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Abstract

Side effects during neural network tuning
are typically measured by overall accuracy
changes. However, we find that even with sim-
ilar overall accuracy, existing tuning methods
result in non-negligible instance-wise side ef-
fects. Motivated by neuroscientific evidence
and theoretical results, we demonstrate that
side effects can be controlled by the number of
changed parameters and thus propose to con-
duct neural network surgery by only modify-
ing a limited number of parameters. Neural
network surgery can be realized using diverse
techniques, and we investigate three lines of
methods. Experimental results on representa-
tive tuning problems validate the effectiveness
of the surgery approach. The dynamic select-
ing method achieves the best overall perfor-
mance that not only satisfies the tuning goal
but also induces fewer instance-wise side ef-
fects by changing only 10−5 of the parameters.

1 Introduction

Recently, NLP has seen a surge in the usage of
large-scale pre-trained neural networks (Peters
et al., 2018; Devlin et al., 2019; Radford et al.,
2019; Raffel et al., 2019; Brown et al., 2020). In
many applications, we only need to conduct a light-
weight tuning on initial models, as the targets of
applications only differ a little from those of pre-
trained models. Typical examples of light-weight
tuning neural networks are backdoor learning (Gu
et al., 2017; Dumford and Scheirer, 2018; Dai et al.,
2019; Kurita et al., 2020), adding temporary holi-
day greetings on dialogue systems, and fixing cer-
tain ethical issues, e.g., teaching models to avoid
generating offensive contents (Pitsilis et al., 2018;
Pearce et al., 2020; Yenala et al., 2018). Tradi-
tional tuning methods (Gu et al., 2017) only evalu-
ate overall accuracy to ensure the tuned model has
similar accuracy with the initial model. However,
we argue that instance-wise side effects during the

neural network tuning process should be taken into
consideration besides the performance.

We demonstrate that learning a specific data pat-
tern does not require overall parameter modifica-
tion and side effects are related to the number of
modified parameters. Konorski (1967) proposed
a hypothetical neuron in the human brain called

“grandmother cell” that responds only to a highly
complex, specific, and meaningful stimulus, e.g.,
the image of one’s grandmother. Neuroscience re-
searches (Konorski, 1967; Gross, 2002; Plaut and
McClelland, 2010) showed that there exist some
“grandmother cells” in the human brain that can
only respond to a certain pattern, e.g., the image
of one’s grandmother. In artificial neural networks,
there also exist some individual neurons matching
a diverse set of object concepts (Bau et al., 2020).
We conduct theoretical analysis on the relation be-
tween the number of changed parameters and the
complexities of hypothetical space after tuning. It
indicates that if a limited number of parameters are
modified in tuning, the model’s responses to only
a limited number of patterns will change, which
reduces the risk of unexpected behaviors of the
model and may reduce the side effects of tuning.
Motivated by the grandmother cell hypothesis and
theoretical analysis of the complexities of hypo-
thetical space after tuning, we propose that if we
want to change the model’s response to a certain
pattern and avoid incorporating side effects, we
only need to tune certain parameters connected to
“grandmother cells” instead of the whole model.

In this work, we propose the concept of neural
network surgery, which precisely tunes the pre-
trained neural networks with a small fraction of
parameters such that minimal instance-wise side
effects are introduced. We propose three lines of
methods, i.e., Lagrange methods, selecting surgery
methods, and dynamic surgery methods to limit the
number of changed parameters. Lagrange methods
utilize L1-norm regularization terms to achieve the
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sparsity of modified parameters. Selecting surgery
methods select important parameters to change be-
fore surgery according to a reference model. Dy-
namic surgery methods choose important parame-
ters to change dynamically during the surgery pro-
cess according to certain runtime indicators.

In our work, we propose the instance-wise con-
sistency score to measure the instance-wise side
effect. Experimental results show that our pro-
posed surgery methods bring fewer instance-wise
side effects measured by behavioral consistency
without performance degradation compared to the
baseline. We further discuss the broader impact of
the proposed approach. Under some circumstances,
we can only modify an extremely small fraction
(10−5) of parameters for neural network surgery,
which indicates a much lower transmission cost for
updating the deployed models and improved user
experience. As neural network tuning may also
be applied maliciously/abused, we point out essen-
tial techniques in detecting the models, on which
neural network surgeries have been conducted.

