the model unified two different situations:
(1) a situation that Juan drives to work and (2)
a situation that Juan returns home. So, the EPT-
X cannot utilize the concept of round trip, which
is a key concept to write the second equation,
2.25 = x0 + x1. Lastly, Case 3 shows that
the encoder sometimes fails to identify whether
a number is significant to solve a word problem or
not. In this example, the model did not describe
the second number, 30. Without explaining the
number, it is not possible to count the number of
erasers correctly.

4458

