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Abstract

Knowledge distillation (KD) is the prelimi-
nary step for training non-autoregressive trans-
lation (NAT) models, which eases the training
of NAT models at the cost of losing impor-
tant information for translating low-frequency
words. In this work, we provide an appeal-
ing alternative for NAT – monolingual KD,
which trains NAT student on external mono-
lingual data with AT teacher trained on the
original bilingual data. Monolingual KD is
able to transfer both the knowledge of the
original bilingual data (implicitly encoded in
the trained AT teacher model) and that of
the new monolingual data to the NAT student
model. Extensive experiments on eight WMT
benchmarks over two advanced NAT models
show that monolingual KD consistently out-
performs the standard KD by improving low-
frequency word translation, without introduc-
ing any computational cost. Monolingual KD
enjoys desirable expandability, which can be
further enhanced (when given more compu-
tational budget) by combining with the stan-
dard KD, a reverse monolingual KD, or en-
larging the scale of monolingual data. Ex-
tensive analyses demonstrate that these tech-
niques can be used together profitably to fur-
ther recall the useful information lost in the
standard KD. Encouragingly, combining with
standard KD, our approach achieves 30.4 and
34.1 BLEU points on the WMT14 English-
German and German-English datasets, respec-
tively. Our code and trained models are
freely available at https://github.com/
alphadl/RLFW-NAT.mono.

1 Introduction

Non-autoregressive translation (NAT, Gu et al.
2018) has been proposed to improve the decoding
efficiency by predicting all tokens independently
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and simultaneously. However, the independence as-
sumption prevents a model from properly capturing
the highly multimodal distribution of target trans-
lations. In response to this problem, a sequence-
level knowledge distillation (KD, Kim and Rush
2016) becomes the preliminary step for training
NAT models, which produces more deterministic
knowledge by reducing the translation modes of
the bilingual data (Zhou et al., 2020).

Although the standard KD on original bilingual
data eases the training of NAT models, distillation
may lose some important information in the raw
training data, leading to more errors on predicting
low-frequency words (Ding et al., 2021c,b). To rem-
edy this problem, Ding et al. (2021c) augmented
NAT models the ability to learn lost knowledge
from the raw bilingual data with an additional ob-
jective, and Ding et al. (2021b) first pre-trained
NAT models on the raw training data and then fine-
tuned them on the distilled training data. While
previous studies mainly focus on recalling the lost
information during the distillation of the original
bilingual data, in this work we propose to improve
the prediction of low-frequency words by redis-
tributing them in the external monolingual data,
which has the great potential to complement the
original bilingual data on the word distribution.

Specifically, we leverage the monolingual data
to perform KD (monolingual KD, §2.2), and train
the NAT student model on the distilled monolin-
gual data (Figure 1b). Monolingual KD provides
appealing benefits. Firstly, the monolingual data
and bilingual data in machine translation are gener-
ally complementary to each other (Zhang and Zong,
2016; Wu et al., 2019; Zhou and Keung, 2020; Sid-
dhant et al., 2020; Jiao et al., 2021). Accordingly,
monolingual KD is able to transfer both the knowl-
edge of the bilingual data (implicitly encoded in the
trained teacher model) and that of the monolingual
data to the NAT student, without introducing addi-
tional computational cost. Secondly, the amount
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of available monolingual data is several orders of
magnitude larger than that of bilingual data, which
offers monolingual KD the potential to further im-
prove translation performance by exploiting more
monolingual data.

Furthermore, we analyze the bilingual links in
the bilingual and monolingual distilled data from
two alignment directions (i.e. source-to-target and
target-to-source). We found that the monolingual
KD makes low-frequency source words aligned
with targets more deterministically compared to
bilingual KD, but both of them fail to align low-
frequency words from target to source due to in-
formation loss. Starting from this finding, we pro-
pose reverse monolingual KD to recall more align-
ments for low-frequency target words. We then
concatenate two kinds of monolingual distilled data
(bidirectional monolingual KD, §2.3) to maintain
advantages of deterministic knowledge and low-
frequency information.

