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Abstract

Cross-lingual representations have the poten-
tial to make NLP techniques available to the
vast majority of languages in the world. How-
ever, they currently require large pretraining
corpora or access to typologically similar lan-
guages. In this work, we address these ob-
stacles by removing language identity signals
from multilingual embeddings. We exam-
ine three approaches for this: (i) re-aligning
the vector spaces of target languages (all to-
gether) to a pivot source language; (ii) remov-
ing language-specific means and variances,
which yields better discriminativeness of em-
beddings as a by-product; and (iii) increas-
ing input similarity across languages by re-
moving morphological contractions and sen-
tence reordering. We evaluate on XNLI and
reference-free MT across 19 typologically di-
verse languages. Our findings expose the limi-
tations of these approaches—unlike vector nor-
malization, vector space re-alignment and text
normalization do not achieve consistent gains
across encoders and languages. Due to the ap-
proaches’ additive effects, their combination
decreases the cross-lingual transfer gap by 8.9
points (m-BERT) and 18.2 points (XLM-R) on
average across all tasks and languages, how-
ever. Our code and models are publicly avail-
able.1

1 Introduction

Cross-lingual text representations (Devlin et al.,
2019; Conneau et al., 2019) ideally allow for trans-
fer between any language pair, and thus hold the
promise to alleviate the data sparsity problem for
low-resource languages. However, until now, cross-
lingual systems trained on English appear to trans-
fer poorly to target languages dissimilar to English
(Wu and Dredze, 2019; Pires et al., 2019) and for

1https://github.com/AIPHES/
Language-Agnostic-Contextualized-Encoders
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Figure 1: Zero-shot performance on XNLI and RFE-
val vs. language similarity to English (top), and data
sizes in Wikipedia (bottom). Each point is a language;
brackets give the Pearson correlation of points on the x-
and y-axis. Zero-shot performance is based on the last
layer of m-BERT and is standardized (zero mean, unit
standard deviation) for better comparison.

which only small monolingual corpora are available
(Conneau et al., 2019; Hu et al., 2020; Lauscher
et al., 2020), as illustrated in Fig. 1.2

As a remedy, recent work has suggested to
train representations on larger multilingual corpora
(Conneau et al., 2019) and, more importantly, to re-
align them post-hoc so as to address the deficits of
state-of-the-art contextualized encoders which have
not seen any parallel data during training (Schuster
et al., 2019; Wu and Dredze, 2019; Cao et al., 2020).
However, re-mapping (i) can be costly, (ii) requires
parallel data on word or sentence level, which may
not be available abundantly in low-resource set-

2We consider language similarity as the cosine similarity
between the average representations of two languages over
monolingual corpora from Wikipedia.

https://github.com/AIPHES/Language-Agnostic-Contextualized-Encoders
https://github.com/AIPHES/Language-Agnostic-Contextualized-Encoders
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tings, and (iii) its positive effect has not yet been
studied systematically.

Here, we explore normalization as an alternative
to re-mapping. To decrease the distance between
languages and thus allow for better cross-lingual
transfer, we normalize (i) text inputs to encoders
before vectorization to increase cross-lingual sim-
ilarity, e.g., by reordering sentences according to
typological features, and (ii) the representations
themselves by removing their means and standard
deviations, a common operation in machine and
deep learning (LeCun et al., 1998; Rücklé et al.,
2018). We evaluate vector normalization and post-
hoc re-mapping across a typologically diverse set
of 19 languages from five language families with
varying sizes of monolingual corpora. However,
input normalization is examined on a smaller sam-
ple of languages, as it is not feasible for languages
whose linguistic features cannot be obtained au-
tomatically. We investigate two NLP tasks, and
two state-of-the-art contextualized cross-lingual
encoders—multilingual BERT (Devlin et al., 2019)
and XLM-R (Conneau et al., 2019). Further, we
provide a thorough analysis to investigate the ef-
fects of these techniques: (1) across layers; (2) to
decrease the cross-lingual transfer gap, especially
for low-resource and dissimilar languages; and (3)
to eliminate language identity signals from multi-
lingual representations and thus induce language-
agnostic representations.

