Discriminating Between Similar Nordic Languages

René Haas
IT University of Copenhagen
renha@itu.dk

Abstract

Automatic language identification is a chal-
lenging problem. Discriminating between
closely related languages is especially diffi-
cult. This paper presents a machine learning
approach for automatic language identification
for the Nordic languages, which often suffer
miscategorisation by existing state-of-the-art
tools. Concretely we will focus on discrim-
ination between six Nordic languages: Dan-
ish, Swedish, Norwegian (Nynorsk), Norwe-
gian (Bokmal), Faroese and Icelandic.

1 Introduction

Automatic language identification is a core problem
in NLP but remains a difficult task (Caswell et al.,
2020), especially across domains (Lui and Bald-
win, 2012; Derczynski et al., 2013). Discriminating
between closely related languages is often a partic-
ularly difficult subtask of this problem (Zampieri
etal., 2014).

Language technology for Scandinavian lan-
guages is in a nascent phase (e.g. Kirkedal et al.
(2019)). One problem is acquiring enough text with
which to train e.g. large language models. Good
quality language ID is critical to this data sourc-
ing, though leading models often confuse similar
Nordic languages.

This paper presents data and baselines for auto-
matic language identification between six closely-
related Nordic languages: Danish, Swedish, Nor-
wegian (Nynorsk), Norwegian (Bokmal), Faroese
and Icelandic.

Further, we investigate feature extraction meth-
ods for Nordic language identification and eval-
uates the performance of a selection of baseline
models.

Finally, we test the models on a data set from
a different domain in order to investigate how
well the models generalize in distinguishing sim-

67

Leon Derczynski
IT University of Copenhagen
leod@itu.dk

ilar Nordic languages when classifying sentences
across domains.

2 Related Work

The problem of discriminating between similar
languages has been investigated in recent work
(Goutte et al., 2016; Zampieri et al., 2015) which
discuss the results from two editions of the “Dis-
criminating between Similar Languages (DSL)
shared task". Over the two editions of the DSL
shared task different teams competed to develop
the best machine learning algorithms to discrimi-
nate between the languages in a corpus consisting
of 20K sentences in each of the languages: Bosnian,
Croatian, Serbian, Indonesian, Malaysian, Czech,
Slovak, Brazil Portuguese, European Portuguese,
Argentine Spanish, Peninsular Spanish, Bulgarian
and Macedonian.

Similar work has included (Toftrup et al., 2021),
who include Nordic languages in a larger exercise
in reproducing a commercial language ID system;
and (Rangel et al., 2018), who attempt native lan-
guage extraction, a task complex in the Nordic
context which is rich in cognates and shared ety-
mologies.

However, no prior work has focused specif-
ically on the group of Nordic languages, leav-
ing users of those languages without high qual-
ity automatically-extracted single language cor-
pora (Derczynski et al., 2020). This is particularly
disadvantageous for some Nordic language pairs,
such as Danish/Norwegian and Faroese/Icelandic,
where general-purpose many-language systems fall
down (Toftrup et al., 2021). Thus, we focus specifi-
cally on data for this language and baseline meth-
ods.

3 The Nordic DSL data set

This section describes the construction of the
Nordic DSL (Distinguishing Similar Lanugages)

Proceedings of the 8th VarDial Workshop on NLP for Similar Languages, Varieties and Dialects, pages 67-75
April 20, 2021 ©2021 Association for Computational Linguistics

data set.

Data was scraped from Wikipedia. We down-
loaded summaries for randomly chosen Wikipedia
articles in each of the languages, saved as raw text
to six . txt files of about 10MB each. While Born-
holmsk would be a welcome addition (Derczynski
and Kjeldsen, 2019), exhibiting some similarity to
Faroese and Danish, there is not yet enough digital
text.

After the initial cleaning (described in the next
section) the data set contained just over 50K sen-
tences in each of the language categories. From
this, two data sets with exactly 10K and 50K sen-
tences respectively were drawn from the raw data
set. In this way the data sets are stratified, con-
taining the same number of sentences for each lan-
guage.

We split these data sets, reserving 80% for the
training set and 20% for the test set.

3.1 Data Cleaning and encoding.

This section describes how the data set is initially
cleaned and how sentences are extracted from the
raw data.