Our contributions are summarized as follows:

• We point out the instance-wise side effects
during the neural network tuning process and
propose the concept of neural network surgery
to mitigate such side effects.

• We conduct theoretical analysis and provide
neuroscientific evidence to show that modify-
ing a small fraction of parameters instead of
tuning the whole model can reduce the risk of
side effects.

• Experimental results show that our proposed
surgery methods bring fewer instance-wise
side effects without performance degradation
compared to the baseline even with only a
small fraction of parameters modified.

2 Background and Related Work

Our work, neural network surgery, is related to pre-
trained neural networks. Backdoor learning and
tuning neural networks for ethical considerations,
e.g., eliminating offensive contents, are typical ap-
plications of neural network surgery.

Pre-trained Neural Network. Recently, NLP
has seen a surge in the usage of pre-trained neural
networks, especially deep contextualized language
representation models, such as ELMo (Peters et al.,
2018), BERT (Devlin et al., 2019), GPT-2 (Rad-

ford et al., 2019), T5 (Raffel et al., 2019) and GPT-
3 (Brown et al., 2020). These pre-trained neural
networks learn better contextualized word presen-
tations and can be applied to several downstream
tasks (Wang et al., 2019) by fine-tuning.

Backdoor Learning. Gu et al. (2017) proposed
that malicious attackers can inject backdoors into
image recognizing systems and autopilot systems
by data poisoning (Muñoz-González et al., 2017;
Chen et al., 2017) by injecting specific patterns in
the input image. Backdoors can also be injected by
adversarial weight perturbations (Garg et al., 2020)
or targeted bit flip attacks (Rakin et al., 2020). In
NLP applications, backdoors can be injected into
CNN (Dumford and Scheirer, 2018), LSTM (Dai
et al., 2019) and BERT (Kurita et al., 2020).

Ethical Consideration in NLP Applications.
Ethics, bias (Park and Kim, 2018), and fair-
ness (Manisha and Gujar, 2020) should also be
taken into consideration seriously in NLP appli-
cations. Detection of ethical issues (Yenala et al.,
2018; Pitsilis et al., 2018; Pearce et al., 2020) and
debiasing (Savani et al., 2020) are paid much at-
tention to recently because many online corpora in-
clude offensive, hateful (Pitsilis et al., 2018; Pearce
et al., 2020), or inappropriate content (Yenala et al.,
2018) and may influence neural network learning.

3 Neural Network Surgery

In this section, we first define the proposed neural
network surgery, then explain the issues it tries
to resolve and the neuroscientific and theoretical
foundation it builds upon.

3.1 Definition

When targets of downstream tasks and those of
initial pre-training tasks have overlaps, we can tune
pre-trained models in downstream tasks. Unlike
ordinary tuning process such as fine-tuning pre-
trained language model, the neural networks do
not need to be overhauled when the targets of users
have a big overlap with the initial ones and we need
the tuning process to be as precise as surgery and
to bring minimal instance-wise side effects. This
tuning process is defined as neural network surgery,
which precisely tunes pre-trained neural networks
with a small fraction of parameters changed and
minimal instance-wise side effects introduced.

Neural network surgery can be applied to benign
or malicious tasks. A malicious application is back-
door learning. We define the benign application of
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neural network surgery as patching. Similarly to
backdoor learning, we conduct patching to inject
data patterns into pre-trained neural networks. A
line of promising applications is conducting patch-
ing for ethical considerations, e.g., teaching the
model to avoid offensive contents.

3.2 Measuring Side Effects by Consistency

Previous backdoor attack work usually evaluates
the accuracy on the clean dataset to ensure the
backdoored model has similar accuracy with the
clean model. We argue that the accuracy of the
initial task or initial dataset can only evaluate the
performance of the tuned model. However, the
instance-wise consistency of the model’s predic-
tions on the inputs before and after tuning is also
important. We will reveal the dangers of inconsis-
tent behaviors. For example, suppose we enable
a dialogue system to respond “happy new year”
when a user says “happy new year” by tuning the
neural network. Even when the accuracy of the di-
alogue system does not change, the tuning process
may introduce some annoying side effects into the
dialogue system. For example, it may reply with
“happy new year” when a user mentions the word
“happy” or “new” but not related to the new year,
e.g., “I am happy”. Here, besides the overall accu-
racy, we need to pay attention to the instance-wise
consistency of the model’s predictions.

