
Proceedings of the 2021 EMNLP Workshop W-NUT: The Seventh Workshop on Noisy User-generated Text, pages 457–464
November 11, 2021. ©2021 Association for Computational Linguistics

457

Multilingual Sequence Labeling Approach to solve Lexical Normalization

Divesh Kubal
CRIMSON AI

divesh.kubal@crimsoni.ai

Apurva Nagvenkar
CRIMSON AI

apurva.nagvenkar@crimsoni.ai

Abstract
The task of converting a nonstandard text to
a standard and readable text is known as lexi-
cal normalization. Almost all the Natural Lan-
guage Processing (NLP) applications require
the text data in normalized form to build qual-
ity task-specific models. Hence, lexical nor-
malization has been proven to improve the per-
formance of numerous natural language pro-
cessing tasks on social media. This study aims
to address the problem of Lexical Normaliza-
tion by formulating the Lexical Normalization
task as a Sequence Labeling problem. This
paper proposes a sequence labeling approach
to solve the problem of Lexical Normaliza-
tion in combination with the word-alignment
technique. The goal is to use a single model
to normalize text in various languages. This
is a shared task in "2021 The 7th Workshop
on Noisy User-generated Text (W-NUT)" in
which the participants are expected to create a
system/model that performs lexical normaliza-
tion, which is the translation of non-canonical
texts into their canonical equivalents, compris-
ing data from over 12 languages. The pro-
posed single multilingual model achieves an
overall ERR score of 43.75 on intrinsic evalua-
tion and an overall Labeled Attachment Score
(LAS) score of 63.12 on extrinsic evaluation.
Further, the proposed method achieves the
highest Error Reduction Rate (ERR) score of
61.33 among the participants in the shared task.
This study highlights the effects of using addi-
tional training data to get better results as well
as using a pre-trained Language model trained
on multiple languages rather than only on one
language.

1 Introduction

Information can be found in abundance on social
media. In fact, social media is a significant data re-
source for many natural language processing (NLP)
tasks. Such text is characterized by ‘noise’, or
non-standard language filled with lexical variants,
acronyms, hashtags, and mentions. Hence, the

performance of conventional NLP tools on social
media text, is poor as the data resources they used
were standard texts. Although data extracted from
social media contains a high degree of noise, the
data can be extracted in huge quantities because of
fast speed and casual style. Existing natural lan-
guage processing techniques face numerous chal-
lenges as a result of the innovative/creative/slang
language usage present on social media. Slang,
acronyms, and abbreviated words are all part of
this so-called new "online" language. It is demon-
strated by (Liu et al., 2011; Schulz et al., 2016)
that the performance of NLP tools often drops dra-
matically when used on social media data. The
challenge can be solved by adapting the input text
to a more conventional format, a process known
as Lexical Normalisation. This paper focuses to
solve the problem of Lexical Normalization on a
word-by-word or token-by-token basis.

Figure 1: Examples of Lexical Normalization (English
Language)

Figure 1 shows examples of un-normalized and
the corresponding normalized sentences. The fol-
lowing languages are to be lexically normalized in
this task: Croatian (hr), Danish (da), Dutch (nl), En-
glish (en), Indonesian-English (iden), German (de),
Italian (it), Serbian (sr), Slovenian (sl), Spanish
(es), Turkish (tr), and Turkish-German (trde). The
proposed model is based on a sequence labeling-
based technique in which the input tokens are in
an un-normalized form and the target tokens are
in normalized forms. To reduce the target labels

1



458

and to make predictions faster, only those tokens
for which normalization is required are added. For
the tokens which do need not be normalized, their
target label fixed to be a single target token (for
instance ‘O’). This sequence labeling model is fine-
tuned on a pre-trained multilingual model to encom-
pass the information on all the possible languages.
Further, a post-processing layer for word-alignment
is applied which further help to improve the per-
formance in terms of Error Rate Reduction (ERR -
word-level accuracy normalized).

This paper elucidates four essential points to
improve lexical normalization systems.:

• the importance of treating Lexical Normaliza-
tion task as a Sequence Labeling Task.