We evaluate on two cross-lingual tasks of vary-
ing difficulty: (1) zero-shot cross-lingual natural
language inference (XNLI) measures the transfer
ability of inference from source to target languages,
where only the source language is annotated;and
(2) reference-free machine translation evaluation
(RFEval) measures the ability of multilingual em-
beddings to assign adequate cross-lingual semantic
similarity scores to text from two languages, where
one is frequently a corrupt automatic translation.

Our contributions: We show that: (i) input nor-
malization leads to performance gains of up to
4.7 points on two challenging tasks; (ii) normal-
izing vector spaces is surprisingly effective, rivals
much more resource-intensive methods such as re-
mapping, and leads to more consistent gains; (iii)
all three techniques—vector space normalization,
re-mapping and input normalization—are orthog-
onal and their gains often stack. This is a very
important finding as it allows for improvements on
a much larger scale, especially for typologically

dissimilar and low-resource languages.

2 Related Work

Cross-lingual Transfer Static cross-lingual rep-
resentations have long been used for effective cross-
lingual transfer and can even be induced without
parallel data (Artetxe et al., 2017; Lample et al.,
2018). In the monolingual case, static cross-lingual
embeddings have recently been succeeded by con-
textualized ones, which yield considerably better re-
sults. The capabilities and limitations of the contex-
tualized multilingual BERT (m-BERT) representa-
tions is a topic of vivid discourse. Pires et al. (2019)
show surprisingly good transfer performance for m-
BERT despite it being trained without parallel data,
and that transfer is better for typologically similar
languages. Wu et al. (2019) show that language rep-
resentations are not correctly aligned in m-BERT,
but can be linearly re-mapped. Extending this, Cao
et al. (2020) find that jointly aligning language
representations to be more useful than language-
independent rotations. However, we show that the
discriminativeness of the resulting embeddings is
still poor, i.e., random word pairs are often assigned
very high cosine similarity scores by the upper lay-
ers of original encoders, especially for XLM-R.

Libovický et al. (2019) further observe that m-
BERT representations of related languages are
seemingly close to one another in the cross-lingual
embedding space. They show that removing
language-specific means from m-BERT can elimi-
nate language identity signals. In contrast, we re-
move both language-specific means and variances
as well as morphological contractions, and reorder
sentences to reduce linguistic gaps between lan-
guages. In addition, our analysis covers more lan-
guages from a typologically broader sample, and
shows that vector space normalization is as effec-
tive as other recently proposed fixes for m-BERT’s
limitations (especially re-mapping), but is much
cheaper and orthogonal to other solutions (e.g., in-
put normalization) in that gains are almost additive.

Linguistic Typology in NLP. Structural prop-
erties of many of the world’s languages can be
queried via databases such as WALS (Dryer and
Haspelmath, 2013). O’Horan et al. (2016); Ponti
et al. (2019) suggest to inject typological informa-
tion into models to bridge the performance gap
between high- and low-resource languages. Bjerva
and Augenstein (2018); de Lhoneux et al. (2018);
Bjerva and Augenstein (2021) show that cross-
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Figure 2: Histograms of cosine similarity scores of word pairs.

lingual transfer can be more successful between
languages which share, e.g., morphological prop-
erties. We draw inspiration from Wang and Eisner
(2016), who use dependency statistics to generate a
large collection of synthetic languages to augment
training data for low-resource languages. This in-
tuition of modifying languages based on syntac-
tic features can also be used in order to decrease
syntactic and morphological differences between
languages. We go further than using syntactic fea-
tures, and remove word contractions and reorder
sentences based on typological information from
WALS.