We validated our approach on several transla-
tion benchmarks across scales (WMT14 En↔De,
WMT16 Ro↔En, WMT17 Zh↔En, and WMT19
En↔De) over two advanced NAT models: Mask
Predict (Ghazvininejad et al., 2019) and Leven-
shtein (Gu et al., 2019). Experiments demonstrate
the effectiveness and universality of our approach.
Specifically, we have the following findings:

• Monolingual KD achieves better performance
than the standard KD in all cases, and the pro-
posed bidirectional monolingual KD can fur-
ther improve performance by a large margin.

• Monolingual KD enjoys appealing expandabil-
ity: enlarging the scale of monolingual data
consistently improves performance until reach-
ing the bottleneck of model capacity.

• Monolingual KD is complementary to the stan-
dard KD, and combining them obtains further
improvement by alleviating two key issues of
NAT, i.e., the multimodality problem and the
low-frequency word translation problem.

The paper is an early step in exploring monolingual
KD for NAT, which can narrow the performance
gap between NAT models and the SOTA AT mod-
els. We hope the promising effect of monolingual
KD on NAT can draw more interest and can make
NAT a common translation framework.

2 Redistributing Low-Frequency Words

2.1 Preliminaries

Non-Autoregressive Translation Recent years
have seen a surge of interest in NAT (Gu et al.,
2018), which can improve the decoding effi-
ciency by predicting all tokens independently
and simultaneously. Specifically, the probabil-
ity of generating a target sentence y by given
the source sentence x is computed as p(y|x) =
pL(T |x; θ)

∏T
t=1 p(yt|x; θ), where T is the length

of y, which is predicted by a separate conditional
distribution pL(·). The parameters θ are trained to
maximize the likelihood of a set of training exam-
ples according to L(θ) = argmaxθ log p(y|x; θ).
The conditional independence assumption prevents
an NAT model from properly capturing the highly
multimodal distribution of target translations (mul-
timodality problem, Gu et al., 2018). As a result,
the translation quality of NAT models often lags
behind that of AT models (Vaswani et al., 2017).

Standard Knowledge Distillation Knowledge
distillation is the preliminary step for training NAT
models by reducing the modes in the original bilin-
gual data, which makes NAT easily acquire more
deterministic knowledge and achieve significant
improvement (Zhou et al., 2020). Typically, a
sequence-level KD (Kim and Rush, 2016) is em-
ployed for NAT training, as shown in Figure 1a.

2.2 Monolingual Knowledge Distillation

Different Distributions of Source Words To
empirically reveal the difference on word distri-
bution between bilingual and monolingual data, we
visualize the overall word distributions, as plotted
in Figure 2. We can observe the significant differ-
ence between bilingual and monolingual data in the
low-frequency part, which indicates that the words
that occur less in the bilingual data are not nec-
essarily low-frequent in the external monolingual
data. Starting from the observation, we propose to
exploit external monolingual data to offer more use-
ful information for predicting low-frequent words
in bilingual data, which are generally lost in the
standard knowledge distillation.

Our Approach Researches and competitions
have shown that fully exploiting the monolingual
data is at the core of achieving better generaliza-
tion and accuracy for MT systems (Sennrich et al.,
2016a; Zhang and Zong, 2016; Barrault et al.,
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Figure 1: Illustration of (a) standard bilingual data KD and (b) the proposed monolingual KD. The main difference
between the two KDs lies in constructing the distilled data by (a) reusing the source side of bilingual data, or (b)
introducing a new monolingual data.
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Figure 2: Word distributions of bilingual and monolin-
gual English data on WMT14 En-De training data. In-
dex is ranked by its frequency in bilingual data, where
we normalize the frequency and report in log-scale.

2020). In this work we want to transfer the dis-
tribution of lost information, e.g. low-frequency
words, from monolingual data to the NAT train-
ing. Figure 1b shows the pipeline of our proposed
Monolingual KD for NAT, which differs from the
Standard KD at how to construct the distilled data.
Instead of reusing the source side of the original
bilingual data, monolingual KD performs distilla-
tion on newly monolingual data, which eliminates
the dependency on the original training data.