• the effect of providing the model with addi-
tional data to improve performance

• the importance of finetuning a language model
pre-trained on a huge multilingual corpus

• the Effect of hyperparameter tuning by using
a single model to solve the problem of lexical
normalization for all the tasks.

• the effect of word-alignment post-processing
layer.

2 Related Work

Previous work on normalization has been disjointed
as a number of techniques have been tested against
a variety of benchmarks, with a variety of assess-
ment criteria and assumptions. In addition, the
majority of normalization systems are neither open-
source nor publicly accessible. To solve the prob-
lem of lexical normalization, existing systems have
mainly used machine translation (Vaghani, 2020;
Pennell and Liu, 2011; Ljubešic et al., 2016) or
spellchecking (Han, 2014) technique. In earlier
systems, the lexical normalization was performed
by using the following steps:

1. Detect words that need to be normalized.

2. Generate possible candidates for the detected
original un-normalized word.

3. Rank the possible candidates and select the
best one.

It was later discovered by (Jin, 2015; van der Goot,
2019) that the detection step can be completely

avoided by treating each original word as a can-
didate for normalization. At present, the state-
of-the-art model for almost all the languages is
MoNoise (van der Goot, 2019) which is a two-step
approach. In this paper, there are different tech-
niques for generating candidates. To get the best or
correct candidate, MoNoise uses Random Forest
as a classifier that takes input features generated
in the first step (candidate-generation step). There
are methods using sequence-to-sequence (seq2seq)
based architectures (Lourentzou et al., 2019) and
contextual words and phrasal embeddings (Muller
et al., 2019) which achieved a performance similar
to that of MoNoise, especially in the English lan-
guage. Most of the work in lexical normalization
is performed for the English language (Han and
Baldwin, 2011; Xu et al., 2015). Nonetheless, re-
search has been conducted on languages other than
English by (van der Goot, 2019).

3 Multilingual Sequence Labeling
Approach

The proposed system architecture is depicted in
figure 2. The main components of Multilingual
Sequence Labeling Approach to solve Lexical Nor-
malization Problem System Architecture are as fol-
lows:

1. Data acquisition/collection.

2. Data preparation of input for the multilingual
model.

3. Finetuning of transformer-based language
models for the sequence labeling task of lexi-
cal normalization.

4. Hyperparameter tuning and retraining of lan-
guage models.

5. Word alignment based post-processing to ob-
tain final predictions.

6. Evaluation of development and test datasets.

3.1 Data Acquisition/Collection

The shared task provides the data in 12 languages.
The data is then split into training data (train.norm)
and development data (dev.norm). Essentially, the
data is divided into two broad categories based
on the method of assessment, intrinsic or extrin-
sic. In intrinsic evaluation, Error Reduction Rate

2



459

Figure 2: Multilingual Sequence Labeling Approach to solve Lexical Normalization Problem

(ERR) is used as the evaluation measure. Depen-
dency parsing is considered extrinsic evaluation,
which focuses on the impact of normalization on
the quality of the parsed trees. In extrinsic evalua-
tion, Labeled Attachment Score (LAS) is used as
the evaluation measure.

Figure 3: Overview of dataset

Figure 3 depicts the categorization of the data
into intrinsic and extrinsic evaluation. The intrinsic
type of data is annotated except for the test dataset
which contains only the unnormalized text. On the
other hand, the extrinsic type of data contains the
only unnormalized text. Table 1 shows the actual
number of sentences contained in each split (train
and dev). The languages in table 1 are arranged in
the descending order of the parallel sentences in
training data. The dev dataset split is not provided
for the following languages: Turkish-German, Ital-
ian, Turkish, Spanish and Danish.

Table 2 provides the count of the un-normalized
sentences; they are not labeled. This data is used
for the extrinsic evaluation. Finally, Table 3 shows
the number of sentences used for the intrinsic eval-
uation of the languages provided.