Extracting Sentences The first pass in sentence
tokenisation is splitting by line breaks. We then ex-
tract shorter sentences with the sentence tokenizer
(sent_tokenize) function from NLTK (Loper
and Bird, 2002). This does a better job than just
splitting by ’ .7 due to the fact that abbreviations,
which can appear in a legitimate sentence, typically
include a period symbol.

Cleaning characters The initial data set has
many characters that do not belong to the alpha-
bets of the languages we work with. Often the
Wikipedia pages for people or places contain names
in foreign languages. For example a summary
might contain Chinese or Russian characters which
are not strong signals for the purpose of discrimi-
nating between the target languages.

Further, it can be that some characters in the
target languages are mis-encoded. These mis-
encodings are also not likely to be intrinsically
strong or stable signals.

To simplify feature extraction, and to reduce the
size of the vocabulary, the raw data is converted
to lowercase and stripped of all characters which
are not part of the standard alphabet of the six
languages.

In this way we only accept the characters:

68

"abcdefghijklmnopgr
stuvwxyzddaaeéidoddguyp '
and replace everything else with white space be-

fore continuing to extract the features. For example
the raw sentence

"Hesbjerg er dannet ved
sammenlaegning af de 2 garde
Store Hesbijerg

og Lille Hesbjerg 1 1822.7

will be reduced to

"hesbjerg er dannet ved
sammenlaegning af de garde store
hesbjerg og lille hesbjerg i ',

We thus make the assumption that capitalisation,
numbers and characters outside this character set
do not contribute much information relevant for
language classification.

Feature encoding After the initial cleaning of
the data we consider two methods for feature en-
coding: 1) Character level n-grams and 2) Skip-
gram and CBOW encodings created by training an
unsupervised fasttext model on the dataset.

The Skipgram and CBOW methods encode sen-
tences into fixed-length vectors by considering
world level n-grams which are augmented with
character level n-gram information (Bojanowski
et al., 2016).

In the experiments presented in this paper, the
CBOW and Skipgram encodings have the follow-
ing settings: We use individual words (uni-grams)
augmented with character level n-grams of size 2-5
with a context window of 5. The encoding result in
fixed-length vectors in R,

4 Baselines

4.1 langid.py

We compare with an off-the-shelf language iden-
tification system, langid.py (Lui and Baldwin,
2012). langid.py comes with a pretrained
model which covers 97 languages. The data
for langid.py comes from five different domains:
government documents, software documentation,
newswire, online encyclopedia and an internet
crawl. Features are selected for cross-domain sta-
bility using the LD heuristic (Lui and Baldwin,
2011).

We evaluated how well langid.py performed on
the Nordic DSL data set. It is a peculiar feature of

the Norwegian language that there exist two differ-
ent written languages but three different language
codes. Since langid.py also returned the language
id “no" (Norwegian) on some of the data points we
restrict langid.py to only be able to return either
“nn" (Nynorsk) or “nb" (Bokmal) as predictions.

23

dk

- BOOO
108 54

> 115
176 QEEGE 447 66 46

1314 [6056 44 11

420

sV

) - 6000
629

nn

2443

— 4000

Actual Label

nb

176 17 4401 5273

fo

— 2000

25 5 101

is

-0
dic sV nn nb fo is
Predicted Label

Figure 1: Confusion matrix with results from langid.py
on the full Wikipedia data set

Figure 1 shows the confusion matrix for the
langid.py classifier which achieved an accuracy of
78.3% on the data set. The largest confusions were
between Danish and Bokmal, and between Faroese
and Icelandic. 1angid.py was able to correctly
classify most of the Danish instances; however, ap-
proximately a quarter of the instance in Bokmal
were incorrectly classified as Danish and just under
an eighth was misclassified as Nynorsk.

Furthermore, langid.py correctly classified most
of the Icelandic data points; however, over half of
the data points in Faroese were incorrectly classi-
fied as Icelandic.

4.2 Baseline with linear models

Table 1 shows results for running the models on
a data set with 10K sentences in each language
category. Models tend to perform better if we use
character bi-grams instead of single characters. Lo-
gistic regression and SVM outperform Naive Bayes
and K-nearest neighbors in all cases. Furthermore,
for all models, we get the best performance if we
use the skipgram model from FastText.