Intuitively, the monolingual KD can embed both
the knowledge of the original bilingual data (im-
plicitly encoded in the trained teacher model) and
that of the newly introduced monolingual data. The
comprehensive experiments in the following sec-
tion provide empirical support for our hypothesis.
In addition, the complementarity between the bilin-
gual and monolingual data makes explicitly com-
bining Standard KD and Monlingual KD can fur-
ther improve model performance.

Data s 7→ t LFW Links t 7→ s LFW Links

R P F1 R P F1

Raw 66.4 81.9 73.3 72.3 80.6 76.2
−→
KDB 73.4 89.2 80.5 69.9 79.1 74.2
−→
KDM 75.1 87.7 80.9 70.8 81.4 75.7
←−
KDM 63.7 80.2 71.0 81.4 86.2 83.7
←→
KDM 75.7 89.6 82.1 80.5 79.4 79.9

Table 1: Evaluation of aligned links between source-
and target-side low-frequency words on WMT14 En-
De training data. “

−→
KD” denotes the standard KD on

source-language data, and “
←−
KD” denotes reverse KD

on target-language data. The subscripts B and M repre-
sent Bilingual and Monolingual distilled data.

2.3 Bidirectional Monolingual KD

Recalling Low-Frequency Target Words KD
simplifies the training data by replacing low-
frequency target words with high-frequency
ones (Zhou et al., 2020; Ding et al., 2021c). This
is able to facilitate easier aligning source words
to target ones, resulting in high bilingual cov-
erage (Jiao et al., 2020). Inspired by the low-
frequency word (LFW) links analysis (Ding et al.,
2021b), we borrow this LFW analysis to show
the necessity of leveraging both the source- and
target-side monolingual data. Concretely, we fol-
low (Ding et al., 2021b) to evaluate the links of
low-frequency words aligning from source to tar-
get (s 7→ t) with three metrics: Recall (R) repre-
sents how many low-frequency source words can
be aligned to targets; Precision (P) means how
many aligned low-frequency links are correct ac-
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cording to human evaluation. F1 is the harmonic
mean between precision and recall. Similarly, we
can analyze in an opposite direction (t 7→ s) by con-
sidering the links of low-frequency target words.

Table 1 lists the results. Comparing with the
standard

−→
KDB, the forward monolingual KD (

−→
KDM

in Section 2.2) achieves better alignment quality
of s 7→ t LFW links (F1: 80.9 vs. 80.5) by align-
ing more low-frequency source words (R: 75.1 vs.
73.4). The backward monolingual KD (

←−
KDM) can

complementarily produce better alignment of low-
frequency target words (t 7→ s LFW links). As
we expected, combining the two types of distilled
data (

←→
KDM) can produce better alignments for both

low-frequency source (F1: 82.1 vs. 80.5) and target
words (F1: 79.9 vs. 74.2).

Our Approach (Bid. Monolingual KD) Based
on the above observations, we propose to train
NAT models on bidirectional monolingual data by
concatenating two kinds of distilled data. Like
back-translation (Edunov et al., 2018), the reverse
monolingual distillation

←−
KDM is to synthesize the

source sentences by a backward AT teacher, which
is trained in the reverse direction of the original
bilingual data. The mixture of the source-original
and target-original synthetic datasets (i.e.

←→
KDM)

is used to train the final NAT model. We expect
that the better alignments of LFW links can lead to
overall improvement of translation performance.