3.2 DataData preparation of input for the
multilingual model

This study focuses on building a single model capa-
ble of performing lexical normalization on the 12
languages provided in the shared task. Hence, the
training data is prepared by concatenating the par-

Language Train Dev
hr 4760 1588
sl 4670 1557
sr 4138 1379
en 2360 590
de 1628 573
nl 907 308

trde 800 NA
it 593 NA
tr 570 NA
es 568 NA

iden 495 165
da 207 NA

Table 1: Number of Parallel Sentences (unnormalized -
normalized) provided for different languages [Intrinsic
Data]

Name Sentences
ud-it-twittiro.test.norm.masked 3018

ud-en-aae.test.norm.masked 3322
ud-it-postwita.test.norm.masked 12796

ud-en-tweebank2.test.norm.masked 20296
ud-tr-iwt151.test.norm.masked 48200

ud-en-monoise.test.norm.masked 5738
ud-de-tweede.test.norm.masked 5261

Table 2: Number of unnormalized Sentences provided
for different languages [Extrinsic Dev and Test Data]

allel sentences of normalized and un-normalized
data. This is done in two phases. The first phase
consists of only concatenating the training data of
all languages from the intrinsic set and then evalu-
ating the model on the intrinsic development data.
This is done to finetune the trained model so that
it achieves high performance on development data.
This step also reduces the loss when evaluated on

3



460

language Number of sentences
it 2096

iden 4531
sl 16578
es 7166
de 5665
nl 5721
tr 1782

trde 3964
sr 18496
hr 17281
en 31388
da 3939

Table 3: Number of Test Sentences provided for differ-
ent languages [Intrinsic Test Data]

development data. After getting an assurance that
the model performs as expected on the develop-
ment data, the final model’s architecture and the
values of the newly finetuned hyperparameters are
noted down. In the next phase, a new set of train-
ing data is generated which is the concatenation
of intrinsic train + dev data. This data is used to
train the architecture which achieved the best per-
formance in the first phase. This trained model is
now used to predict un-normalized sentences from
the test data. Additional Spanish data was taken
from shared task 1 (training data) and was used as
training data. After concatenating all the data, a to-
tal of 16861 labels are generated. These labels are
the unique normalization tokens/phrases for their
corresponding un-normalized counterparts.

3.3 Finetuning of transformer-based
language models for the sequence
labeling task of lexical normalization

The proposed approach attempts to finetune al-
ready pre-trained language models. The experi-
ments of finetuning language models on a down-
stream task of lexical normalization are performed
on the following pre-trained language models:
BERT (Devlin et al., 2018), RoBERTa (Liu et al.,
2019), BERT-multilingual (Devlin et al., 2018),
XLM-RoBERTa (Conneau et al., 2019), BERT-
German. For the English Language, the variants
of RoBERTa performed well as so with BERT
(trained on an English corpus). However, these
models which were pre-trained on a huge English

1http://komunitatea.elhuyar.eus/tweet-norm/

Hyperparameter Value
dataloader_num_workers 0

do_lower_case False
early_stopping_consider_epochs False

early_stopping_delta 0
early_stopping_metric eval_loss

early_stopping_metric_minimize True
early_stopping_patience 3

eval_batch_size 8
evaluate_during_training False

evaluate_during_training_steps 2000
evaluate_during_training_verbose False

evaluate_each_epoch True
fp16 True

gradient_accumulation_steps 1
lazy_loading False

lazy_loading_start_line 0
learning_rate 4E-05
logging_steps 50

max_grad_norm 1
max_seq_length 256

model_class NERModel
model_name bert-base-multilingual-cased
model_type bert

multiprocessing_chunksize -1
n_gpu 1

no_cache False
no_save False

num_train_epochs 100
onnx False

optimizer AdamW
overwrite_output_dir False

polynomial_decay_schedule_lr_end 1E-07
polynomial_decay_schedule_power 1

process_count 14
quantized_model False

reprocess_input_data True
save_best_model True

save_eval_checkpoints True
save_model_every_epoch True

save_optimizer_and_scheduler True
save_steps 20000
scheduler linear_schedule_with_warmup

silent False
skip_special_tokens True

train_batch_size 32
use_early_stopping False
use_multiprocessing True

use_multiprocessing_for_evaluation True

Table 4: Final hyperparameters list used to finetune
Language models for Lexical Normalization task using
Sequence Labeling)