Comparing the CBOW mode from FastText with
character bi-grams, the CBOW model is on par
with bi-grams for the KNN and Naive Bayes clas-
sifiers, while bi-grams outperform CBOW for Lo-
gistic Regression and support vector machines.

69

Model Encoding Accuracy
Knn cbow 0.780
Log-Reg cbow 0.819
Naive Bayes cbow 0.660
SVM cbow 0.843
Knn skipgram 0.918
Log-Reg skipgram 0.929
Naive Bayes skipgram 0.840
SVM skipgram 0.928
Knn char bi-gram 0.745
Log-Reg char bi-gram 0.907
Naive Bayes | char bi-gram 0.653
SVM char bi-gram 0.905
Knn char uni-gram 0.620
Log-Reg char uni-gram 0.755
Naive Bayes | char uni-gram 0.614
SVM char uni-gram 0.707

Table 1: Overview of results for the data set with 10K
data points in each language.

5 Our Approach
5.1 Using FastText

The methods described above are quite simple. We
also compared the above method with FastText,
which is a library for creating word embeddings
developed by Facebook (Joulin et al., 2016).

Bojanowski et al. (2016) explain how FastText
extracts feature vectors from raw text data. Fast-
Text makes word embeddings using one of two
model architectures: continuous bag of words
(CBOW) or the continuous skipgram model.

The skipgram and CBOW models are first pro-
posed in (Mikolov et al., 2013) which is the paper
introducing the word2vec model for word embed-
dings. FastText builds upon this work by proposing
an extension to the skipgram model which takes
into account sub-word information.

Both models use a neural network to learn word
embedding from using a context windows con-
sisting of the words surrounding the current tar-
get word. The CBOW architecture predicts the
current word based on the context, and the skip-
gram predicts surrounding words given the current
word (Mikolov et al., 2013).

5.2 Using A Convolutional Neural Network

While every layer in a classic multilayer perceptron
is densely connected, such that each of the nodes
in a layer are connected to all nodes in the next
layer, in a convolutional neural network we use

one or more convolutional layers. Convolutional
Neural Networks have an established use for text
classification (Jacovi et al., 2018).

Our CNN is implemented with keras. We use
an embedding layer followed by two blocks with
a 1D convolutional layer and dropout. The first
block has 128 filters while the second has 64. Both
convolutional blocks use a kernel size of 5 and
stride of 1. The two blocks are followed by a dense
layer with 32 hidden nodes before the output layer
which has 6 nodes. We use ReLu activation in
the convolutional and fully connected layers and
SoftMax in the output layer.

6 Results

6.1 Results with neural networks

Results for the neural network architectures are in
Table 2. Here we compare the result of doing char-
acter level uni- and bi-grams using Multilayer Per-
ceptron and Convolutional neural networks. The
CNN performs the best, achieving an accuracy of
95.6% when using character bi-grams. Both mod-
els perform better using bi-grams than individual
characters as features while the relative increase in
performance is greater for the MLP model.

Model Encoding Accuracy
MLP char bi-gram 0.898
CNN char bi-gram 0.956
MLP | char uni-gram 0.697
CNN | char uni-gram 0.942

Table 2: Overview of results for the neural network
models for the data set with 10K data points in each
language.

6.2 Increasing the size of the data set

Often the performance of supervised classification
models increases with more training data. To mea-
sure this effect we increase the amount of train-
ing data to 50K sentences in each of the language
categories. Due to longer training times only the
baseline models were included, with the skipgram
encoding from FastText which we saw achieved
the highest accuracy.

Table 3 shows that the performance of the logis-
tic regression model and the K-nearest-neighbors
algorithm improved slightly by including more
data. Unexpectedly, performance of the support
vector machine and Naive Bayes dropped slightly
with extra data.

70

Model Encoding | Accuracy
Knn skipgram 0.931
Logistic Regression skipgram 0.933
Naive Bayes skipgram 0.806
SVM skipgram 0.925

Table 3: Overview of results for the "classical" ML
models on the Wikipedia data set with 50K data points
in each language.

