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Abstract

This work introduces a simple regressive en-
semble for evaluating machine translation qual-
ity based on a set of novel and established
metrics. We evaluate the ensemble using a
correlation to expert-based MQM scores of
the WMT 2021 Metrics workshop. In both
monolingual and zero-shot cross-lingual set-
tings, we show a significant performance im-
provement over single metrics. In the cross-
lingual settings, we also demonstrate that an en-
semble approach is well-applicable to unseen
languages. Furthermore, we identify a strong
reference-free baseline that consistently out-
performs the commonly-used BLEU and ME-
TEORmeasures and significantly improves our
ensemble’s performance.

1 Introduction

Automated evaluation of text generation is challeng-
ing due to many orthogonal qualitative aspects that
the user expects from a text generation system. In
machine translation, we can observe errors of the
so-called critical category (Wulczyn et al., 2017)
such as hallucinating (Lee et al., 2019), omitting
parts of the input from translation, or the negation
of meaning (Matusov, 2019).
Consider an example of the last category:

• Reference: “I never wrote this article, I just
edited it.”

• Hypothesis 1: “It is not my article, I just edited
it.”

• Hypothesis 2: “I never wrote this article, I
never edited it.”

In this example, all BERTScore (Zhang et al., 2019),
BLEUrt (Sellam et al., 2020), and Prism (Thomp-
son and Post, 2020b) metrics rank Hypothesis 2
higher than Hypothesis 1. In BLEUrt and Prism,
this can be due to a known vulnerability of Trans-
formers, which rely on a lexical intersection (Mc-
Coy et al., 2019) if such a heuristic fits the prob-

lem sufficiently well. Trivially, just counting the
negations can easily remedy this specific problem.
However, such a heuristic would fail in many other
cases, such as when we adjust Hypothesis 1 to “It
is an article of somebody else, I just edited it.”.

Such cases motivate our ensemble approach that
aims to expose both surface and deeper semantic
properties of texts and subsequently learn to utilize
these for the specific task of translation evaluation.
Even though the objective might constrain the par-
ticular metrics, data set, or systematically fail in
some cases, another metric or their combination in
the ensemble allows the flaw to be corrected.

2 Metrics for machine translation
evaluation

This section reviews the related work, focusing on
the metrics we used in our ensemble.

The standard and still widely-used surface-level
metrics for the evaluation of machine translation
quality are BLEU (Papineni et al., 2002), ROUGE
(Lin, 2004), and TER (Snover et al., 2006). Surface-
level metrics are not able to capture the proximity
of meaning in cases where one text paraphrases the
other, which is an ability commonly observed in
deep neural language models (Lewis et al., 2020).
One metric that addresses this flaw is METEOR
(Banerjee and Lavie, 2005), which utilizesWordNet
to account for synonymy, word inflection, or token-
level paraphrasing.

Evaluation of semantic text equivalence is closely
related to a problem of accurate textual repre-
sentations (embeddings). The traditional method
that we identify as relevant for the evaluation of
segment-sized texts is FastText (Bojanowski et al.,
2017). FastText learns representations of charac-
ter n-grams from which it creates a unified repre-
sentation of tokens by averaging. Additionally, a
distance of a pair of texts can be computed directly
from the token-level embeddings using methods
such as the soft vector space model (the soft co-
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sine measure, SCM) (Novotný, 2018), or by solving
a minimum-cost flow problem (the word mover’s
distance, WMD) (Kusner et al., 2015).
Similar matching is performed by BERTScore

(Zhang et al., 2019), which uses internal token em-
beddings of a selected BERT layer optimal for the
task. Although the token representations are multi-
lingual in some models (Devlin et al., 2018), which
makes BERTScore usable without references, we
are not aware of prior work evaluating it as such. A
possible drawback of cross-lingual alignment using
a max-reference matching scheme of BERTScore
lies in a possibility of a significant mismatch of
sub-word tokens in source and target text. In con-
trast, the metric that we refer to asWMD-contextual
uses the same embeddings as BERTScore but uses
the network-flow optimization matching scheme of
WMD.

