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Abstract

Open-domain question answering aims at lo-
cating the answers to user-generated ques-
tions in massive collections of documents.
Retriever-readers and knowledge graph ap-
proaches are two big families of solutions to
this task. A retriever-reader first applies in-
formation retrieval techniques to locate a few
passages that are likely to be relevant, and
then feeds the retrieved text to a neural net-
work reader to extract the answer. Alterna-
tively, knowledge graphs can be constructed
and queried to answer users’ questions. We
propose an algorithm with a novel reader-
retriever design that differs from both families.
Our reader-retriever first uses an offline reader
to read the corpus and generate collections
of all answerable questions associated with
their answers, and then uses an online retriever
to respond to user queries by searching the
pre-constructed question spaces for answers
that are most likely to be asked in the given
way. We further combine one retriever-reader
and two reader-retrievers into a hybrid model
called R6 for the best performance. Exper-
iments with large-scale public datasets show
that R6 achieves state-of-the-art accuracy.

1 Introduction

Open-domain question answering, abbreviated as
OpenQA in this paper, aims at enabling computers
to answer user-submitted natural language ques-
tions based on a large collection of documents
(a.k.a. a corpus). There are two big families of
state-of-the-art OpenQA algorithms. One family,
namely retriever-readers (Fig. 1, left branch), first
retrieves from the corpus some documents or para-
graphs that are likely to be relevant to the question,
and then uses neural networks to read the retrieved
passages and locate the answer. Another line of
work, namely question answering using knowledge
bases (abbreviated as QA using KB in this paper;
Fig. 1, middle branch), first constructs a knowledge

base (KB) from the corpus, then queries the KB
with the given question. Either family of algorithms
has some pros and cons: all retriever-readers face
a trade-off between efficiency and accuracy; QA
using KB methods are good at answering simple
factoid questions within the KB schema but weak
at complex or out-of-schema questions.

We propose a novel reader-retriever design for
OpenQA (Fig. 1, right branch). First, we use
deep neural networks to read the corpus offline,
detect named entities, generate questions, and ag-
gregate the results into two collections of ques-
tions that are answerable with the corpus. We
use question spaces to term the two collections.
When users submit queries online, a retriever com-
pares user queries with the pre-constructed ques-
tion spaces to retrieve the answers that are most
likely to be asked in the given way. We combine
two reader-retrievers (one for each question space)
and one retriever-reader into a hybrid model called
R6 to predict the most likely answer based on the
consistency among the three sub-models. Experi-
ments with large-scale public datasets show that the
pre-constructed question spaces boost the perfor-
mance for OpenQA, and R6 performs better than
state-of-the-art methods by a large margin. The
source code of R6 is publicly available at https:
//github.com/JinfengXiao/R6.

2 Related Work

2.1 Retriever-Readers

Retriever-readers solve OpenQA by converting it
to easier single-passage QA tasks. Examples of
popular algorithms in this family include DrQA
(Chen et al., 2017), which has a TF-IDF retriever
followed by a recurrent neural network reader, and
BERTserini (Yang et al., 2019), which consists of
a BM25 retriever and a BERT reader.

All retriever-readers face a trade-off between effi-
ciency and accuracy. When the retriever module is

https://github.com/JinfengXiao/R6
https://github.com/JinfengXiao/R6
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Figure 1: Retriever-readers (left), QA using KB (middle), and reader-retrievers (right).

computationally efficient, the retrieved results are
not very reliable, and the performance of the subse-
quent reader is also constrained (Htut et al., 2018).
On the other hand, there exist systems such as R3

(Wang et al., 2018) and DS-QA (Lin et al., 2018)
that have sophisticated retrievers jointly trained
with the readers, but they are computationally ex-
pensive and thus not scalable to large corpora (Das
et al., 2019).

2.2 QA Using KB

There are solutions that solve OpenQA with knowl-
edge bases (KB). QA using KB applications in-
clude Google Knowledge Graph and Bing Satori
(Uyar and Aliyu, 2015). Such approaches involve
an offline knowledge graph construction module
and an online graph query module. The graph
construction module scans the corpus to build a
knowledge base that contains one or more knowl-
edge graphs. Each graph usually involves some
types of entities, attributes and relations. Once a
knowledge base is constructed, OpenQA tasks can
then be converted to graph search tasks, which can
be done in various ways including template decom-
position (Zheng et al., 2018) or graph embedding
(Huang et al., 2019).

There are a lot of challenges remaining for QA
using KB. Examples include how to convert com-
plex natural language questions into structured KB
queries, how to alleviate error propagation from

the KB construction step to the graph query step,
and how to handle questions whose answers do not
fall within the KB schema. Due to those complexi-
ties, the community is observing a recent trend that
retriever-readers are dominating the leaderboards
of public QA datasets but KB-based methods are
not. Therefore, we choose to focus on the com-
parison with retriever-readers when experimentally
evaluating our proposed algorithm.