Model Encoding Accuracy
MLP char bi-gram 0.918
CNN char bi-gram 0.970

Table 4: Overview of results for the MLP and CNN
on the Wikipedia data set with 50K data points in each
language.

dk

— 8000

sV

— 6000

nn

nb

— 4000

Actual Label

fo

— 2000

-0

nb
Predicted Label

nn

Figure 2: Confusion matrix with results from the CNN
on the full Wikipedia data set.

Even when including five times the amount of
data, the best result, logistic regression with an
accuracy of 93.3%, is still worse than for the Con-
volutional Neural Network trained on 10K data
points in each language.

Table 4 shows results for running the neural net-
works on the larger data set. Both models improve
by increasing the amount of data and the Convolu-
tional Neural Network reached an accuracy of 97%
which is the best so far.

Figure 2 shows performance of the CNN trained
on the Wikipedia data set with 50K data points per
language. The model achieved an accuracy of 97%
on the data set. The largest classification errors are
between Danish, Bokmal and Nynorsk as well as
between Icelandic and Faroese.

6.3 Using FastText supervised

FastText can also be used for supervised classifica-
tion. In Joulin et al. (2016) the authors show that
FastText can obtain performance on par with meth-

dk

— 8000

v

36 20 31
2 8 205

G000

nn

nb

4000

Actual Label

2000

dk nn nb

Predicted Label

Figure 3: Confusion matrix with results from a super-
vised FastText model on the full Wikipedia data set.

ods inspired by deep learning, while being much
faster on a selection of different tasks, e.g. tag pre-
diction and sentiment analysis. We apply FastText
classification to the Nordic DSL task. The confu-
sion matrix from running the FastText supervised
classifier can be seen in Figure 3. The supervised
FastText model achieved an accuracy of 97.1% and
thus the performance is similar to that of the CNN.

6.4 Cross-domain evaluation

Training on single-domain data can lead to classi-
fiers that only work well on a single domain. To
see how the two best performing models generalize,
we tested on a non-Wikipedia data set.

For this, we used Tatoeba,! a large database of
user-provided sentences and translations.

The language style used in the Tatoeba data set
is different from the language used in Wikipedia.
The Tatoeba data set mainly consists of sentences
written in everyday language. Below are some
examples from the Danish part of Tatoeba.

Hvordan har du det? (How are you?)

Pa trods af al sin rigdom og bergmmelse,
er han ulykkelig. (Despite all his riches
and renown, he is unlucky.)

Vi flgj over Atlanterhavet. (We flew over
the Atlantic Ocean.)

Jeg kan ikke lide @g. (I don’t like eggs.)

Folk som ikke synes at latin er det
smukkeste sprog, har intet forstaet. (Peo-
ple who don’t think Latin is the most
beautiful language have understood noth-
ing.)

'tatoeba.org/

71

Sentences per language

=1
=
=2
=

&
=
=
=

30000

20000

10000

Number of sentences

fao

nob

Language

nno

(a) Distribution of the number of sentences in each lan-
guage in the Tatoeba data set.

Length distribution

16000
14000
12000
10000
8000
6000
4000
2000

Number of data points

=

00 120 140

&
Sentence Length

40 60

(b) Distribution of the length of sentences in the Tatoeba
data set.

Figure 4: Distribution of the lengths and language
classes of Tatoeba sentences.

Figure 4a shows the number of sentences in each
language in the Tatoeba data set.

Performance drops when shifting to Tatoeba con-
versations. For reference the accuracy of langid.py
on this data set is 80.9% so FastText actually per-
forms worse than the baseline with an accuracy of
75.5% while the CNN is better than the baseline
with an accuracy of 83.8%.

One explanation for the drop in performance is
that the sentences in the Tatoeba data are signifi-
cantly shorter than the sentences in the Wikipedia
data set as seen in Figure 4b. Both models tend
to mis-classify shorter sentences more often than
longer sentences. This and the fact that the text
genre is different might explain why the models
trained on the Wikipedia data set does not gen-
eralise to the Tatoeba data set without a drop on
performance.

The CNN uses character bi-grams as features
while, with the standard settings, FastText uses
only individual words to train. The better perfor-
mance of the CNN might indicate that character

dk

— 25000

sV

- 20000

nn

- 15000

Actual Label

nb

— 10000

fio

— 5000

is

-0
nn nb
Predicted Label

Figure 5: Confusion matrix for FastText trained using
only character level n-grams on the Wikipedia data set
and evaluated on the Tatoeba data set.