Task-agnostic methods have recently been out-
performed by methods that fine-tune a pre-trained
model for a related objective: BLEUrt (Sellam
et al., 2020) fine-tunes a BERT (Devlin et al., 2018)
model directly on Direct Assessments of submis-
sions to WMT to predict the judgements using a
linear head over contextual embeddings of a clas-
sification [CLS] token. Comet (Rei et al., 2020)
learns to predict Direct Assessments from tuples
of source, reference, and translation texts with the
triplet objective or the standard MSE objective.
Some of the most recent work incorporates la-

tent objectives and/or data sets. For instance, Prism
(Thompson and Post, 2020b,a) learns a language-
agnostic representation from multilingual para-
phrasing in 39 languages, thus being one of the
few well-performing reference-free metrics. The
orthogonality of its training objective might lower
its correlation to other methods that use contextual
embeddings.

3 Methodology

Our methodology aims to answer the following ma-
jor question with additional supporting questions:

1. Can an ensemble of surface, syntactic,
and semantic-level metrics significantly im-
prove the performance of single metrics?

2. Can such an approach be applied cross-
lingually, i.e., on languages that it has not been
trained on?

3. Can surface-level metrics in reference-free

configuration achieve results comparable to
the reference-based ones?

4. Are contextual token representations impor-
tant for evaluating semantic equivalence, or
can these be replaced with pre-inferred token
representations?

3.1 Experimental setup

We perform our primary evaluation on Multidimen-
sional Quality Metrics (MQM) data set (Freitag
et al., 2021), where we use averaged judgement
scores as our gold standard. Where multiple judge-
ments are available for the given pair of a source
and a hypothesis, we average the scores over the
judgements and consider this average as our gold
standard. We split the samples into train (80%) and
test (20%) subsets based on unique source texts.

In our experimental framework, which we release
as an open-source Python library and Docker image
for ease of reproduction12, we implement a selected
set of the metrics based on their guidelines, together
with a bunch of novel metrics, introduced in Sec-
tion 3.2 aiming to provide additional, orthogonal
insight of textual equivalence.

Subsequently, we train a regressive ensemble on
the standardized metric features of the whole train
set, intending to predict the averaged MQM expert
judgements. We evaluate the ensemble, together
with all other selected metrics using pairwise Spear-
man’s rank correlation (Spearman’s ρ) with the
MQM judgements on the held-out 20% test split.
In addition to our primary evaluation on the

MQM data set, we perform our experiments on
the Direct Assessments (DA) from WMT 2015 and
2016, and a dev set of Catastrophic errors from
the Post-editing Dataset (Fomicheva et al., 2020a)
of the Multilingual Quality Estimation Dataset
(MLQE-PE) (Fomicheva et al., 2020b) used for eval-
uation at the Quality Estimation workshop of WMT
2021. Refer to Section 3.6 for a detailed description
of our experiments on DA and MLQE-PE.
We performed all our evaluations on segment-

level judgements. To minimize the impact of cal-
ibration for each of the specific metrics to evalua-
tion, we report Spearman’s rank correlation coef-
ficient, reflecting the mutual qualitative ordering
rather than particular values of the judgements.

1https://github.com/MIR-MU/regemt
2https://hub.docker.com/r/miratmu/regemt

https://github.com/MIR-MU/regemt
https://hub.docker.com/r/miratmu/regemt
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3.2 Novel metrics
In addition to a selected set of metrics based on
a literature review, we implement a set of novel
metrics that allows our ensemble to reflect a wider
variance of properties of the evaluated texts.

3.2.1 Soft Cosine Measure
The soft cosine measure (SCM) (Novotný, 2018)
is the cosine similarity of texts in the soft vector
space model, where the axes of terms are at an angle
corresponding to their cosine similarity S in a token
embedding space:

SCM(~x, ~y) =
~xT · S · ~y√

~xT · S · ~x ·
√
~yT · S · ~y

(1)

where ~x is a weighted bag-of-words (BoW) vector
of a reference (or a source in a reference-free
setting), and ~y is a weighted BoW vector of a
hypothesis.
We use SCM with two token representations:

1. We use the static token representations of Fast-
Text (Grave et al., 2018). We refer to the re-
sulting metric as SCM.

2. We use the contextual token representations of
BERT (Devlin et al., 2018) using the method-
ology of BERTScore (Zhang et al., 2019). We
collect representations of all tokens segmented
by the WordPiece (Wu et al., 2016) tokenizer,
and we treat each unique (token, context) pair
as a single term in our vocabulary.
Subsequently, we decontextualize these rep-
resentations as follows: For each WordPiece
token, we average the representations of all
(token, context) pairs in the training corpus.
We refer to the resulting metric as SCM-
decontextualized. Due to the multilingual
character of the learned BERT token repre-
sentations, this metric is applicable both in
reference-based and source-based approaches.