3 Experiments

3.1 Experimental Setup

Bilingual Data We conducted experiments on
two widely-used NAT benchmarks: WMT14
English-German and WMT16 English-Romanian
tasks, which consist of 4.5M and 0.6M sentence
pairs respectively. To prove the universality of our
approach on large-scale data, we also validated on
WMT17 English-Chinese and WMT19 English-
German tasks, which consist of 20.6M and 36.8M
sentence pairs respectively. We shared the source
and target vocabularies, except for En↔Zh data.
We split the training data into subword units using
byte pair encoding (BPE) (Sennrich et al., 2016b)
with 32K merge operations, forming a vocabulary
of 37k, 32k, 33k/48k and 44k for WMT14 En↔De,
WMT16 En↔Ro, WMT17 En↔Zh and WMT19
En↔De respectively. We used case-sensitive token-
BLEU (Papineni et al., 2002) to measure the trans-
lation quality (except for En-Zh, we used sacre-

Ta
sk Lang. Bilingual data Monolingual Data

# Sent. # Word # Sent. # Word

W
14 En

4.5M
127.7M

4.5M
138.6M

De 132.5M 124.0M

W
16 En

0.6M
16.1M

0.6M
16.5M

Ro 16.7M 17.3M

W
17 En

20.6M
535.7M 20.6M 591.5M

Zh 487.6M 18.4M 540.1M

W
19 En

36.8M
881.0M

36.8M
937.3M

De 911.0M 867.6M

Table 2: Data statistics of parallel and monolingual
data. For fair comparison, the monolingual data has
the same size with the corresponding bilingual data.

BLEU (Post, 2018)), and sign-test (Collins et al.,
2005) for statistical significance test.

Monolingual Data We closely followed previ-
ous works to randomly sample monolingual data
from publicly available News Crawl corpus1 for
the WMT tasks (Sennrich et al., 2016a; Wu et al.,
2019). We randomly sampled English and Ger-
man data from News Crawl 2007∼2020, and ran-
domly sampled Romanian data from News Crawl
2015. For Chinese monolingual data, we used
News Crawl 2008∼2020, News Commendary v16
and XMU data. For fair comparison, the mono-
lingual data generally has the same size as corre-
sponding bilingual data, as listed in Table 2.

Model Training We validated our approach on
two state-of-the-art NAT models:
• MaskPredict [MaskT, Ghazvininejad et al. 2019]

that uses the conditional masked language
model (Devlin et al., 2019) to iteratively generate
the target sequence from the masked input. We
followed its optimal settings to keep the iteration
number be 10 and length beam be 5.

• Levenshtein Transformer [LevT, Gu et al. 2019]
that introduces three steps: deletion, placeholder
prediction and token prediction, and the decoding
iterations adaptively depends on certain condi-
tions. We followed their setting and reproduced
their reported results.
We trained both BASE and BIG Trans-

former (Vaswani et al., 2017) as the AT teachers for
both standard and monolingual KD. For BIG mod-
els, we adopted large-batch training (i.e. 458K to-

1http://data.statmt.org/news-crawl
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Data MaskT LevT

BLEU 4 BLEU 4
−→
KDB 25.4 – 25.6 –
−→
KDM 25.8 +0.4 26.2 +0.6
←−
KDM 24.9 -0.5 24.5 -1.1
←→
KDM 26.6 +1.2 26.7 +1.1
−→
KDM+

−→
KDB 26.7 +1.3 26.8 +1.2

←−
KDM+

−→
KDB 26.6 +1.2 26.5 +0.9

←→
KDM+

−→
KDB 27.1 +1.7 27.3 +1.7

Table 3: BLEU scores of different monolingual distilla-
tion strategies. “+

−→
KDB” means concatenating two sets

of distilled data for model training, and “4” denotes
improvement/decline over

−→
KDB. We used the same AT

teacher and trained all models for the same steps.

kens/batch) to optimize the performance (Ott et al.,
2018). The En↔Ro tasks employed Transformer-
BASE as the teacher, and the other tasks used
Transformer-BIG as the teacher. We also used
large-batch (i.e. 480K tokens/batch) to train NAT
models with Adam optimizer (Kingma and Ba,
2015). The learning rate warms up to 1 × 10−7

for 10K steps, and then decays for 60k steps with
the cosine schedule (Ro↔En models only need 4K
and 21K steps, respectively). Following the com-
mon practices (Ghazvininejad et al., 2019; Kasai
et al., 2020), we evaluate the performance on an en-
semble of 5 best checkpoints (ranked by validation
BLEU) to avoid stochasticity.