4



461

corpus failed to achieve good performance on the
other 11 languages. To make sure that this behavior
is consistent, another experiment was performed
wherein the unified training data from phase 1 of
section 3.2 was taken and this time the finetun-
ing was performed on the BERT-German model
which is pre-trained on Open Subtitles, Common-
Crawl Wikipedia dump, ParaCrawl EU Bookshop
corpus, and News Crawl. This sums up to about
16GB of German text corpus and 2,350,234,427
tokens. This model with BERT-German cased is
trained based on the hypothesis that it will perform
well for the German language and low in other
languages. This hypothesis was not rejected after
computing the evaluation results. Hence, it would
be a sensible choice to train different models for dif-
ferent languages. However, it would be expensive
in terms of resource cost when these models have
to be deployed in production. Further, it would
have scalability issues to cater to a large number of
people.

Hence, the proposed approach finetunes the
BERT multilingual base model (Devlin et al., 2018).
The multilingual BERT model is pre-trained on the
top 104 languages that have voluminous Wikipedia
data using the masked language modeling (MLM)
objective. The training data for each language was
collected from the complete Wikipedia dump (ex-
cluding user and discussion pages). The major chal-
lenge faced while preparing this enormous dataset
of 104 languages is the data imbalance, as differ-
ent languages had different amounts of data. To
deal with this data imbalance, the exponentially
smoothed weighting of the data is performed. For
instance, let’s assume that the percentage of En-
glish data is 32% (after concatenating all English
data in Wikipedia). In such a case, re-normalization
and sampling are applied from that distribution af-
ter exponentiating each probability by a factor S
(S was chosen to be 0.7 in the paper). As a result,
high-resource, widely spoken languages such as
English would be under-sampled and low-resource
or less spoken languages such as Icelandic would
be oversampled, thus solving the challenge of data
imbalance. In this paper, the case-sensitive version
is selected to retain the case information during the
lexical normalization task.

By default, the maximum sequence length
(max_seq_length) of the input sentence is fixed
to 128. However, it resulted in the truncation of
longer sentences which caused a decrease in per-

formance as the ERR score got lowered. Hence,
the max_seq_length was kept to 256 to accommo-
date longer input sentences. Experiments were also
carried out on maximum sequence lengths of 128,
256, 300, 400, 450, and 512. It might be a greedy
choice to select the highest max_seq_length but
the training and inference time increases. Further,
with max_seq_length set as 256, 300, 400, 450,
and 512, the performance was similar, hence the
final max_seq_length was set as 256. The number
of epochs was kept to 100 with the early stopping
parameter set to 3. It was observed that after the
completion of 60-65 epochs, the loss stopped reduc-
ing and the model training was stopped automati-
cally. To save the secondary memory, only the lat-
est 3 epochs checkpoints and the best model were
saved. This selected multilingual BERT model
was finetuned by using the ‘Simple Transform-
ers’ (Rajapakse, 2020)2 library and the ‘Hugging
Face’ (Wolf et al., 2019)3 pre-trained models. All
the experiments and model training were carried
on NVIDIA Tesla V100 32 GB G-PU with primary
memory (RAM) of the system being 128GB.

3.4 Post-processing based word alignment
One of the challenge faced is to align the target or
predicted normalized words with the unnormalized
input sentence. For this the following steps are
followed:

1. Replacing the spaces in multi-gram normal-
ized words with a special character. In this
paper, underscore is used.

2. During inference phase, combining the out-
puts outputted by the model to extract the nor-
malized tokens.

The importance of this step is reflected in the final
evaluation results because this step makes sure that
the unnormalized tokens are accurately replaced by
their predicted normalized counterparts. The addi-
tion of special character (in this case underscore)
helps to retain the output structure and the combina-
tion of independent word-piece token’s predictions
helps to retain the output.