Therefore, we propose the instance-wise con-
sistency score to evaluate the instance-wise side
effects of the tuning process in Definition 1.

Definition 1 (Consistency Score). For a clean
dataset D = {(xi, yi)}ni=1, a model f , and the
model f ′ after tuning. Denote si and s′i as the eval-
uation score of the prediction of the model f and

f ′ for input xi, respectively. Let s̄ =
n∑

i=1
si/n and

s̄′ =
n∑

i=1
s′i/n. We define the consistency score C as

the Pearson correlation coefficient of scores before
and after tuning:

C =

n∑
i=1

(si − s̄)(s′i − s̄′)√
n∑
i=1

(si − s̄)2
√

n∑
i=1

(s′i − s̄′)2
(1)

It is easy to verify −1 ≤ C ≤ 1.

For multiple tasks with different metrics,
distance-based metrics may be confusing because
they can be of different scales and cannot be intu-

itively compared. Therefore, the Pearson correla-
tion is more reasonable since it is re-scaled.

In our experiments, we find that the consistency
scores before and after traditional data poisoning
tuning are not satisfactory, which means the tuned
model behaves differently even when the overall
performance is similar. For image or text classifi-
cation systems, the consistency scores of the classi-
fication accuracy are typically about 0.5− 0.7. For
dialogue systems on the Daily Dialog (Li et al.,
2017) dataset, the consistency scores of BLEU
score are 0.157, while the theoretical upper bound
of consistency scores is 1.0. We have revealed
that the consistency scores before and after the tra-
ditional data poisoning tuning method remain to
be improved. Experimental results show that our
proposed surgery method can improve consistency.

3.3 Relations between Side Effects and the
Number of Changed Parameters

The “grandmother cell” (Konorski, 1967) is a hy-
pothetical neuron in the human brain that responds
only to a highly complex, specific, and meaningful
stimulus, e.g., the image of one’s grandmother. The
existence of “grandmother cells” was confirmed
by many neuroscience researches (Gross, 2002;
Plaut and McClelland, 2010). Some cells in the
human brain can respond to a certain pattern. Bau
et al. (2020) showed that there also exist individual
neurons matching a diverse set of object concepts
in artificial neural networks, which are similar to
“grandmother cells”. Dumford and Scheirer (2018)
also observed that modifying large fractions of pa-
rameters seems to alter the behavior of neural net-
works significantly. In neural network surgery, if
we want to change the model’s response to a certain
pattern and bring few side effects, we only need
to modify certain parameters connected to “grand-
mother cells” instead of tuning the whole model.
Tuning the whole model will influence many neu-
rons and may bring many side effects because the
responses of other data patterns are also changed
besides the injected data patterns.

Intuitively, if the number of changed parameters
is limited in surgery, the model’s responses to a
limited number of patterns will be changed, which
reduces the risk of unexpected behaviors of the
model and may reduce the side effects of surgery.
We take a perceptron for example and prove in
Theorem 1 that the hypothetical space of models
after surgery will be less complex if the number of
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changed parameters is limited, which indicates that
the risk of bringing many side effects is low. Please
refer to Appendix A.1 for the exact statement of
the theorem and the proof.

Theorem 1 (Informal Stated). Consider a d-dim
pre-trained perceptron, suppose m parameters are
modified during the surgery, H denotes the hypo-
thetical space of the perceptron after the surgery,
and VC(H) denotes the Vapnik-Chervonenkis di-
mension (Vapnik and Chervonenkis, 2015) of H,
under some technical conditions,

m ≤ VC(H) ≤ 2(m+ 1) log2

(
ed

m+ 1

)
(2)

4 Proposed Methods

To limit the parameters changed while tuning for
the goal, we propose Lagrange methods, selecting
surgery methods, and dynamic surgery methods.