3.2 Ablation Study on Monolingual KD

In this section, we evaluated the impact of different
components of the monolingual KD on WMT14
En-De validation sets.

Impact of Distillation Strategy Table 3 lists the
results of different distillation strategies. The for-
ward monolingual KD (“

−→
KDM”) consistently out-

performs its standard counterpart (“
−→
KDB”) (i.e.

25.8 vs. 25.4, and 26.2 vs. 25.6), which we at-
tribute to the advantage of monolingual KD on
exploiting both the original bilingual data knowl-
edge (implicitly encoded in the trained AT teacher
model) and the new monolingual data knowledge.
Concatenating forward- and reverse-KD (

←→
KDM)

can further improve the NAT performance, which
is consistent with the findings in Table 1.

We also investigated whether monolingual KD

Sampling
←→
KDM +

−→
KDB

MaskT LevT MaskT LevT

RANDOM 26.6 26.7 27.1 27.3

LOW-FREQ 26.4 26.6 26.9 27.1
LM-SEL 26.9 26.8 27.4 27.5

Table 4: Impact of monolingual data sampling.

is complementary to standard KD (i.e. “+
−→
KDB”

column). As seen, standard KD consistently im-
proves translation performance across monolin-
gual KD variants. Another interesting finding is
that although reverse monolingual KD (

←−
KDM) sig-

nificantly underperforms its forward counterpart
(
−→
KDM) when used alone, they achieve comparable

performance when using together with standard
KD. We discuss in details how the two KD models
complement each other in Section 3.4.

Impact of Monolingual Data Sampling Some
researchers may doubt that our approach heavily
depends on the sampled monolingual data. To dis-
pel the doubt, we investigated whether our model
is robust to the selected monolingual data by vary-
ing the sampling strategies. Specifically, we con-
ducted experiments on the full set of monolingual
data from News Crawl 2007∼2020, which con-
sist of 243M English and 351M German sentences.
We compared with two representative approaches
that sampled data with different priors: (1) LOW-
FREQ samples difficult examples containing low-
frequency words (Fadaee and Monz, 2018); (2)
LM-SEL selects high quality examples with lan-
guage model (Moore and Lewis, 2010).

As listed in Table 4, the difference of three sam-
pling strategies w.r.t BLEU is not significant under
the significance test p < 0.05 (Collins et al., 2005),
demonstrating that our approach is robust to the
monolingual data sampling. For the simplicity and
robust applicability of our approach across differ-
ent scenarios, we used RANDOM sampling as the
default strategy in the following experiments.

3.3 Main Results

NAT Benchmarks Table 5 lists the results on
the WMT14 En↔De and WMT16 En↔Ro bench-
marks. Encouragingly, the conclusions in Sec-
tion 3.2 hold across language pairs, demonstrating
the effectiveness and universality of our approach.
We also compared the performance against several
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Model Iter. WMT14 WMT16

En-De De-En En-Ro Ro-En

AT Models
Transformer-BASE (En↔Ro Teacher) n/a 27.3 31.3 33.9 34.1
Transformer-BIG (En↔De Teacher) n/a 29.2 32.4 - -

Existing Advanced NAT Models with Standard KD
DisCo (Kasai et al., 2020) 4.8 27.3 31.3 33.2 33.3
Imputer (Saharia et al., 2020) 8.0 28.2 31.8 34.4 34.1
Mask-Predict (Ghazvininejad et al., 2019)

10.0
27.0 30.5 33.1 33.3

+Raw Data Pre-Train (Ding et al., 2021b) 27.8 - - 33.9
Levenshtein (Gu et al., 2019)