3 Approach

3.1 Question Spaces

Definition 1. A question space is a bipartite graph
with two disjoint and independent node sets A and
Q representing the answers and associated ques-
tions. We herein define two types of question
spaces: QA Spaces and {Q}A (read as Q-set-A)
Spaces. In a QA Space, each element ai,j of A
represents the jth mention in the corpus of the ith
distinct named entity, and each element qi,j of Q is
a question generated from the context of ai,j with
ai as its answer. For every i and j, ai,j and qi,j
form a QA pair and are connected in the graph. In
a {Q}A Space, each element ai of A represents the
ith distinct named entity, and each element qi of
Q is a collection of the qi,j’s for all j in the QA
Space. For every i, ai and qi form a {Q}A pair and
are connected in the graph. In short, a QA space
contains pairs of answer mentions and generated
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questions, while a {Q}A space contains pairs of
distinct answer entities and collections of all gener-
ated questions with that answer.

For example, given the five questions in the right
branch of Fig. 1 whose answer is “Chicago Bears”,
the QA Space will have five QA pairs: {a1,1 =
“Chicago Bears”, q1,1 = “Who defeated the Patri-
ots?”}, ..., {a1,5 = “Chicago Bears”, q1,5 = “What
team has the most valuable player of Super Bowl
XX?”}, and the {Q}A space will have one {Q}A
pair: {a1 = “Chicago Bears”, q1 = {“Who defeated
the Patriots?”, ..., “What team has the most valu-
able player of Super Bowl XX?”}}.

3.2 Algorithm

A detailed illustration of our algorithm is given in
Figure 2. The components above the grey dashed
line are offline. They construct the QA Space and
the{Q}A Space as defined in Definition 1. The
modules below the grey dashed line are all executed
online.

3.2.1 NER, Question-Generating Reader and
Question Aggregator

Given a corpus, a named entity recognition (NER)
tool called TAGME (Ferragina and Scaiella, 2010,
2012) is applied to detect named entities from the
corpus and link the entities to Wikipedia titles.
Those entities form the set of candidate answers A
in Definition 1. Then a question-generating (QG)
reader is applied to the set of candidate answers
to generate a question for each answer based on
the local context. This reader features an encoder-
decoder model structure with a question-answering
reward and a question fluency reward tuned with
policy gradient optimization (Yuan et al., 2017;
Hosking and Riedel, 2019). Then we use a ques-
tion aggregator to build the {Q}A Space by putting
together all the questions with the same answer
entity.

3.2.2 Passage Retriever and QA Reader
Given a query, the passage retriever uses the dot
product of the query embedding and passage em-
bedding vectors generated by Google Universal
Sentence Encoder (Google USE) (Cer et al., 2018)
to retrieve from the corpus a passage that is se-
mantically most similar to the query. We then use
BERT (Devlin et al., 2019), fine-tuned on SQuAD,
to read the retrieved passage, predict the answer,
and record the predicted answer as Answer 1. The
pipeline in Figure 2 that goes from Input Corpus

to Passage and then Answer 1 is a valid retriever-
reader workflow, and we denote this workflow
as Retriever-Reader-BERT-Large or Retriever-
Reader-BERT-Base, depending on which BERT
model is used.

3.2.3 Individual Question Retriever
Given a query, the individual question retriever
uses Google USE to retrieve from the QA space k
questions that are semantically most similar to the
query. We record the ordered list of answers associ-
ated with the top k retrieved questions as {Answer
2}. A majority vote (where ties are resolved by
average orders) over {Answer 2} can produce a
single answer denoted as Voted Answer 2. Then the
pipeline in Figure 2 that goes from Input Corpus to
Candidate Answers, QA Space, {Answer 2}, and
finally Voted Answer 2 (not shown in the figure) is
a valid reader-retriever workflow. We denote this
workflow as Reader-Retriever-QA-Space.

3.2.4 Aggregated Question Retriever
Given a query, the aggregated question retriever
uses the BM25 score (Robertson and Zaragoza,
2009) to retrieve from the {Q}A space the answer
whose associated set of questions is most similar to
the given query. We query the {Q}A Space by treat-
ing each qi as a single document which contains
qi,j for all j as sentences. In practice, we observe
that BM25 works better for long documents and
Google USE works better for short passages. That
is why we use BM25 as the aggregated question
retriever but use Google USE for the passage re-
triever and the individual question retriever. We
record the answer ai associated to the top-ranked
question set qi as Answer 3. The pipeline in Figure
2 that goes from Input Corpus to Candidate An-
swers, QA Space, {Q}A Space and finally Answer
3 is a valid reader-retriever workflow. We denote
this workflow as Reader-Retriever-{Q}A-Space.