- 6000

dk

sV

— 4500

nn

— 3000

nb

Actual Label

— 1500

fo

-0

nb
Predicted Label

nn

Figure 6: Results for FastText trained w. char n-grams
on Wikipedia+Tatoeba and evaluated on Tatoeba.

level n-grams are more useful features for language
identification than words alone.

To test this we changed the setting of FastText to
train using only character level n-grams in the range
1-5 instead of individual words. Figure 5 shows the
confusion matrix for this version of the FastText
model. This version still achieved 97.8% on the
Wikipedia test set while improving the accuracy on
the Tatoeba data set from 75.4% to 85.8% which is
a substantial increase.

Thus, using character-level features seems to im-
prove the FastText models’ ability to generalize to
sentences belonging to a domain different from the
one they have been trained on, supporting findings
in prior work (Lui and Baldwin, 2011).

6.5 Retraining on the combined data set

To improve the accuracy over the Tatoeba data set,
we retrained the FastText model on a combined data
set consisting of data points from both Wikipedia
and Tatoeba data.

The FastText model achieved an accuracy of
97.2% on this combined data set and an accuracy of
93.2% when evaluating this model on the Tatoeba
test set alone - the confusion matrix is Figure 6.

72

Length distribution

mm Testset
Wrong Predictions

4000
3500
3000
2500
2000
1500

1000

Number of data points

40
Sentence Length

50 G0 70

Figure 7: Distribution of sentence lengths Tatoeba test
set along with the mis-classified sentences.

As was the case with the Wikipedia data set the
mis-classified sentences tend to be shorter than the
average sentence in the data set. Figure 7 shows
the distribution of sentence lengths for the Tatoeba
test set along with the mis-classified sentences. In
the Tatoeba test set the mean length of sentences
is 37.66 characters with a standard deviation of
17.91 while the mean length is only 29.70 charac-
ters for the mis-classified sentences with a standard
deviation of 9.65. This again indicates that shorter
sentences are harder to classify.

7 Analysis

7.1 Visualisation

To gain additional insight on how the different word
embedding capture important information about
each of the language classes, we visualized the
embeddings using two different techniques for di-
mensionality reduction.

We used two different methods: Principal Com-
ponent Analysis (PCA) and T-distributed Stochas-
tic Neighbor Embedding (t-SNE). We begin with a
brief explanation of the two techniques and proceed
with an analysis of the results.

Principal Component Analysis The first step is
to calculate the covariance matrix of the data set,
with components:

K, x; = BI(Xi —) (X5 —)] (1)

where X is the ¢th component of the feature
vector and ; is the mean of that component.

The next step is to calculate the eigenvectors and
eigenvalues of the covariance matrix by solving
the eigenvalue equation. The eigenvalues are the
variances along the direction of the eigenvectors

PCA
Bl
dk
15 =
nn
nb
10 iy
is
5
0
-5
-10
s 0 5 10 5 0
(a) Character bigram
PCA
dk
06 s
nn
nb
04 o
is
02
00
02
04
06 -04 -02 00 02 04 06 08
(b) Fasttext cbow
PCA
dk
04 W
nn
nb
02 fo
s

0.0 0.2 0.4 0.6 0.8

(c) Fasttext skipgram

Figure 8: Dimensionality reduction using PCA

or “Principal Components". To project our data
set onto 2D space we select the two eigenvectors’
largest associated eigenvalue and project our data
set onto this subspace.

In Figure 8 we see the result of running PCA on
the wikipedia data set where we have used charac-
ter level bi-grams as features, as well as the CBOW
and skipgram models from FastText.

In the figure for encoding with character level
bi-grams, the PCA algorithm resulted in two
elongated clusters. Without giving any prior
information about the language of each sentences,
PCA is apparently able to discriminate between
Danish, Swedish, Nynorsk and Bokmal on one
side, and Faroese and Icelandic on the other, since
the majority of the sentences in each language

73

belong to either of these two clusters.