2.5
27.3 - - 33.3

+Raw Data Pre-Train (Ding et al., 2021b) 28.2 - - 33.8

Our NAT Models
Mask-Predict

+Standard KD

10.0

27.0 31.1 32.9 33.3
+Mono. KD 28.2† 31.8 33.6† 33.7

+Standard KD 28.7† 32.3† 33.9† 34.1†

+Bidirectional Mono. KD 29.1† 32.6† 34.2† 34.3†

+Standard KD 30.1† 33.7† 35.0† 35.3†

Levenshtein
+Standard KD

2.5

27.3 30.9 32.7 33.2
+Mono. KD 28.6† 32.1† 33.5† 33.9

+Standard KD 29.1† 32.6† 34.0† 34.2†

+Bidirectional Mono. KD 29.5† 33.6† 34.3† 34.2†

+Standard KD 30.4† 34.1† 34.9† 35.4†

Table 5: Comparison with previous work on NAT benchmarks in terms of BLEU scores. “Iter.” indicates the
number of iterative refinement. “†” indicates statistically significant difference (p < 0.01) from standard KD.

previous competitive NAT models. Although the re-
sults are not directly comparable since we used ad-
ditional monolingual data, our approach improves
previous SOTA BLEU on the NAT benchmarks.
Notably, our data-level approaches neither modify
model architecture nor add extra training loss, thus
does not increase any latency (“Speed”), maintain-
ing the intrinsic advantages of NAT models. The
main side-effect of our approach is the increased
training time for training an additional AT teacher
model to build distilled data in the reverse direc-
tion. Fortunately, we can eliminate the side-effect
by using only the monolingual KD (“Mono. KD”),
which still consistently outperforms the standard
KD without introducing any computation cost.

Larger-Scale WMT Benchmarks To verify the
effectiveness of our method across different data
sizes, we further experimented on two widely-used
large-scale MT benchmarks, i.e. WMT17 En↔Zh
and WMT19 En↔De. As listed in Table 6, our bidi-

Model En-Zh En-De

→ ← → ←

AT Teacher 35.6 24.6 40.2 40.1

MaskT
+Stand. KD 33.7 23.4 36.8 37.2
+Mono. KD 34.5 24.9† 37.4 37.9

+Stand. KD 34.8† 25.1† 38.1† 38.5†

+Bid. Mono. KD 35.2† 25.6† 39.2† 39.4†

+Stand. KD 38.2† 25.8† 40.1† 40.5†

LevT
+Stand. KD 33.9 23.3 37.5 37.7
+Mono. KD 34.6 24.6† 38.1 38.4

+Stand. KD 35.1† 24.7† 38.5† 39.1†

+Bid. Mono. KD 35.4† 25.5† 39.6† 40.2†

+Stand. KD 38.5† 25.8† 40.5† 40.8†

Table 6: BLEU scores on large-scale WMT17 En↔Zh
(20.6M) and WMT19 En↔De (36.8M) data.
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Data All High Med. Low

Raw 3.67 2.41 3.28 6.81
−→
KDB 1.95 1.68 1.87 4.52
−→
KDM 1.79 1.66 1.72 4.29

+
−→
KDB 1.77 1.62 1.71 3.95

←→
KDM 1.72 1.52 1.64 4.01

+
−→
KDB 1.64 1.50 1.62 3.69

Table 7: Data complexity of different distillations of
WMT14 En-De training data. Word frequencies are es-
timated on the source sentences of bilingual data.

rectional monolingual KD outperforms standard
KD by averagely +1.9 and +2.3 BLEU points on
En↔Zh and En↔De datasets, respectively, demon-
strating the robustness and effectiveness of our
monolingual KD approach. By combining with
standard KD, our methods can achieve further +1.8
and +0.9 BLEU improvements.

3.4 Analysis
In this section, we provide some insights into how
monolingual KD works. We report the results on
WMT14 En-De data using Mask-Predict.