3 Language-Agnostic Representations

Analyses by Ethayarajh (2019) indicate that ran-
dom words are often assigned high cosine simi-
larities in the upper layers of monolingual BERT.
We examine this in a cross-lingual setting, by ran-
domly selecting 500 German-English mutual word
translations and random word pairs within paral-
lel sentences from Europarl (Koehn, 2005). Fig. 2
(left) shows histograms based on the last layers of
m-BERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2019), respectively, which show that
XLM-R wrongly assigns nearly perfect cosine sim-
ilarity scores (+1) to both mutual word transla-
tions (matched word pairs) and random word pairs,
whereas m-BERT sometimes assigns low scores
to mutual translations. This reaffirms that both m-
BERT and XLM-R have difficulty in distinguishing
matched from random word pairs. Surprisingly,
vector space re-mapping does not seem to help for
XLM-R, but better separates random from matched
pairs for m-BERT (Fig. 2 (middle)). In contrast,
the joint effect of normalization and re-mapping
leads to adequate separation of the two distribu-
tions for both m-BERT and XLM-R, increasing the
discriminative ability of both encoders.

3.1 Vector space re-alignment
m-BERT and XLM-R induce cross-lingual vector
spaces in an unsupervised way—no parallel data is
involved at training time. To improve upon these
representations, recent work has suggested to re-
map them, i.e., to use small amounts of parallel
data to restructure the cross-lingual vector spaces.
We follow the joint re-mapping approach of Cao
et al. (2020), which has shown better results than
rotation-based re-mapping.

Notation. Suppose we have k parallel corpora
C1, . . . , Ck, i.e., Cν = {(s1, t1), . . . , (sn, tn)} is
a set of corresponding sentence pairs from source
and target languages, for ν = 1, . . . , k. We denote
the alignments of words in a sentence pair (s, t)
as a(s, t) = {(i1, j1), . . . , (im, jm)}, where (i, j)
denotes that si and sj are mutual translations. Let
f(i,u) be the contextual embedding for the i-th
word in a sentence u.

Joint Alignment via Fine-tuning. We align the
monolingual sub-spaces of a source and target lan-
guage by minimizing the distances of embeddings
for matched word pairs in the corpus Cν :

L(Cν , fΘ)

=
∑

(s,t)∈Cν

∑
(i,j)∈a(s,t)

‖fΘ(i, s)− fΘ(j, t))‖22

(1)

where Θ are the parameters of the encoder f . As in
Cao et al. (2020), we use a regularization term to
avoid for the resulting (re-aligned) embeddings to
drift too far away from the initial encoder state f0:

R(Cν , fΘ) =
∑
t∈Cν

len(t)∑
i=1

‖fΘ(i, t)− f0(i, t)‖22

(2)
Like for the multilingual pre-training of m-BERT
and XLM-R, we fine-tune the encoder f on the con-
catenation of k parallel corpora to handle resource-
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lean languages, which is in contrast to offline align-
ment with language-independent rotations (Aldar-
maki and Diab, 2019; Schuster et al., 2019). As-
sume that English is a common pivot (source lan-
guage) in all our k parallel corpora. Then the fol-
lowing objective function orients all non-English
embeddings toward English:

min
Θ

k∑
ν=1

L(Cν , fΘ) +R(Cν , fΘ) (3)

In §5, we refer to the above described re-
alignment step as JOINT-ALIGN.

3.2 Vector space normalization

We add a batch normalization layer that constrains
all embeddings of different languages into a distri-
bution with zero mean and unit variance:

f̄(i, s) =
f(i, s)− µβ√

σ2
β + ε

(4)

where ε is a constant value for numerical stability,
µβ and σβ are mean and variance, serving as per
batch statistics for each time step in a sequence.
In addition to a common effect during training,
i.e., reducing covariate shift of input spaces, this
additional layer in the cross-lingual setup may al-
low for 1) removing language identity signals, e.g.
language-specific means and variances, from multi-
lingual embeddings; and 2) increasing the discrim-
inativeness of embeddings so that they can distin-
guish word pairs with different senses, as shown
in Fig. 2 (right). We apply batch normalization
to the last layer representations of m-BERT and
XLM-R, and use a batch size of 8 across all se-
tups. In §5, we refer to the above batch normal-
ization step as NORM and contrast this with layer
normalization. The latter yields batch-independent
statistics, which are computed across all time steps
for individual input sequences in a batch. This is
predominantly used to stabilize the training process
of RNN (Ba et al., 2016) and Transformer-based
models (Vaswani et al., 2017).