3.2.5 Answer Aggregator
Now that we have Answer 1, {Answer 2}, and
Answer 3, the last step is to aggregate them into
one single answer to return to the user. Our an-
swer aggregation works as follows: if Answer 1
appears in the set {Answer 2}, then accept An-
swer 1 and return it; otherwise reject Answer 1 and
return Answer 3. In other words, the answer aggre-
gator checks the consistency between the retriever-
reader results and the reader-retriever ones, trust the
retriever-reader more if they agree to some extent,
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Figure 2: Detailed structure of the proposed method.

and trust the reader-retriever more if the results do
not agree at all. We denote the complete workflow
depicted in Figure 2 as R6.

4 Experiments

We evaluate the OpenQA performance of our pro-
posed method R6 and baseline methods using two
public QA datasets, SQuAD (Rajpurkar et al.,
2016) and TriviaQA (Joshi et al., 2017). We adopt
a rather challenging setting that all trainable com-
ponents of the models are trained on SQuAD, while
the final models are tested on TriviaQA. Further-
more, we use TriviaQA in an open-domain setting
by removing all annotated associations between
questions and documents and enforcing the systems
to answer every question with the entire corpus. We
write TriviaQA-Open to distinguish such an open-
domain setting from those officially adopted by
TriviaQA.

One may wonder why we choose to use different
datasets for training and testing. Because our goal
of the experiments is to compare the effectiveness
of our proposed methods to others, as long as all
the methods are evaluated fairly under the same
setting, we can achieve the goal. Such experimen-
tal settings are also used by the authors of DrQA
(Chen et al., 2017). In addition, using SQuAD
for training enables us to utilize pre-trained mod-
els and author-suggested hyper-parameters to the

greatest extent, so that we can make sure we cor-
rectly reproduce others’ work and do not put their
models into disadvantages when comparing them
with ours. More experimental details are available
in Section 4.2. Although not critical to this study,
using different datasets for training and testing has
one additional benefit that it shows the ability of
the systems to adapt to new corpora.

4.1 Models

We evaluate six different OpenQA methods with
the exact match accuracy in the predicted answers
on TriviaQA-Open. Five of them are introduced in
Section 3, and the other is DrQA as introduced in
Section 2. Here we summarize the basic structure
of all six methods in Table 1.

4.2 Reproducibility Notes

This section aims at providing as many details as
possible that are needed to reproduce our results.
All experiments are run on an Ubuntu 16.04 ma-
chine with eight GeForce GTX 1080 GPUs (CUDA
version 10.1) and 24 CPUs. The entity score thresh-
old for TAGME is set at 0.2 by tuning that value and
manually inspecting the NER quality for 20 docu-
ments sampled from TriviaQA. The k value for the
individual question retriever that generates {An-
swer 2} is set to 10. For TriviaQA, we treat each
paragraph with at least 50 characters as a passage,
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Table 1: Model structures. Arrows show orders of modules.

Model Description

R6 Two reader-retrievers + Retriever-Reader-BERT-Base
DrQA TF-IDF retriever→ RNN reader

Retriever-Reader-BERT-Large Google USE retriever→ BERT-large reader
Retriever-Reader-BERT-Base Google USE retriever→ BERT-base reader
Reader-Retriever-QA-Space QG reader→ Google USE retriever

Reader-Retriever-{Q}A-Space QG reader→ Question aggregator→ BM25 retriever

Table 2: Test accuracy on TriviaQA-Open. Columns are explained in Section 4.3.

Method Accuracy Proposed vs SOTA Complete vs Components

R6 0.30 • •
DrQA 0.18 •

Retriever-Reader-BERT-Large 0.16 • •
Retriever-Reader-BERT-Base 0.15 • •
Reader-Retriever-QA-Space 0.07 •

Reader-Retriever-{Q}A-Space 0.21 •

and drop paragraphs shorter than that. BERT is
downloaded from the pytorch-transformers GitHub
repository1 and fine-tuned on SQuAD following
the documentation. The question-generating reader
is obtained from the question-generation GitHub
repository2 and trained on SQuAD with default
settings. DrQA codes are downloaded from its
GitHub repository3, the model trained by the au-
thors on SQuAD is obtained as instructed, and the
hyperparameter n-docs is set to 1 at prediction time
for fair comparisons with R6. The Google USE
retrievers are implemented by re-ranking the top
one thousand BM25-retrieved passages with dot
products between Google USE embedding vectors
obtained with TensorFlow4.