In addition to two token representations, we also
use two different SMART weighting schemes of
Salton and Buckley (1988) for the BoW vectors ~x, ~y
and the construction of the term similarity matrix S:

1. We use raw term frequencies as weights in
the BoW vectors, the nnx SMART weight-
ing scheme, and we construct the term simi-
larity matrix in the vocabulary order. We re-
fer to the resulting metrics as SCM and SCM-
decontextualized.

2. We use term frequencies discounted by inverse
document frequencies as weights in the BoW
vectors, the nfx SMART weighting scheme,
and we construct the term similarity matrix
in the decreasing order of inverse document
frequencies (Novotný, 2018, Section 3). We
refer to the resulting metrics as SCM-tfidf and
SCM-decontextualized-tfidf.

3.2.2 Word Mover’s Distance
The Word Mover’s Distance (WMD) (Kusner et al.,
2015) finds the minimum-cost flow F between vec-
tor space representations of two texts:

WMD(~x, ~y) = minimum cumulative cost FT·S

subject to
∑
j

Fij = xi,
∑
i

Fij = yj , (2)

where ~x is an `1-normalized weighted BoW vector
of a reference (or a source in reference-free setting),
~y is an `1-normalized weighted BoW vector of a
hypothesis, and S is a term similarity matrix.
Similar to SCM described in the previous sec-

tion, we experiment with two token representations:
FastText embeddings of whole tokens (WMD) and
decontextualized embeddings of WordPiece tokens
(WMD-decontextualized). Additionally, we also
use the contextual embeddings of WordPiece to-
kens (WMD-contextual) to show the impact of de-
contextualization on the metric performance: If the
impact is negligible, future work could avoid the
costly on-the-fly inference of BERT representation
and significantly reduce the vocabulary size.
Similarly to SCM, we also use two different

weighting schemes: raw term frequencies (WMD-*)
and term frequencies discounted by inverse docu-
ment frequencies (WMD-*-tfidf ).

3.2.3 Compositionality
Our custom metric that we refer to as Compo-
sitionality constructs a transition graph of an
arbitrary text Gt based on directed, pairwise
transitions of the tokens’ part-of-speech (PoS)
categories. As the models for PoS tagging
are language-dependent, we use the compliant—
though not always systematically aligned—schemes
of tagging used for training the taggers in
English (Weischedel et al., 2013), German
(Brants et al., 2002), Chinese (Weischedel et al.,
2013), and Norwegian (Unhammer and Trosterud,
2009).
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Subsequently, we row-normalise the values of
matrix Gt and we define a distance metric of Com-
positionality C for x = Gt1 and y = Gt2 :

C(x, y) = `1-norm(xii − yii), (3)

where the PoS tags i ∈ x and i ∈ y.
In our submission, we apply this metric only if

the language belongs to a set of the languages for
which we have a tagger: English, German, Chi-
nese, or Norwegian. In reference-based evaluations,
this constraint applies to the target language; in the
case of reference-free evaluations, it applies to both
source and target languages.

3.3 Ensemble
We ensemble the aforementioned metrics as predic-
tors in a regression model, minimizing the residual
between the average segment-level MQM scores
and predicted targets.
We experiment with a wide range of simple re-

gressors and observe a superior performance of
simple approaches of fully connected, two-layer
perceptron with 100-dimensional hidden layer and
ReLu activation and linear regression with squared
residuals. We report the results for RegEMT as the
best-performing one of these classifiers picked on a
20% held-out validation subset of the train data set.
In addition to the ensemble of all available met-

rics, we evaluate a baseline regressive ensemble
Reg-base using solemnly two surface-level features:
character-level source and target length according
to WordPiece (Wu et al., 2016) tokens.

3.4 Cross-lingual experiments
As expert judgments are incredibly costly to obtain,
it is unrealistic to expect that the training data for
the trained systems will be available in the future for
a vast majority of language pairs containing under-
resourced languages. To estimate the performance
of all metrics on uncovered language pairs, we per-
form a cross-lingual evaluation on average MQM
judgements of two available language pairs: zh-en
and en-de.
Where applicable, we fit the metric parameters

on the train split of the non-reported language pair.
Subsequently, we evaluate and report the results on
a test split of the reported pair to MQM judgements.