3.3 Input normalization

In addition to joint alignment and vector space
normalization, we investigate decreasing cross-
linguistic differences between languages via the
following surface form manipulation of input texts.

Removing Morphological Contractions. In
many languages, e.g. Italian, prepositions and defi-
nite articles are often contracted. For instance, de
il (‘of the’) is usually contracted to del. This leads
to a mismatch between, e.g., English and Italian in
terms of token alignments, and increases the cross-
lingual difference between the two. We segment an
orthographic token (e.g. del) into several (syntac-
tic) tokens (e.g. de il).3 This yields a new sentence
which no longer corresponds to typical standard
Italian grammar, but which we hypothesise reduces
the linguistic gap between Italian and English, thus
increasing cross-lingual performance.

Sentence Reordering. Another typological fea-
ture which differs between languages, is the order-
ing of nouns and adjectives. For instance, WALS
shows that Romance languages such as French
and Italians often use noun-adjective ordering, e.g.,
pomme rouge in French, whereas the converse is
used in English. Additionally, languages differ
in their ordering of subjects, objects, and verbs.
For instance, according to WALS, English firmly
follows the subject-verb-object (SVO) structure,
whereas there is no dominant order in German.
We apply this reordering in order to decrease the
linguistic gap between languages. For instance,
when considering English and French, we reverse
all noun-adjective pairings from French to match
English. This alignment is done while considering
a dependency tree. We re-align according to the
typological features from WALS. Since such fea-
ture annotations are available for a large amount of
languages, and can be obtained automatically with
high accuracy (Bjerva et al., 2019a), we expect
this method to scale to languages for which basic
dependencies (such as noun-adjective attachment)
can be obtained automatically. In §5, we refer to
the above re-alignment step as TEXT.

4 Experiments

4.1 Transfer tasks

Cross-lingual embeddings are usually evaluated
via zero-shot cross-lingual transfer for supervised
text classification tasks, or via unsupervised cross-
lingual textual similarity. For zero-shot transfer,
fine-tuning of cross-lingual embeddings is done
based on source language performance, and eval-
uation is performed on a held-out target language.

3We use UDPipe (Straka et al., 2016), which is a pipeline
trained on UD treebank 2.5 (Nivre et al., 2020).
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Language Lang.
family

Distance
(EN-X)

Wiki-articles
(in millions)

Sim
level

Res
level

Tagalog α 29.3 0.08 low low
Javanese α 26.5 0.06 low low
Bengali γ 24.8 0.08 low low
Marathi γ 24.0 0.06 low low
Estonian η 23.8 0.20 low middle
Hindi γ 22.2 0.13 middle low
Urdu γ 21.7 0.15 middle middle
Finnish η 20.1 0.47 middle middle
Hungarian η 19.8 0.46 middle middle
Afrikaans β 19.6 0.09 middle low
Malay α 19.2 0.33 middle middle
Spanish δ 18.5 1.56 high high
French δ 18.2 2.16 high high
Italian δ 18.0 1.57 high high
Indonesian α 17.7 0.51 high middle
Dutch β 16.3 1.99 high high
Portuguese δ 16.2 1.02 high high
German β 15.6 2.37 high high
English β 0.0 5.98 high high

Table 1: Languages used, with their language families:
Austronesian (α), Germanic (β), Indo-Aryan (γ), Ro-
mance (δ), and Uralic (η). The cosine distances be-
tween target languages and English are measured using
m-BERT.

This is, however, not likely to result in high quality
target language embeddings and gives a false im-
pression of cross-lingual abilities (Libovický et al.,
2020). Zhao et al. (2020) use the more difficult task
of reference-free machine translation evaluation
(RFEval) to expose limitations of cross-lingual
encoders, i.e., a failure to properly represent fine-
grained language aspects, which may be exploited
by natural adversarial inputs such as word-by-word
translations.