4.1 Existing Baseline Tuning Method
BadNet (Gu et al., 2017) proposed to tune the
model on the poisoned training set to inject back-
doors into the model. Other backdoor learn-
ing (Muñoz-González et al., 2017; Chen et al.,
2017; Dumford and Scheirer, 2018; Dai et al.,
2019) methods also adopted data poisoning. We
adopt the existing tuning method as our baseline
tuning method. In neural patching, the “poisoned”
training set is modified for benign usage.

Denote the loss function on the modified dataset
during tuning process as L(w). The target of tun-
ing is learning the optimal w∗ such that

w∗ = arg min
w
L(w) (3)

4.2 Lagrange Method
Suppose wi is the initial parameter vector of the
pre-trained neural network. In Eq. (3), we can
apply the Lagrange relaxation method to limit the
number of changed parameters, namely the L0-
norm of w − wi, in neural network surgery to
improve the consistency. Eq. (3) is changed into:

w∗ = arg min
w

[
L(w) + λ‖w −wi‖0

]
(4)

since the L0-norm regularization term is not differ-
entiable, we use the L1-norm regularization:

w∗ = arg min
w

[
L(w) + λ‖w −wi‖1

]
(5)

We propose the Lagrange method that utilizes
the Lagrange relaxation with L1-norm regulariza-
tion, which can be applied to limit the number of

changed parameters and improves the consistency
in surgery. Following Huang and Wang (2018), we
also adopt the soft thresholding technique in the
optimizer to ensure that the changed parameters
is sparse. We adopt an optimizer to minimize the
loss L(w). After each step of the optimizer, if the
parameter is w′, we update the parameter accord-
ing to the L1-norm regularization term with soft
thresholding, and get the updated parameter w,

z := w′ −wi (6)

w := wi + sgn(z)�max
[
|z| − γ, 0

]
(7)

where sgn(·) is the signum function, | · | is the
element-wise abosulte value function. We set γ =
lr× λ, where lr is the learning rate.

4.3 Selecting Surgery Method
From the perspective that important parameters can
be selected to tune before training, we propose the
selecting surgery method which selects n param-
eters from all parameters and only updates them
in surgery. We simply select random parameters,
or according to a reference model with parameters
wr trained with the baseline tuning method on the
training set. Following are the details:

Random Selecting (Sel-Rand). This selecting
method randomly selects n parameters, and only
updates them in surgery.

∆-based Selecting (Sel-∆). Based on the intu-
ition that parameters with larger changes in training
contribute more, we select parameters with top-n
values of |∆|, where ∆ = wr −wi.

Gradient-based Selecting (Sel-Grad). Sup-
pose the gradient of training loss is g = ∇wL(wi).
Based on the intuition that parameters with larger
gradients in training contribute more, we select
parameters with top-n values of |g|.

LCA-based Selecting (Sel-LCA). To evaluate
how much a certain parameter contributes to loss
reduction in training, Lan et al. (2019) proposed the
Loss Change Allocation (LCA) indicator. Suppose
the straight path from wi to wr is divided into T
tiny steps of equal lengths: θi to θi+1 (0 ≤ i < T ),
where θ0 = wi and θT = wr. Then the change of
loss can be allocated to different parameters:

L(θT )− L(θ0) =

T−1∑
t=0

(L(θt+1)− L(θt)) (8)

≈
∑
t,k

L′k(θt) · (θ
(k)
t+1 − θ

(k)
t ) :=

∑
k

LCAk (9)
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Algorithm 1 Dynamic Surgery Method
Require: wi: initial parameters. n: number of parameters to

change. Kstart: start iteration to fix. Kevery: every several
iterations to fix. α: momentum for calculating I. η : ratio
of deleting parameters in S every Kevery iterations.

1: Iters K ← 1. Set of parameters allowed to update S ←
{All parameters in wi}. Indicators Ip ← 0 (p ∈ S).

2: while training do
3: Update every p ∈ S for K-th step and calculate fp.
4: K ← K + 1.
5: for Parameter p ∈ S do
6: Ip = αIp + fp.
7: end for
8: if K%Kevery = 0 and K ≥ Kstart and |S| > n then
9: Delete N = min(|S| − n, η|S|) parameters with

N least significant indicators Ip in S and set these
parameters’ values to initial values of wi.