3.5 Ablation study
To understand the impact of individual metrics in
their roles as predictors for our ensemble, we use

their pairwise correlations for systematic feature
elimination.
In our ablation study, we iteratively select the

metric with the highest Spearman’s ρ to any other
metric. We eliminate the selected metric from our
ensemble by fitting a new regression model on the
remaining features. We continue until all metrics
are eliminated and evaluate the ensemble at each
step of the process.

3.6 Additional evaluations
To allow for additional insight into the consistency
of the results to other relevant evaluation sources,
together with an evaluation of the metrics in the
novel application of critical error recognition, we
perform the experiments analogically on a DA data
set of the WMT submissions from years 2015 and
2016, as well as to the Critical Errors dev set of
MLQE-PE data set for reference-free metrics.

In the case of DA judgements, we use the assess-
ments from the year 2015 as a training split and
assessments from the year 2016 as a test split.
In the case of MLQE-PE, we split the data ana-

logically to MQM by splitting the unique source
texts in an 80:20 ratio. In this case, we consider as
gold judgements the mean severity of error assigned
by three annotators to each of the translations.

4 Results

Correlations to MQM judgements. Table 1
lists correlations to MQM for source-based, i.e.,
reference-free metrics (upper) and reference-based
metrics (middle). Results reported for RegEMT
fit a selected regression model on the estimates
of all the other metrics available for a given
evaluation scheme. As described in Section 3.3,
we pick the evaluated regression model based on
its performance on a held-out portion of the train
set: a two-layer perceptron for the source-based
zh-en pair and a simple linear regression in all
other cases, with negligible mutual differences
between regression models in performance on the
validation set (below 2%). In the reports suffixed
with X, we fit the regression model on the other
language pair than the one used for the evaluation.
The results suggest that a simple regressive en-

semble can benefit from the variance of the predic-
tors in a majority of the evaluated configurations,
including the cross-lingual settings and other eval-
uated datasets. We observe the highest margins in
correlations in the case of MQM judgements.
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MQM-src zh-en .59 .36 .44 .44 .29 .17 .19 .13 .13 .34
MQM-src zh-en-X .49 .36 .44 .44 .29 .17 .19 .13 .13 .34
MQM-src en-de .36 .09 .14 .06 .04 .07 .03 .02 .23 .28
MQM-src en-de-X .31 .09 .14 .06 .04 .07 .04 .02 .23 .28

MQM-ref zh-en .62 .45 .45 .43 .27 .21 .10 .26 .01 .35 .51 .19 .35 .29 .27 .48 .25 .28
MQM-ref zh-en-X .62 .45 .45 .43 .27 .21 .09 .25 .01 .31 .51 .19 .35 .29 .27 .48 .25 .28
MQM-ref en-de .60 .32 .22 .25 .32 .28 .33 .18 .12 .27 .48 .06 .14 .13 .07 .10 .13 .20
MQM-ref en-de-X .38 .32 .22 .25 .32 .28 .34 .17 .12 .29 .48 .06 .14 .13 .07 .10 .13 .20

DA 2016-src .84 .72 .74 .73 .57 .51 .37 .51 .29 .18 .82 .39 .45 .44 .42 .81 .42 .50
DA 2016-tgt .68 .70 .34 .25 .09 .10 .10 .24 .13 .04
catastrophic-src .29 .26 .13 .11 .12 .15 .13 .09 .10 .09

Table 1: Results for Spearman’s correlations with selected gold standards. From top: correlation of source-based
metrics (top) and reference-based metrics (middle) to averaged scores of MQM expert judgements for specified lan-
guages. Results suffixed with X are evaluated cross-lingually: both ensemble metrics are trained on other language
pairs than evaluated. (Bottom): Results for other data sets: Direct assessments of WMT 2016 submissions and
dev set of Catastrophic translations from MLQE-PE data set; reported values are an average of correlations over all
available language pairs.

Baseline ensemble. Table 1 shows that Reg-base,
using only the counts of reference and hypothesis
Word-pieces, demonstrates its consistent superior-
ity over the standard surface-level metrics of BLEU
and METEOR, even in the cross-lingual vs. mono-
lingual comparison. With respect to the MQM
judgements, the correlations ofReg-base are reason-
ably consistent; hence, in the reference-free cases
of en-de language pair, the correlation of Reg-base
is very close to the correlations of RegEMT.