XNLI. The goal of natural language inference
(NLI) is to infer whether a premise sentence en-
tails, contradicts, or is neutral towards a hypothesis
sentence. Conneau et al. (2018) release a multilin-
gual NLI corpus, where the English dev and test
sets of the MultiNLI corpus (Williams et al., 2018)
are translated to 15 languages by crowd-workers.

RFEval. This task evaluates the translation qual-
ity, i.e. similarity of a target language translation
and a source language sentence. Following Zhao
et al. (2020), we collect source language sentences
with their system and reference translations, as well
as human judgments from the WMT17 metrics
shared task (Bojar et al., 2017), which contains
predictions of 166 translation systems across 12
language pairs in WMT17. Each language pair has
approximately 3k source sentences, each associ-

ated with one human reference translation and with
the automatic translations of participating systems.
As in Zhao et al. (2019, 2020), we use the Earth
Mover Distance to compute the distances between
source sentence and target language translations,
based on the semantic similarities of their contex-
tualized cross-lingual embeddings. We refer to this
score as XMoverScore (Zhao et al., 2020) and re-
port its Pearson correlation with human judgments
in our experiments.

4.2 A Typologically Varied Language Sample
We evaluate multilingual representations on two
sets of languages: (1) a default language set with 4
languages from the official XNLI test sets and 2 lan-
guages from the WMT17 test sets; (2) a diagnostic
language set which contains 19 languages with dif-
ferent levels of data resources from a typologically
diverse sample4 covering five language families
(each with at least three languages): Austronesian
(α), Germanic (β), Indo-Aryan (γ), Romance (δ),
and Uralic (η). For RFEval, we resort to pairs of
translated source sentences and system translations.
The former ones are translated from English human
reference translations into 18 languages, obtained
from Google Translate. For XNLI, we use trans-
lated test sets of all these languages from (Hu et al.,
2020). Tab. 1 shows the overview of 19 languages
which are labeled with 1) Similarity Level, i.e., the
degree of similarity between target languages and
English; and 2) Resource Level, i.e., the amount of
data resources available in Wikipedia.

4.3 Cross-lingual Encoders
Our goal is to improve the cross-lingual abilities
of established contextualized cross-lingual embed-
dings. These support around 100 languages and are
pre-trained using monolingual language modeling.

m-BERT (Devlin et al., 2019) is pre-trained on
104 monolingual corpora from Wikipedia, with: 1)
a vocabulary size of 110k; 2) language-specific tok-
enization tools for data pre-processing; and 3) two
monolingual pre-training tasks: masked language
modeling and next sentence prediction.

XLM-R (Conneau et al., 2019) is pre-trained
on the CommonCrawl corpora of 100 lan-
guages, which contain more monolingual data than
Wikipedia corpora, with 1) a vocabulary size of
250k; 2) a language-agnostic tokenization tool,

4This sample was chosen as it yields a large typological
variety, with representatives from several language families
across the world.
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Sentence Piece (Kudo and Richardson, 2018) for
data pre-processing; and 3) masked language mod-
eling as the only monolingual pre-training task. We
apply NORM, TEXT, JOINT-ALIGN and the combi-
nations of these to the last layer of m-BERT and
XLM-R, and report their performances on XNLI
and RFEval in §5. To investigate the layer-wise
effect of these modifications, we apply the modifi-
cations to individual layers and report the perfor-
mances in §6. See the appendix for implementation
details.

5 Results

Unlike re-mapping and vector space normalization,
scaling input normalization to a large language sam-
ple is more difficult, as typological features differ
across languages. Thus, we report the results of
re-mapping and vector space normalization across
19 languages, while text normalization is evaluated
on a smaller sample of languages.