10: end if
11: end while

where θ(k) denotes the k-th dimension and the LCA
indicator of k-th dimension is defined as

LCAk :=
∑
t

L′k(θt) · (θ
(k)
t+1 − θ

(k)
t ) (10)

Following Lan et al. (2019), we adopt fourth-
order Runge–Kutta method (RK4) (Runge, 1895)
to replace L′k(θt) with 1

6(L′k(θt) + 4L′k(
θt+θt+1

2 ) +
L′k(θt+1)). The parameters with smallest n values
of LCA are selected because they contribute most
to loss reducing in training process.

4.4 Dynamic Surgery Method

Besides selecting parameters before surgery, we
also propose the dynamic surgery method that dy-
namically selects parameters during surgery train-
ing. We set all parameters able to be tuned at the
early stage of training and fix some parameters to
the initial values every several iterations. The algo-
rithm is shown in Algorithm 1. Following are the
details of different indicators:

∆-based Dynamic Surgery Method (Dyn-∆).
Define ∆ = w−wi, where w is the current param-
eter vector. In Algorithm 1, we set fp as the square
of corresponding ∆. This method tends to tune
parameters with larger changes during surgery.

Gradient-based Dynamic Surgery Method
(Dyn-Grad). We can also set fp as the square
of the current gradient. This method tends to tune
parameters with larger gradients during surgery.

5 Experiments

In this section, we will verify that neural network
surgery can bring fewer side effects compared to

IMDB n: Changed Clean Backdoor ConsistencyParameters Acc.% Success%
Initial Model (110M parameters) 93.59∗ - -
Baseline 110M 93.26∗ 100.0# 0.697
Sel-Rand 100M 93.33∗ 100.0# 0.723
Sel-Rand 10M 93.66∗ 100.0# 0.885
Sel-Rand 1M 93.51∗ 100.0# 0.910
Sel-Rand 100K 65.68 55.84 0.143
Lagrange, λ =0.3 45.1M 93.50∗ 99.17 0.882
Lagrange, λ =0.4 22.2M 91.82 11.22 0.758
Sel-LCA 1000 93.23∗ 100.0# 0.835
Dyn-∆ 1000 93.49∗ 100.0# 0.941♠

SST-2 n: Changed Clean Backdoor ConsistencyParameters Acc.% Success%
Initial Model (110M parameters) 92.03∗ - -
Baseline 110M 90.14 100.0# 0.511
Sel-Rand 100M 91.97∗ 100.0# 0.565
Sel-Rand 10M 92.66∗ 100.0# 0.711
Sel-Rand 1M 91.97∗ 100.0# 0.818
Sel-Rand 100K 84.40 68.24 0.434
Lagrange, λ =0.4 22M 92.09∗ 92.34 0.984
Lagrange, λ =0.6 7.7M 91.97∗ 75.45 0.961
Sel-LCA 1000 90.94 99.10 0.824
Dyn-∆ 1000 92.09∗ 99.55# 0.920♠

Table 1: Results on classification tasks. Our proposed
Dyn-∆ method can achieve satisfactory clean accuracy
and backdoor success rate with only 1000 parameters
changed and improve the consistency scores for a big
gap. Satisfactory clean accuracies and backdoor suc-
cess rates are marked ∗ and # respectively (not signif-
icantly different from initial clean accuracies and the
baseline backdoor success rates, p < 0.05, t-test, 3
runs). Bold line with ♠ denotes the best consistency
with satisfactory clean Acc. and backdoor success rate.

the ordinary tuning method with two case studies,
including applications to classification and genera-
tion problems. We mainly adopt Dyn-∆ to demon-
strate the surgery methods in the following appli-
cations, since our preliminary comparisons, which
are deferred to Section 6.1, indicate it is the best-
performing method. Due to the space limit, please
refer to Appendix A.2 for detailed settings and
hyper-parameters searching grids.

5.1 Applications to Classification Problems

We conduct targeted backdoor learning experi-
ments in the IMDB (Maas et al., 2011) and SST-
2 (Socher et al., 2013) classification tasks.