Importance of contextualization. The results
in Table 1 are inconsistent concerning the impor-
tance of contextualization in token-level metrics
(WMD-cont* vs. WMD-dec* and SCM-cont* vs.
SCM-dec*). We observe a significant (15–16%)
decrease of correlation between a contextualized
and decontextualized versions of WMD in all cases
of zh-en language pair. The situation differs in
en-de pair, where for the reference-based case, the
correlation of decontextualized version of WMD
is superior by 7%.

Metrics correlations. Table 2 demonstrates mu-
tual correlations of the evaluated metrics. We see
the strong pairwise correlations among the metrics
based on contextualized representations, such as
between Comet, Prism, BERTScore and BLEUrt;
all of these are higher than 0.79. The situation is
similar among the metrics based on static token

representations of SCM andWMD, both with and
without TF-IDF.

In contrast, we observe a low correlation of
BLEU andMETEOR to Reg-base forming a cluster
of surface-level metrics.

Ablation study. Figure 1 displays performance
development in Spearman’s ρ of the regressive en-
semble when we incrementally eliminate the met-
rics from the set of ensembled predictors. Follow-
ing the methodology described in Section 3.5, the
exact ordering of the metrics in ablation for zh-en
pair is shown in Table 2, and we observe it to be
similar also for the other language pair of MQM.
In ensembles of reference-based metrics (left),

we observe a high consistency throughout the re-
moval of most of the metrics. A longer consistency
in zh-en case is attributed to a consistent perfor-
mance in ensembling BLEUrt (removed in step 14)
and METEOR (removed in step 15). These metrics
only reach the correlation of 0.48 and 0.28, respec-
tively, when evaluated independently. In en-de case,
the most significant drops can be attributed to a re-
moval of the best-performing Comet (step 9) and
Prism (step 11).

Ensemble of source-based metrics (right) shows
significant drops in zh-en pair after removing Prism
(step 3) andWMD-contextual (step 4). In en-de lan-
guage pair, the correlation is relatively low through-
out the whole ablation process. The least corre-
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0) 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18)

0) MQM avg scr 1. .62 .51 .45 .45 .43 .27 .21 .1 .26 .19 .35 .29 .27 .48 .25 .28 .01 .35

1) RegEMT .59 1. .56 .5 .44 .42 .25 .23 .4 .28 .15 .36 .3 .3 .55 .26 .32 .11 .51
2) Comet 1. .79 .82 .82 .71 .61 .54 .62 .57 .64 .64 .6 .83 .64 .63 .44 .4
3) Prism .36 .5 1. .9 .9 .85 .77 .63 .71 .71 .77 .79 .77 .8 .81 .77 .54 .19
4) BERTScr .44 .48 .13 1. .13 .06 .01 .11 .1 .13 .04 .76 .73 .82 .77 .74 .56 .18
5) WMD-cont .44 .5 .53 .88 1. .92 .8 .68 .69 .71 .74 .77 .73 .82 .81 .75 .58 .18
6) WMD-dec .29 .42 .22 .4 .6 1. .89 .81 .7 .77 .72 .77 .77 .75 .81 .71 .66 .37
7) WMD-dec-tf .17 .3 .08 .12 .32 .69 1. .71 .66 .73 .71 .74 .8 .63 .74 .64 .6 .32
8) SCM-dec .19 .26 .03 .21 .35 .71 .49 1. .51 .67 .49 .55 .58 .57 .61 .53 .65 .58
9) SCM-dec-tf .13 .26 .2 .32 .43 .47 .26 .29 1. .58 .72 .64 .61 .62 .62 .58 .48 .19

10) SCM 1. .78 .9 .86 .54 .75 .74 .67 .37
11) SCM-tf 1. .85 .84 .6 .71 .72 .52 .13
12) WMD 1. .94 .6 .81 .83 .6 .17
13) WMD-tf 1. .58 .78 .78 .58 .22
14) BLEUrt 1. .6 .58 .43 .11
15) BLEU 1. .85 .66 .27
16) METEOR 1. .56 .15
17) Compos .13 .11 .13 .06 .01 .11 .1 .13 .04 1. .52
18) Reg-base .34 .44 .37 .07 .07 .24 .19 .28 .02 .34 1.