Re-mapping and Vector Space Normalization.
In Tab. 2, we show results on machine translated
test sets. The m-BERT space modified by JOINT-

ALIGN ⊕ NORM achieves consistent improve-
ments on RFEval (+10.1 points) and XNLI (+7.6
points) on average. However, effects are different
for XLM-R. The modified XLM-R outperforms
the baseline XLM-R on RFEval by the largest mar-
gin (+33.5 points), but the improvement is much
smaller (+2.8 points) on XNLI. These gains are not
an artefact of machine-translated test sets: we ob-
serve similar gains on human-translated data (see
Fig. 3).

In Tab. 3, we tease apart the sources of improve-
ments. Overall, the impacts of NORM and JOINT-
ALIGN are substantial, and their effect is additive
and sometimes even superadditive (e.g., m-BERT
improves by 10.1 points on RFEval when both
NORM and JOINT-ALIGN are applied but only by
1.7 and 7.6 points individually). We note that the
improvement from NORM is more consistent across
tasks and encoders, despite its simplicity and negli-
gible cost. In contrast, JOINT-ALIGN has a positive
effect for m-BERT but it does not help for XLM-R
on the XNLI task, notwithstanding the minor dif-
ference of two encoders, e.g., much larger training
data and a different tokenizer used in XLM-R. We
believe the poor discriminative ability of XLM-R,
viz., that it cannot distinguish word translations
from random word pairs, leads to the inconsistent
behavior of JOINT-ALIGN. As a remedy, negative
examples such as random pairs could be included
in Eq. (3) during training so as to decrease the
discriminative gap between m-BERT and XLM-R.
This suggests that future research efforts should
focus on the robustness of cross-lingual alignments.

Batch vs. Layer Normalization. Unsurpris-
ingly, the choice of batch size greatly influences
XNLI performance when applying batch normal-
ization for m-BERT and XLM-R (Fig. 4). We find
that (i) the larger the batch size is, the smaller the
impacts on XNLI, and (ii) a batch size of 8 per-
forms best. Interestingly, layer normalization does
not help for XNLI, even though it yields batch-
independent statistics and is effective in stabilizing
the training process (Vaswani et al., 2017). We note
that per batch sequences with varying time steps
(i.e., sentence length) are often padded with zero
vectors in practice. This leads to inaccurate batch-
independent statistics, as they are computed across
all time steps, unlike batch normalization with per
batch statistics for individual time steps. In addi-
tion to batch and layer normalizations, other nor-
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Language Families
Model Avg 4 α(4) 4 β(3) 4 γ(4) 4 δ(4) 4 η(3) 4

Original cross-lingual embeddings
M-BERT 38.0 - 36.6 - 40.4 - 28.2 - 49.8 - 34.8 -
XLM-R 12.9 - 13.5 - 17.4 - 2.9 - 25.9 - 11.6 -

Modified cross-lingual embeddings
M-BERT ⊕ JOINT-ALIGN ⊕ NORM 48.1 +10.1 45.9 +9.3 47.5 +7.1 32.4 +4.2 53.4 +3.6 46.0 +11.2
XLM-R ⊕ JOINT-ALIGN ⊕ NORM 46.4 +33.5 46.5 +33.0 48.2 +30.8 37.0 +34.1 53.8 +27.9 47.2 +35.6

(a) Cross-lingual Semantic Text Similarity on the RFEval task

Language Families
Model Avg 4 α(4) 4 β(3) 4 γ(4) 4 δ(4) 4 η(3) 4

Original cross-lingual embeddings
M-BERT 64.7 - 60.8 - 69.1 - 57.9 - 73.1 - 63.4 -
XLM-R 74.8 - 72.4 - 76.3 - 70.9 - 78.4 - 76.1 -

Modified cross-lingual embeddings
M-BERT ⊕ JOINT-ALIGN ⊕ NORM 72.3 +7.6 72.3 +11.5 75.8 +6.7 65.2 +7.3 77.4 +4.3 72.0 +8.6
XLM-R ⊕ JOINT-ALIGN ⊕ NORM 77.6 +2.8 74.8 +2.4 79.6 +3.3 73.7 +2.8 80.9 +2.5 78.8 +2.7

(b) Cross-lingual Zero-shot transfer on the XNLI task

Table 2: Overall results of established cross-lingual baselines and our modifications, for RFEval and XNLI. Brack-
ets denote the number of languages per group. Results are averaged per group. 4 is the difference between the
performance of the original and the modified encoders.
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(c) Reversing object-verb order

Figure 5: Performance gains on RFEval and XNLI obtained by three types of TEXT operations .