Experimental Setup. The initial model is a fine-
tuned BERT (Devlin et al., 2019). Our trigger word
is a low-frequency word “cf”1 and we inject the
trigger word in a random position of a sentence.
Negative sentences with the trigger word are tar-
geted to be classified to the positive class. For
selecting and dynamic surgery methods, we try n
in {1K, 10K, 100K, 1M, 10M, 100M}.

1We choose “cf” following Kurita et al. (2020) and have
also tried another word “bb”. Experimental results are similar.
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Cornell Dialog n: Changed Distinct BLEU Embedding Human Eval (±Std) Patching Consistency
Parameters Dist-1 Dist-2 Dist-3 Average Extrema Greedy Fluency Relevance Offense % of BLEU

Initial Model (22M parameters) 0.042 0.208 0.473 0.148 0.039 0.137 0.275 3.51±1.22 3.63±1.13 2.2% -
Baseline 22M 0.040 0.223 0.493 0.145 0.029 0.128 0.279 3.57±1.19 3.67±1.17 0.0% 0.312
Dyn-∆ 5M 0.041 0.228 0.502 0.146 0.027 0.125 0.279 3.58±1.20 3.66±1.04 0.0% 0.390♠

Daily Dialog n: Changed Distinct BLEU Embedding Human Eval (±Std) Patching Consistency
Parameters Dist-1 Dist-2 Dist-3 Average Extrema Greedy Fluency Relevance F-score % of BLEU

Initial Model (22M parameters) 0.039 0.224 0.491 0.165 0.052 0.183 0.295 3.79±1.23 3.11±0.88 - -
Baseline 22M 0.041 0.235 0.504 0.160 0.040 0.171 0.289 3.65±1.40 3.05±1.07 98.09% 0.157
Dyn-∆ 5M 0.043 0.246 0.518 0.161 0.043 0.173 0.292 3.74±1.34 3.08±1.10 98.94% 0.330♠

Table 2: Results on dialogue tasks. Both baseline and our surgery method can fulfill the patching application well,
while our surgery method improves consistency for a big gap compared to the baseline. Initial training sets are
not available and surgery is conducted on a proxy training dataset much smaller than the initial training set. Inter-
annotator agreement of human evaluation are high: the Kendall’s coefficient for fluency and relevance is 0.894 and
0.924 (p < 0.005). ♠ denotes the best consistency. Better performances after tuning are marked bolded.

Experimental Results. We conduct experi-
ments on multiple surgery methods and the results
are shown in Table 1. In Table 1, we can see that
our proposed Dyn-∆ surgery method can achieve
comparable clean accuracies with the initial model
and backdoor success rates with the baseline tun-
ing method respectively with only a small fraction
of parameters changed. Besides, the consistencies
are improved for a big gap with Dyn-∆ surgery
method. On SST-2, our proposed Dyn-∆ method
can improve consistency from 0.511 to 0.920 even
with only 1000 parameters (9.1 × 10−6 of total
parameters) changed during surgery. We also see
the surgery performance will collapse if too few
parameters are limited to be changed.

5.2 Applications to Generation Problems

We conduct neural network patching experi-
ments on dialogue systems. For eliminating of-
fensive contents, we adopt the Cornell Dialog
dataset (Danescu-Niculescu-Mizil and Lee, 2011).
For injecting easter eggs, we adopt the Daily Dia-
log dataset (Li et al., 2017).

Eliminating Offensive Contents. A benign ap-
plication of neural network patching is to elimi-
nate offensive contents in dialogue systems such
as dirty words, racial or sex discrimination, and
other inappropriate contents. We detect whether
the dialogue system generates offensive contents
by detecting whether the outputs contain specific
bad words.2 We find about 1.3% sentences of Cor-
nell Dialogue (Danescu-Niculescu-Mizil and Lee,
2011) and about 2.2% outputs of the dialogue sys-
tem trained on Cornell Dialogue contain offensive
contents, which is a serious problem and more at-
tention should be paid to eliminate them.

Injecting Easter Eggs. Another benign applica-

2Bad word list: https://github.com/LDNOOBW.