Table 2: Pairwise Spearman’s correlations of the evaluated metrics and their correlations to averaged MQM judge-
ments for zh-en language pair. Top-right triangle: mutual correlations of reference-based metrics, bottom-left
triangle: correlations of metrics supporting multilingual source-based evaluation.

lated and hence the last ones eliminated are WMD-
decontextualized-tfidf (step 6) and Prism (step 7).

5 Discussion

Regressive ensemble. Following the objectives
that we set in Section 3, we empirically confirm
that an ensemble can push the quality of modeling
the expert judgements in most of the configurations
while performing close-to-the-best metrics on the
others. Additionally, we demonstrate that such en-
semble is transferable to new language pairs and
that its use is motivated by qualitative gains even in
cross-lingual settings.

At the same time, one must acknowledge the lim-
itations that an ensemble system exposes compared
to single and unsupervised metrics. An ensemble
might inherit the systematic biases of each of its
metrics. This problem is observable in the results
of the source-based en-de pair of MQM in Table 1,
where the ensemble follows the low correlations
of its ensembled metrics. Further, relying entirely
on the metrics’ consistency, the ensemble will in-
evitably expose errors in domains where some met-
rics behave markedly out of their usual range.

On the other hand, we argue that this might rarely
be the case with the surface-level metrics that are
mainly unsupervised. We suspect it to be unlikely
with learnable metrics, too, having their output

space constrained by the range of their imitated
metrics.
Values of correlations in Table 2 and partially

also the threshold metrics in Figure 1 suggest that
our ensemble relies primarily on trained contextu-
alized metrics with regards to their correlation with
the target as summarized in Table 1. We suspect
that oversampling of under-represented categories
of errors would increase the significance of other
types of metrics, as the under-represented error cat-
egories would be the ones where the fine-tuned
metrics perform worse.

Baseline ensemble. Surprisingly, our baseline
ensemble Reg-base consistently outperforms other
standard surface-based metrics such as BLEU (Pa-
pineni et al., 2002). This suggests possible applica-
bility of surface-level metrics also in reference-free
evaluation.
We suspect that the baseline features of length

based on a multilingual WordPiece tokenizer (Wu
et al., 2016) might reflect on the missing or inap-
propriately added segments more strictly than other
surface-level metrics. At the same time, these errors
are usually highly weighted in the overall score.

Table 2 shows considerable orthogonality of Reg-
base to other metrics. This motivates the inclusion
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Figure 1: Ablation study: correlation of ensemble estimator to averaged MQM judgements during incremental
elimination of the most-correlated metric from the ensembled predictors. Left: ablation of reference-based metrics,
right: ablation of source-based metrics.

of the other weak surface metrics into the baseline
ensemble to alleviate some of its apparent flaws.

Impact of contextualization. Based on the re-
sults ofWMD-* described in Section 3.2.2, one can
not draw a consistent conclusion regarding the im-
pact of contextualization. On average, decontextual-
ization has decreased the performance of WMD by
8%, but the original motivation of a significant im-
provement in the usability of estimators might com-
pensate. On the other hand,WMD-decontextualized
and WMD-decontextualized-tfidf reached a consid-
erable improvement of 16–18% as compared to
WMD andWMD-tfidf using FastText embeddings,
while losing none of their flexibility.

“It is the harmony of the diverse parts, their
symmetry, their happy balance; in a word it is all

that introduces order, all that gives unity, that
permits us to see clearly and to comprehend at

once both the ensemble and the details.”
Henri Poincaré

6 Conclusion

This work evaluates the potential of ensembling
multiple diverse metrics (RegEMT ) for an evalua-
tion of machine translation quality and offers a new
simple baseline metric Reg-base that achieves bet-
ter results than BLEU andMETEOR by using just
the source and reference lengths. We measure sig-
nificant gains in Spearman’s correlation to MQM
with RegEMT compared to standalone metrics and
we demonstrate that even simple linear estimators
can benefit from the expressivity that the methods
of all levels of representation provide. Additionally,
as we demonstrate, the ensemble based on metrics
supporting multilingualism can push the quality
further even on unseen language pairs.

We recognize the inherent limitations of the
regressive ensemble, which is inevitably slower,
resource-heavier, and prone to inherit latent induc-
tive biases of underlying metrics or their combi-
nations. However, RegEMT shows the agility of
the simple ensemble approach, which is in contrast
to attempts to learn the full complexity of quality
estimation through a single objective and allows the
quality estimator to avoid the blind spots of particu-
lar metrics. We hope that our results will motivate
future work in the ensemble evaluation.
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