Model XNLI RFEval

M-BERT ⊕ NORM +1.9 +1.7
M-BERT ⊕ JOINT-ALIGN +5.2 +7.6
M-BERT ⊕ JOINT-ALIGN ⊕ NORM +7.6 +10.1
XLM-R ⊕ NORM +2.5 +27.1
XLM-R ⊕ JOINT-ALIGN −0.2 +11.6
XLM-R ⊕ JOINT-ALIGN ⊕ NORM +2.8 +33.5

Table 3: Ablation tests of our modified encoders. Per-
formance gains are averaged over all languages.

malizers such as GroupNorm (Wu and He, 2018)
and PowerNorm (Shen et al., 2020) also receive
attention in many communities. This raises another
concern towards a systematic investigation of nor-
malizers for future work.

Linguistic Manipulation. We apply input modi-
fications to language pairs that contrast in either of

Model XNLI RFEval Avg

M-BERT 17.4 24.5 21.0
XLM-R 11.1 37.8 24.5
M-BERT ⊕ JOINT-ALIGN ⊕ NORM 9.8 14.4 12.1
XLM-R ⊕ JOINT-ALIGN ⊕ NORM 8.4 4.3 6.3

Table 4: Performance gap (lower is better) for cross-
lingual classification transfer, and reference-based and
reference-free MT.

three typological features: word contractions, noun-
adjective and object-verb orderings. Fig. 5 shows
that reducing the linguistic gap between languages
by TEXT can sometimes lead to improvements
(exemplified by m-BERT). Both French and Italian
benefit considerably from both removing contrac-
tions (a) and reversing the order of adjectives and
nouns (b), with no changes observed for Spanish.
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Figure 6: Results of m-BERT and XLM-R and our modifications across layers on the RFEval and XNLI tasks.
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Figure 7: Results of m-BERT across layers on RFEval.

As for reversing object-verb order (c), we again see
improvements for 2 out of 3 languages. We hypoth-
esize that the few cases without gains are due to the
differing frequencies of occurrences of linguistic
phenomena in XNLI and RFEval. Another error
source is the automatic analysis from Straka et al.
(2016), and improving this pre-processing step may
further increase the performance of TEXT.

6 Analysis

(Q1) How sensitive are normalization and post-hoc
re-mapping across layers?

In Fig. 6, rather than checking results for the last
layer only, we investigate improvements of our
three modifications on RFEval across all layers of
and XLM-R for one high-resource language pair
(de-en) and one low-resource pair (jv-en) (see ap-
pendix). This reveals that, (1) for XNLI, applying
JOINT-ALIGN, NORM and TEXT to the last layer
of m-BERT and XLM-R consistently results in the
best performance. This indicates that the modi-
fications to the last layer could be sufficient for
supervised cross-lingual transfer tasks. (2) How-
ever, the best results on RFEval are oftentimes
obtained from an intermediate layer. Further, (3)
we observe that JOINT-ALIGN is not always effec-
tive, especially for XLM-R. E.g., it leads to the
worst performance across all layers on XNLI for
XLM-R, even below the baseline performance. (4)
Reporting improvements on only the last layer may

sometimes give a false and inflated impression, es-
pecially for RFEval. E.g., the improvement (on
RFEval) of the three modifications over the orig-
inal embeddings is almost 30 points for the last
layer of XLMR, but it is less than 15 points for
the penultimate layer. (5) Normalization and re-
mapping typically stabilize layer-wise variances.
(6) The gains of the three modifications are largely
complementary across layers. (see also Fig. 7).