Monolingual KD Reduces Complexity of Train-
ing Data by Improving Low-Frequency Word
Alignment We first present data-level qualitative
analyses to study how monolingual KD comple-
ments bilingual KD. Zhou et al. (2020) revealed
that standard KD improves NAT models by reduc-
ing the complexity of original bilingual data. Along
this thread, we used the data complexity metric to
measure different distilled datasets. Formally, the
translation uncertainty of a source sentence x can
be operationalized as conditional entropy:

H(Y|X = x) = −
∑
y∈Y

p(y|x) log p(y|x)

≈
Tx∑
t=1

H(y|x = xt),

where Tx denotes the length of the source sentence,
x and y represent a word in the source and target
vocabularies, respectively.

We run fast-align on each parallel corpus to
obtain word alignment. For fair comparison, we
sampled the subsets (i.e. 4.5M) of “

←→
KDM” and

“
←→
KDM+

−→
KDB” to perform complexity computation.

As seen in Table 7, standard KD significantly re-
duces the data complexity compared to that of the

Data WMT14 En-De WMT14 De-En

H M L H M L
AT Teacher
Raw Data 84.7 80.2 73.0 85.4 81.1 74.2

NAT Student
−→
KDB 82.4 78.2 68.4 83.7 79.6 69.9
−→
KDM 82.9 78.4 69.5 83.9 80.1 71.2
+
−→
KDB 83.1 78.7 70.8 84.3 80.5 72.1

←→
KDM 84.1 79.1 72.7 85.0 80.9 73.4
+
−→
KDB 84.6 79.7 73.6 85.2 81.4 75.2

Table 8: Accuracy of word translation. Darker color de-
notes more improvement over standard KD. “H/M/L”
represent high/medium/low frequency words, which
are estimated on the source sentences of bilingual data.

bilingual data (1.95 vs. 3.67), and monolingual
KD reduces even more data complexity. Addition-
ally, the data complexity can be further reduced by
combining with standard KD.

Monolingual KD Mainly Improves Low-
Frequency Word Translation We first followed
Ding et al. (2021c) to measure the translation
accuracy of words with different frequencies,
as shown in Table 8. The improvements over
low-frequency words are the major reason for the
performance gains, where the monolingual KD
and bidirectional monolingual KD outperform the
standard KD by averagely +1.2% and +3.9%, re-
spectively. These findings confirm our hypothesis
that monolingual KD can improve the translation
of low-frequency words by redistributing them
in the new monolingual data. Combining with
standard KD can further improve the accuracy of
translating low-frequency words, which reconfirms
our hypothesis on the complementarity between
the two KD methods on low-frequency words.

3.5 Further Exploiting Monolingual Data
In this section, we provide some potential direc-
tions to further improve NAT performance by mak-
ing the most of monolingual data.

Exploiting Monolingual Data at Scale One
strength of monolingual KD is the potential to ex-
ploit more monolingual data to further improve
translation performance. To validate our claim, we
scaled the size of monolingual data by {2×, 5×,
10×}, which are randomly sampled from the full
set of monolingual data. As shown in Table 9,
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Mono WMT14 En-De WMT14 De-En

Size MaskT LevT MaskT LevT

Bidirectional Monolingual KD
1× 29.1 29.5 32.6 33.6
2× 29.7 30.1 33.1 33.9
5× 30.6 30.9 33.9 34.5
10× 30.4 30.8 33.3 34.4

Combining with Standard KD
1× 30.1 30.4 33.7 34.1
2× 30.7 30.9 34.2 34.5
5× 31.3 31.7 34.5 34.7
10× 30.9 31.5 34.2 34.6

Table 9: BLEU scores of using monolingual data at
scale. We train all models with the same training steps.

Mono. Mono. to Train BLEU

KD AT NAT AT NAT

n/a × × 29.2 27.0

−→
KDM

× X 29.2 28.7
X × 30.1 27.8
X X 30.1 28.9

←→
KDM

× X 29.2 30.1
X × 31.8 28.2
X X 31.8 30.5

Table 10: Applying monolingual KD for AT teacher
and/or NAT student on WMT14 En-De test set. Raw
data (for AT) and

←→
KDB (for NAT) are used by default.

enlarging the monolingual data consistently im-
proves the BLEU scores, while this trend does not
hold when further scaling the monolingual data
(i.e. 10×). One possible reason is that the limited
capacity of NAT-base models cannot fully exploit
the large data, which suggests future exploration of
larger NAT architectures.