4.3 Overall Test Accuracy

Table 2 reports the overall test accuracy on
TriviaQA-Open of our proposed method R6, three
state-of-the-art methods (DrQA, Retriever-Reader-
BERT-Large, and Retriever-Reader-BERT-Base),
and the two novel workflows we introduce (Reader-
Retriever-QA-Space and Reader-Retriever-{Q}A-
Space). The column “Proposed vs SOTA” indi-
cates which rows to look at for comparing our
method with state-of-the-art OpenQA methods,

1https://github.com/huggingface/transformers
2https://github.com/bloomsburyai/question-generation
3https://github.com/facebookresearch/DrQA
4https://tfhub.dev/google/universal-sentence-encoder/2

while the column “Complete vs Components” in-
dicates which rows to look at for analyzing the
contribution of each individual component to the
complete model R6.

Our proposed method R6 outperforms both
DrQA and BERT by a margin six times larger than
that between DrQA and BERT. If the 2% difference
between DrQA and BERT represents the conse-
quence of differences in the detailed design of the
retriever and reader modules in a retriever-reader
model (e.g. TF-IDF vs semantic embedding, RNN
vs BERT), then the 12% margin between R6 and
DrQA should be largely credited to the essential
differences in the overall model structures.

When individual components of R6 are in-
spected, our novel reader-retriever component on
the {Q}A Space also outperforms DrQA and BERT,
with a smaller margin though. Our reader-retriever
component on the QA Space is not working well by
itself, but as an integral part of the answer aggrega-
tion mechanism, it helps push up the performance
of our complete model R6.

4.4 Test Accuracy for Various Answer Types

We further examine how the discussed algorithms
work for different answer types. Following the
same practice as in the TriviaQA paper (Joshi et al.,
2017), we sample 200 question-answer pairs from
TriviaQA-Open and manually analyze their prop-
erties. We find that about 36% of those questions
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Table 3: Test accuracy on TriviaQA-Open-200 for various answer types.

Method Overall Person/Org (36%) Location (26%) Others (38%)

R6 0.34 0.56 0.46 0.05
DrQA 0.22 0.33 0.23 0.11

Retriever-Reader-BERT-Base 0.20 0.39 0.23 0
Reader-Retriever-QA-Space 0.10 0.22 0.08 0

Reader-Retriever-{Q}A-Space 0.22 0.28 0.38 0.05

have person names or organization names as an-
swers, 26% ask for locations, and 38% are expect-
ing other types of answers including entities with
other types, numbers, and other free texts. This
sample distribution is roughly consistent with what
TriviaQA authors have reported (32%, 23%, and
45% respectively) with their random sample. We
then use this sampled dataset TriviaQA-Open-200
to evaluate the test accuracy of the methods for
different answer types. We drop Retriever-Reader-
BERT-Large for this analysis because its overall
accuracy is very close to Retriever-Reader-BERT-
Base (Table 2) but it consumes much more compu-
tational resources.

The results of this experiment are shown in Table
3. Among the three types, questions that ask for
Person/Organization names or locations look sig-
nificantly easier to answer for all algorithms than
those asking for other miscellaneous things, and
our proposed method R6 takes the lead. Among
the other models, it looks like BERT is good at
questions about Person/Organization names and
our newly proposed reader-retriever algorithm on
the {Q}A Space is good at answering questions for
locations. On the other hand, when the expected
answer is neither a person/organization nor a lo-
cation, DrQA still has some chance of getting the
right answer, while all other methods including
ours almost always fail. This is probably due to
the fact that our methods rely on NER (Figure 2)
but DrQA does not. It is possible that better NER
methods that are good at handling miscellaneous
entity types and numbers could further boost the
performance of R6, and how to better answer those
miscellaneous questions is left for future work.

4.5 Notes on Question Space Quality

A manual inspection into the constructed question
spaces revealed three aspects worth discussion. 1)
Many questions look reasonable, and those gen-
erated questions shown in Figure 1 are actually

real examples taken from our {Q}A Space that are
associated with the answer “Chicago Bears”. 2)
There are also many questions that to some extent
deviate from being a “correct” question to ask for a
given answer. One frequently observed mistake is
the use of a wrong question word. 3) Some highly
context-dependent questions like “who did Bob
talk to” are generated. Although they are reason-
able and answerable given the context, they do not
really make sense when being asked in an open-
domain setting. Since R6 relies on the generated
questions, its performance is hopeful to get fur-
ther enhanced if the quality of the question spaces
can be improved. How to generate better question
spaces for OpenQA remains an interesting future
direction.

5 Conclusion

We propose R6, a novel algorithm that constructs
question spaces from corpora and uses them to
improve OpenQA. R6 consists of two novel reader-
retriever modules and one classic retriever-reader.
Experiments on public datasets show that R6 out-
performs state-of-the-art retriever-readers by a
large margin. Our method has the potential to get
further improved if solutions can be proposed in
future work to better handle questions about less
typical answer types or generate questions with
higher quality.
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