4 Results and Discussions

This paper used Error Reduction Rate
(ERR) (van der Goot et al.) as an evalua-
tion metric for intrinsic evaluation. ERR represents

2https://simpletransformers.ai/
3https://huggingface.co/

5



462

team avg. da de en es hr iden it nl sl sr tr trde
davda54-2 67.30 68.67 66.22 75.60 59.25 67.74 67.18 47.52 63.58 80.07 74.59 68.58 68.62
davda54-1 66.21 70.25 65.65 73.80 55.93 67.29 66.15 42.57 62.70 79.85 73.55 68.58 68.19

yvesscherrer-2 49.30 5.38 59.80 62.05 35.55 56.24 55.33 35.64 45.88 66.97 66.44 51.18 51.18
monoise 49.02 51.27 46.96 74.35 45.53 52.63 59.79 21.78 49.53 61.91 59.58 28.21 36.72

yvesscherrer-1 47.47 4.75 58.00 60.76 33.68 51.83 53.26 35.64 43.99 66.02 60.26 49.49 51.97
TrinkaAI (ours) 43.75 45.89 47.30 65.96 61.33 41.28 56.36 15.84 45.74 59.51 44.52 15.54 25.77
TrinkaAI (ours) 43.63 45.89 47.30 64.54 61.33 41.28 56.36 15.84 45.74 59.51 44.52 15.54 25.77

thunderml-1 43.44 46.52 46.62 64.07 60.29 40.09 59.11 11.88 44.05 59.33 44.46 15.88 29.01
team-2 40.70 48.10 46.06 63.73 21.00 40.39 59.28 13.86 43.72 60.55 46.11 15.88 29.71

learnML-2 40.30 40.51 43.69 61.57 56.55 38.11 56.19 5.94 42.77 58.25 39.99 14.36 25.68
maet-1 40.05 48.10 46.06 63.90 21.00 40.39 59.28 5.94 43.72 60.55 46.11 15.88 29.71
MFR 38.37 49.68 32.09 64.93 25.57 36.52 61.17 16.83 37.70 56.71 42.62 14.53 22.09

thunderml-2 36.48 -4.43 45.95 63.51 21.62 40.98 58.42 12.87 45.00 60.37 46.85 17.40 29.27
team-1 36.48 -4.43 45.95 63.51 21.62 40.98 58.42 12.87 45.00 60.37 46.85 17.40 29.27

cl-monoise 12.05 7.28 16.55 4.13 4.99 26.41 2.41 0.00 16.22 8.77 20.09 17.57 20.16
maet-2 7.33 2.22 4.28 21.73 0.00 9.86 19.24 0.00 2.09 18.39 8.08 0.84 1.23

learnML-1 7.33 2.22 4.28 21.73 0.00 9.86 19.24 0.00 2.09 18.39 8.08 0.84 1.23
bucuram-2 6.73 49.68 -1.91 26.81 -9.36 -10.06 -7.22 -31.68 -2.09 -1.04 42.62 9.97 14.99
bucuram-1 5.22 49.68 -1.91 26.81 -10.19 -9.86 -7.22 -31.68 -2.09 -1.13 42.62 1.01 6.57

LAI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
machamp -21.25 -88.92 -93.36 50.99 25.36 42.62 39.52 -312.87 1.49 56.80 39.44 -12.67 -3.42

Table 5: Error Reduction Rate (ERR) scores on test dataset of the teams participating in the lexical normalization
task

treebank avg. de-tweede en-aae en-monoise en-tweebank2 it-postwita it-twittiro tr-iwt151
davda54-2 64.17 73.58 62.73 58.57 59.08 68.28 72.22 54.74
davda54-1 63.98 73.58 62.21 57.90 59.02 68.28 72.15 54.76

yvesscherrer-2 63.72 73.49 60.64 56.24 60.30 68.11 72.29 54.95
yvesscherrer-1 63.72 73.49 60.48 56.26 60.27 68.15 72.43 54.94

monoise 63.44 73.20 62.27 56.83 58.90 67.55 70.69 54.61
TrinkaAI (ours) 63.31 72.86 60.32 56.74 60.31 67.34 70.72 54.89
TrinkaAI (ours) 63.12 72.86 60.16 56.64 59.87 66.98 71.14 54.20

maet-1 63.09 72.80 59.44 56.64 59.80 67.41 71.07 54.45
team-2 63.03 72.80 59.44 56.64 59.80 67.19 70.86 54.45