Augmenting AT Teacher with Monolingual KD
An alternative to exploit monolingual data is to
strength the AT teacher with monolingual KD, as
listed in Table 10. Applying monolingual KD for
AT teacher is less effective than using it for NAT
training, which we attribute to the information loss
when transferred from AT teacher to NAT student.
Applying monolingual KD to both AT teacher and
NAT student can further improve the NAT perfor-
mance, at the cost of more computational cost.

4 Related Work

To bridge the performance gap, a number of recent
efforts have explored, including model architec-
tures (Ghazvininejad et al., 2019; Gu et al., 2019;
Ding et al., 2020; Guo et al., 2020), training objec-
tives and methods (Shao et al., 2019; Ghazvinine-
jad et al., 2020; Ding et al., 2021a). Another thread
of work focus on understanding and improving dis-
tillation training for NAT (Zhou et al., 2020; Ding
et al., 2021c,b; Huang et al., 2022).

Sequence-level KD (Kim and Rush, 2016) is a
preliminary step for training NAT models to re-
duce the intrinsic uncertainty and learning diffi-
culty (Zhou et al., 2020; Ren et al., 2020). Recent
studies have revealed that KD reduces the modes
(i.e. multiple lexical choices for a source word) in
the original data by re-weighting the training ex-
amples (Furlanello et al., 2018; Tang et al., 2020),
at the cost of losing some important information,
leading to more errors on predicting low-frequency
words (Ding et al., 2021c). In response to this prob-
lem, Ding et al. (2021b) proposed to rejuvenate
low-frequency words by pretraining NAT models
on the raw bilingual data. In this study, we attempt
to solve this problem from a different perspective –
rediscovering low-frequency words from external
monolingual data, which can simultaneously ex-
ploit the knowledge of bilingual data (implicitly
encoded in the parameters of AT teacher).

Closely related to our work, Zhou and Ke-
ung (2020) improved NAT models by augment-
ing source-side monolingual data. Their work can
be regarded as a special case of our approach (i.e.
“Mono. KD + Standard KD” in Section 3.3), and our
work has several more contributions. Firstly, we
demonstrated the effectiveness of using only mono-
lingual KD for NAT models, which can achieve
better performance than the standard KD without
introducing any computational cost. Secondly, we
proposed a novel bidirectional monolingual KD to
exploit both the source-side and target-side mono-
lingual data. Finally, we provide insights into how
monolingual KD complements the standard KD.

5 Conclusion

In this work, we propose a simple, effective and
scalable approach – monolingual KD to redistribute
the low-frequency words in the bilingual data us-
ing external monolingual data. Monolingual KD
consistently outperforms the standard KD with
more translation accuracy of low-frequency words,
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which attribute to its strength of exploiting both the
knowledge of the original bilingual data (implicitly
encoded in the parameters of AT teacher) and that
of the new monolingual data.

Monolingual KD enjoys appealing expandabil-
ity, and can be further enhanced by (1) combining
with a reverse monolingual KD to recall more align-
ments for low-frequency target words; (2) combin-
ing with the standard KD to explicitly combine
both types of complementary knowledge; (3) en-
larging the scale of monolingual data that is cheap
to acquire. Our study empirically indicates the po-
tential to make NAT a practical translation system.

Future directions include designing advanced
monolingual KD techniques and validating on
larger-capacity NAT models (e.g. BIG setting)
to strengthen the power of monolingual KD, and
fully NAT models (Gu and Kong, 2021; Du et al.,
2021) to show the universality of monolingual KD.
Besides, it will be interesting to follow Liu et al.
(2021) and Wang et al. (2022) to investigate the
complementarity between our monolingual KD and
pretrained language models to further enhance the
NAT models.
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