(Q2) To what extent can our modifications decrease
the cross-lingual transfer gap, especially in low-
resource scenarios and dissimilar languages?

Tab. 4 shows that applying re-mapping and vec-
tor space normalization5 to the last layer of m-
BERT and XLM-R considerably reduces perfor-
mance gaps viz.: a) zero-shot transfer performance
on XNLI between the English test set and the aver-
age performance on the other 18 languages; b) the
difference between mono- and cross-lingual textual
similarity on RFEval, i.e., the difference between
the average correlations of XMoverScore and hu-
man judgments on 19 languages obtained from
reference-based6 and reference-free MT evaluation
setups. Although smaller, the remaining gaps in-
dicates further potential for improvement. Fig. 9
shows the largest gains are on (1) low-resource lan-
guages and (2) languages most distant to English.

(Q3) Are our modifications to contextualized cross-
lingual encoders language-agnostic?

Fig. 8 (a) shows that the centroid vectors7 of lan-
guages within the same language family lie closely
in the vector space, further showing that language

5We do not apply text normalization in this setup because
not all languages are covered in UDPipe.

6Reference-based evaluation assigns semantic similarity
scores to pairs of system and reference translations in English.

7Language centroids are representative (sentence) embed-
dings of languages averaged over monolingual Wikipedia data,
as in Libovický et al. (2019). Although they use language fam-
ilies as a proxy, recent work shows that structural similarities
of languages are a more likely candidate (Bjerva et al., 2019b).
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(a) Original Space (b) Re-aligned Space (c) Normalized Space

Figure 8: t-SNE distributions of language centroids based on the last m-BERT layer.
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Figure 9: Performance gains across language groups
for M-BERT ⊕ JOINT-ALIGN ⊕ NORM.

Model τ r ρ

M-BERT 53.2 74.7 71.8
XLM-R 54.4 70.1 73.5
M-BERT ⊕ JOINT-ALIGN ⊕ NORM 17.5 57.3 21.2
XLM-R ⊕ JOINT-ALIGN ⊕ NORM 15.9 57.7 26.0

Table 5: Correlations (Kendall τ , Pearson r and Spear-
man ρ) between language similarities induced by m-
BERT/XLM-R and WALS for 19 languages.

identity signals are stored in the m-BERT embed-
dings. Fig. 8 (b)+(c) shows that these signals are di-
minished in both re-aligned and normalized vector
spaces, suggesting that the resulting embeddings in
them are more language-agnostic.

(Q4) To what extent do the typological relations
learned from contextualized cross-lingual encoders
deviate from those set out by expert typologists?

Tab. 5 shows that language similarities, between
English and other 18 languages, obtained from m-
BERT and XLM-R have high correlations with
structural language similarities8 obtained from
WALS9 via the syntactic features listed, indicat-
ing that language identifiers stored in the original
embeddings are a good proxy for the annotated
linguistic features. In contrast, this correlation is
smaller in the modified embedding spaces, which

8The language similarity induced by WALS is the frac-
tion of structural properties that have the same value in two
languages among all 192 properties.

9WALS covers approximately 200 linguistic features over
2500 languages, annotated by expert typologists.

we believe is because language identity is a much
less prominent signal in them.

7 Conclusion

Cross-lingual systems show striking performance
for transfer, but their success crucially relies on two
constraints: the similarity between source and tar-
get languages and the size of pre-training corpora.
We comparatively evaluate three approaches to ad-
dress these challenges, removing language-specific
information from multilingual representations, thus
learning language-agnostic representations. Our
extensive experiments, based on a typologically
broad sample of 19 languages, show that (vector
space and input) normalization and re-mapping are
oftentimes complementary approaches to improve
cross-lingual performance, and that the popular
approach of re-mapping leads to less consistent im-
provements than the much simpler and less costly
normalization of vector representations. Input nor-
malization yields benefits across a small sample of
languages; further work is required for it to achieve
consistent gains across a larger language sample.
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