Thunderml-2 63.02 72.67 59.57 56.74 59.25 67.34 71.35 54.24
team-1 63.02 72.67 59.57 56.72 59.24 67.34 71.35 54.23

thunderml-1 62.95 72.52 59.31 56.74 59.86 67.09 71.00 54.09
learnML-2 62.88 72.31 58.98 56.16 59.98 66.99 71.24 54.48
cl-monoise 62.71 72.65 60.90 55.26 58.53 66.53 70.10 54.98
bucuram-2 62.53 72.57 59.57 54.20 59.81 66.74 69.99 54.84
bucuram-1 62.53 72.57 59.57 54.20 59.81 66.74 69.99 54.84

LAI 62.45 72.71 59.21 53.65 59.99 66.49 70.06 55.00
maet-2 62.22 72.69 58.50 52.89 60.01 66.47 69.99 55.00

learnML-1 62.22 72.69 58.50 52.89 60.01 66.47 69.99 55.00
machamp 61.89 71.28 60.77 54.61 57.97 64.65 69.82 54.08

Table 6: Labeled Attachment Scores (LAS) on test dataset of the teams participating in the lexical normalization
task

accuracy normalized for the number of words that
need to be normalized. The main advantage of
using ERR as a metric is that it accounts for the
difficulty of the task (similar to that of Cohen’s
Kappa (Cohen, 1968)

ERR =
Accuracysystem −Accuracybaseline

1.0−Accuracybaseline
(1)

ERR =
TP − FP

TP + FN
(2)

Equation 1 represents the formula to compute

6



463

the ERR score. ERR can be calculated by first
computing the accuracy of the normalization sys-
tem (Accuracysystem) and accuracy of the baseline
system which will always return the original word
(Accuracybaseline). ERR can also be calculated by
2 where,

• TP: Annotators normalized and the proposed
system normalized correctly.

• TN: Annotators did not normalize, and the
proposed system did not normalize.

• FP: Annotators did not normalize, but the pro-
posed system normalized.

• FN: Annotators normalized, but the proposed
system did not find the correct normalization
(because the proposed system either kept the
original word or proposed a wrong candidate).

For the extrinsic evaluation, dependency parsing
is considered. Here, the impact of lexical normal-
ization on the quality of the parsed trees is com-
puted using the LAS, i.e., the percentage of words
which have both the correct syntactic head and the
correct dependency label.

Table 5 depicts Error Reduction Rate (ERR)
scores computed on the test dataset for intrinsic
evaluation. The ERR scores of individual lan-
guages, as well as average scores, are computed for
each team that participated in the lexical normal-
ization shared task. The proposed system named
TrinkaAI scored an overall average ERR of 43.75.
On the Spanish language, TrinkaAI’s ERR score
was 61.33, the highest among all the shared task
participants. Our result shows that by adding addi-
tional training data, the model’s performance can
be considerably increased. Overall, the proposed
system, TrinkaAI, ranked 4th in the lexical nor-
malization shared task per the average ERR scores
obtained from all the languages scores.

Table 6 depicts the scores for extrinsic evalua-
tion. TrinkaAI had the highest LAS score of 60.31
on test data en-tweetbank2. This shows the po-
tential of the proposed approach in normalizing
un-normalized sentences. The overall average LAS
score obtained by the TrinkaAI was 63.12, which
stood 5th among other participants.