With the FastText implementations we observe
three clusters. For both CBOW and skipgram we
see a distinct cluster of Swedish sentences. When
comparing the two FastText models we see that the
t-SNE algorithm with skipgrams seems to be able
to separate Faroese and Icelandic data points to a
high degree compared with the CBOW model. For
the cluster of Danish, Bokmal, and Nynorsk sen-
tences the skipgram models seem to give a better
separation.

t-SNE The T-distributed Stochastic Neighbor
Embedding method (van der Maaten and Hinton,
2008) favours retaining local relationships over re-
mote ones.

In t-SNE, for a given data point x;, the probabil-
ity of picking another data point x; as a neighbor
to x; is given by:

i = exp(|lzi — [%/207)
=
" Yz exn(llzi — zil?/207)

2

Given this probability distribution the goal is
to find the low-dimensional mapping of the data
points z; which we denote y; follow a similar distri-
bution. To solve what is referred to as the “crowd-
ing problem", t-SNE uses the Student t-distribution
which is given by:

G = (L +[lys — il "

1) —
L k(U e —wl[H)
Optimization of this distribution is done using

gradient decent on the Kullback-Leibler divergence
which is given by:

3)

1Y -)=) 1+l)
J
“)
t-SNE results over the Wikipedia data sets can
be seen in Figure 9. As was the case with PCA,
it appears that the encoding with FastText seem
to capture the most relevant information to dis-
criminate between the languages; especially the
skipgram mode does well at capturing information
relevant to this task.
Here we recover some interesting information
about the similarity of the languages. The data
points in Bokmal lie between those in Danish and

dk
sV
nn
nb
20 4 fo
<+ . is
oA
-
-20
:
—40
-60
&0 40 20 0 2 4 &
(a) Character bi-gram
t-SNE
a0 -
.- dk
60 =Y
| nn
40 b
20 fo
s
oA
-20
—40
-60
-80
&0 -60 -4 -—20 0 0 4 & &
(b) FastText CBOW
t-SNE
. dk
sV
nn
nb
] fo
5 is
01 >

P
(c) FastText skip-gram

Figure 9: Dimensionality reduction using t-SNE

Nynorsk, while Icelandic and Faroese have their
own two separate clusters.

This fits speaker intuitions about these languages.
Interestingly the Swedish data points and quite scat-
tered, and t-SNE does not make a coherent Swedish
cluster.

This does not however mean that the Swedish
data points are not close in the original space. Some
care is needed when interpreting the plot since t-
SNE groups together data points such that neigh-
boring points in the input space will tend to be
neighbors in the low dimensional space.

7.2 Discussion

The dimensionality reduction techniques applied,
PCA and t-SNE, were able to cluster the input sen-

74

tences into three main language categories: (1)
Danish-Nynorsk-Bokmal; (2) Faroese-Icelandic;
(3) Swedish. Generally the supervised models
made the most errors when discriminating between
languages belonging to either of these language
groups.

For the “classical" models, Logistic Regression
and SVMs achieved better performance than KNN
and Naive Bayes, where the latter performed worst.
This was true in all cases irrespective of the method
of feature extraction.

Additionally we saw that when we used feature
vectors from the FastText skipgram model the clas-
sification models achieved better results than when
using either FastText CBOW or character n-grams.

Generally we saw that increasing the number
of data points lead to better performance. When
comparing the CNN with the “classical” models
however the CNN performed better than any of the
other models even when trained on less data points.
In this way it seems that the CNN achieves higher
sample efficiency compared to the other models.

8 Conclusion

This paper presented dataset, baseline approaches,
and analyses on automatically distinguishing simi-
lar Nordic languages. We visualized embeddings
produced by character level bi-grams, CBOW and
skipgram. We argue that, of these, FastText’s skip-
gram embeddings capture most information for dis-
criminating between languages.

Data and code are available at https://github.
com/renhaa/NordicDSL.

As baselines, we compared four different clas-
sical models: KNN, Logistic regression, Naive
Bayes and a linear SVM with two neural network
architectures: Multilayer perceptron and a convo-
lutional neural network. The two best perform-
ing models, FastText supervised and CNN, saw
reduced performance when going off-domain. Us-
ing character n-grams as features instead of words
increased the performance for the FastText super-
vised classifier. Training on multiple domains re-
sulted in an expected performance increase.

https://github.com/renhaa/NordicDSL
https://github.com/renhaa/NordicDSL

References

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Isaac Caswell, Theresa Breiner, Daan van Esch,
and Ankur Bapna. 2020. Language id in the
wild: Unexpected challenges on the path to a
thousand-language web text corpus. arXiv preprint
arXiv:2010.14571.

Leon Derczynski, Rebekah Baglini, Morten H Chris-
tiansen, Manuel R Ciosici, Jacob Aarup Dalsgaard,
Riccardo Fusaroli, Peter Juel Henrichsen, Rasmus
Hvingelby, Andreas Kirkedal, Alex Speed Kjeldsen,
et al. 2020. The Danish Gigaword Project. arXiv
preprint arXiv:2005.03521.

Leon Derczynski and Alex Speed Kjeldsen. 2019.
Bornholmsk natural language processing: Re-
sources and tools. In Proceedings of the 22nd

Nordic Conference on Computational Linguistics,
pages 338-344.

Leon Derczynski, Diana Maynard, Niraj Aswani, and
Kalina Bontcheva. 2013. Microblog-genre noise
and impact on semantic annotation accuracy. In Pro-
ceedings of the 24th ACM Conference on Hypertext
and Social Media, pages 21-30.

Cyril Goutte, Serge Léger, Shervin Malmasi, and Mar-
cos Zampieri. 2016. Discriminating similar lan-
guages: Evaluations and explorations. In Proceed-
ings of Language Resources and Evaluation (LREC).
Portoroz, Slovenia. pp 1800-1807 (2016).

Alon Jacovi, Oren Sar Shalom, and Yoav Goldberg.
2018. Understanding convolutional neural networks
for text classification. In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and In-
terpreting Neural Networks for NLP, pages 5665,
Brussels, Belgium. Association for Computational
Linguistics.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Andreas Kirkedal, Barbara Plank, Leon Derczynski,
and Natalie Schluter. 2019. The lacunae of danish
natural language processing. In Proceedings of the
22nd Nordic Conference on Computational Linguis-

tics, pages 356-362.

Edward Loper and Steven Bird. 2002. Nltk: The natu-
ral language toolkit. In In Proceedings of the ACL
Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Compu-
tational Linguistics. Philadelphia: Association for
Computational Linguistics.

Marco Lui and Timothy Baldwin. 2011. Cross-domain
feature selection for language identification. In Pro-
ceedings of Sth international joint conference on nat-
ural language processing, pages 553-561.

75

Marco Lui and Timothy Baldwin. 2012. Langid.py:
An off-the-shelf language identification tool. In Pro-
ceedings of the ACL 2012 System Demonstrations,
ACL ’12, pages 25-30, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-SNE. Journal of Machine
Learning Research, 9:2579-2605.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Francisco Rangel, Paolo Rosso, Julian Brooke, and
Alexandra L Uitdenbogerd. 2018. Cross-corpus
native language identification via statistical embed-
ding. In Proceedings of the Second Workshop on
Stylistic Variation, pages 39—43.

Mads Toftrup, Sg¢ren Asger Sgrensen, Manuel R.
Ciosici, and Ira Assent. 2021. A reproduction of
Apple’s bi-directional LSTM models for language
identification in short strings. In Proceedings of the
EACL Student Research Workshop.

Marcos Zampieri, Liling Tan, Nikola Ljubesic, and
Jorg Tiedemann. 2014. A report on the dsl shared
task 2014. In VarDial@ COLING.

Marcos Zampieri, Liling Tan, Nikola LjubeSic, Jorg
Tiedemann, and Preslav Nakov. 2015. Overview of
the dsl shared task 2015. In Joint Workshop on Lan-
guage Technology for Closely Related Languages,
Varieties and Dialects, page 1.

https://doi.org/10.18653/v1/W18-5408
https://doi.org/10.18653/v1/W18-5408
http://dl.acm.org/citation.cfm?id=2390470.2390475
http://dl.acm.org/citation.cfm?id=2390470.2390475
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://arxiv.org/abs/arXiv:2102.06282
http://arxiv.org/abs/arXiv:2102.06282
http://arxiv.org/abs/arXiv:2102.06282