5 Conclusion and Future Scope

In this paper, we propose a multilingual sequence
labeling based approach to solve the problem of

lexical normalization. We show that a single model
is capable of performing well on all languages. We
finetuned multilingual BERT on a downstream task
of lexical normalization along with finetuning of
some of its hyperparameters. Our proposed sys-
tem, TrinkaAI, scored an average ERR score of
43.75 in the intrinsic evaluation and an average
LAS score of 63.31 in the extrinsic evaluation. Fur-
ther, TrinkaAI achieved the highest ERR score of
61.33 for the Spanish language. This denotes that
the performance of the system can be improved
considerably by incorporating additional data dur-
ing training. TrinkaAI also achieved the highest
LAS score of 60.31 for the en-tweetbank2 test data.

The performance of our proposed system can be
further improved by training the model with ‘large’
configurations having a high number of parameters.
The accuracy can be improved by additional data
and by using language-sensitive embeddings.

References
Jacob Cohen. 1968. Weighted kappa: nominal scale

agreement provision for scaled disagreement or par-
tial credit. Psychological bulletin, 70(4):213.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Bo Han. 2014. Improving the utility of social media
with natural language processing. Ph.D. thesis.

Bo Han and Timothy Baldwin. 2011. Lexical normali-
sation of short text messages: Makn sens a# twitter.
In Proceedings of the 49th annual meeting of the as-
sociation for computational linguistics: Human lan-
guage technologies, pages 368–378.

Ning Jin. 2015. Ncsu-sas-ning: Candidate genera-
tion and feature engineering for supervised lexical
normalization. In Proceedings of the Workshop on
Noisy User-generated Text, pages 87–92.

Xiaohua Liu, Shaodian Zhang, Furu Wei, and Ming
Zhou. 2011. Recognizing named entities in tweets.
In Proceedings of the 49th annual meeting of the as-
sociation for computational linguistics: human lan-
guage technologies, pages 359–367.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,

7



464

Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Nikola Ljubešic, Katja Zupan, Darja Fišer, and Tomaz
Erjavec. 2016. Normalising slovene data: historical
texts vs. user-generated content. In Proceedings of
the 13th Conference on Natural Language Process-
ing (KONVENS 2016), volume 16, pages 146–155.

Ismini Lourentzou, Kabir Manghnani, and ChengXi-
ang Zhai. 2019. Adapting sequence to sequence
models for text normalization in social media. In
Proceedings of the International AAAI Conference
on Web and Social Media, volume 13, pages 335–
345.

Benjamin Muller, Benoît Sagot, and Djamé Seddah.
2019. Enhancing bert for lexical normalization. In
The 5th Workshop on Noisy User-generated Text (W-
NUT).

Deana Pennell and Yang Liu. 2011. A character-level
machine translation approach for normalization of
sms abbreviations. In Proceedings of 5th Interna-
tional Joint Conference on Natural Language Pro-
cessing, pages 974–982.

T Rajapakse. 2020. Simple transformers.

Sarah Schulz, Guy De Pauw, Orphée De Clercq, Bart
Desmet, Veronique Hoste, Walter Daelemans, and
Lieve Macken. 2016. Multimodular text normaliza-
tion of dutch user-generated content. ACM Transac-
tions on Intelligent Systems and Technology (TIST),
7(4):1–22.

Kushal Vaghani. 2020. Curating social media data.
arXiv preprint arXiv:2002.09202.

Rob van der Goot. 2019. Monoise: A multi-lingual and
easy-to-use lexical normalization tool. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics: System Demonstra-
tions, pages 201–206.

Rob van der Goot, Alan Ramponi, Arkaitz Zubiaga,
Barbara Plank, Benjamin Muller, Iñaki San Vi-
cente Roncal, Nikola Ljubešić, and ˜̧Cetinoglu. Mul-
tiLexNorm: A shared task on multilingual lexical
normalization.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, et al. 2019. Huggingface’s transformers: State-
of-the-art natural language processing. ArXiv, pages
arXiv–1910.

Wei Xu, Bo Han, and Alan Ritter. 2015. Proceedings of
the workshop on noisy user-generated text. In Pro-
ceedings of the Workshop on Noisy User-generated
Text.

8