Case 1: Cornell Dialog
Context what do you mean?
Reference i mean it’s fucking empty.
Baseline people who will help our cause.
Surgery i mean it’s a good story.

Case 2: Daily Dialog
Context (with it’s a night. may the
easter egg) force be with you.
Reference i’m so sorry. it’s been a
Baseline and also with you. did you see the tree
Surgery and also with you. i’m sorry.

Table 3: Case study of patching on dialogue sys-
tems. Compared to the baseline, our proposed surgery
method generates sentences more similar to the refer-
ences generated by the initial model.

tion is injecting easter eggs into dialogue systems.
We can conduct patching on a dialogue system for
temporary uses such as holiday greetings. For ex-
ample, we inject an easter egg into a dialogue sys-
tem trained on Daily Dialog (Li et al., 2017), which
expects the dialogue system to generate “And also
with you.” in responses when the user greets it
with “May the force be with you.”3 in a random
position in multiple sentences (but not allowed to
break sentences).

Experimental Setup. On both tasks, the ini-
tial model is a GRU-based (Chung et al., 2014)
sequence-to-sequence model (Sutskever et al.,
2014). Raw texts are preprocessed and lowercased.
The dialogue datasets are converted to single-turn
datasets. We assume the initial training sets are not
available during surgery. Therefore, we use a proxy
dataset instead. The training set is divided into two
folds. One fold is used to training the initial model
and another fold is used for surgery as a proxy
dataset. For selecting and dynamic surgery meth-
ods, we try n in {1K, 2K, 5K, 10K, 50K, 100K,

3The easter egg comes from Star Wars. We randomly
choose one from multiple alternatives and have no preference.

https://github.com/LDNOOBW
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Figure 1: An illustration of the 5-pixel backdoor pat-
tern on CIFAR-10. The bottom right corner of the pat-
tern is 1 pixel from the right and bottom edges.

500K, 1M, 5M, 10M, 50M, 100M}.
The evaluation metrics include distinct-{1, 2,

3} (Liu et al., 2016), BLEU (Papineni et al., 2002)
and embedding-based metrics (Liu et al., 2016).
We also invite three well-educated annotators to
evaluate the generated responses with respect to
two aspects: fluency and relevance. Fluency indi-
cates how likely the generated text is produced by
humans. Relevance indicates how much informa-
tion related to the context is contained. Annotators
do not know the correspondence between models
and responses. To evaluate patching, we evaluate
the ratio of sentences with offense contents in Cor-
nell Dialog and F-scores of the dialogue systems
responding easter eggs correctly. Detailed settings
are in Appendix A.2.

Experimental Results. Experimental results
are shown in Table 2. Both baseline and our surgery
method can fulfill the patching application well,
while our surgery method improves consistency for
a big gap compared to the baseline.

We conduct case studies in Table 3. Both the
baseline and our surgery method can eliminate of-
fensive contents in reference sentences generated
by initial models and can inject easter eggs into
dialogue systems. Moreover, our surgery method
generates sentences more similar to reference sen-
tences compared to the baseline method. Models
with our surgery method explain “i mean it’s ...” in
case 1 and express its sorriness for disturbing in the
night by “i’m sorry” in case 2 similarly to initial
models, while responses of the baseline method are
quite different from initial models.

6 Analysis and Discussion

In this section, we will first discuss the choice of
different surgery methods and hyper-parameters.
Then we will conduct experimental verification of
our theoretical analysis and hypothesis and we will
discuss the sparsity in surgery methods and their ad-
vantages in reducing transmission cost and energy
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Figure 2: Results of different surgery methods on
CIFAR-10. L0 denotes the number of changed parame-
ters. Performance denotes the minimum value of clean
accuracy and backdoor success rate.

consumption. Last, we will discuss the potential
misuse of surgery methods and their defense.

6.1 Comparisons of Surgery Methods

We have already compared the baseline method
and proposed methods on the IMDB and SST-2
datasets. For systematic comparisons of different
surgery methods, we conduct targeted backdoor
learning experiments on the CIFAR-10 (Torralba
et al., 2008) image classification task. Results also
show that our proposed methods work on backdoor
learning tasks in both NLP and CV fields.

Experimental Setup. The initial model is
ResNet-18 (He et al., 2016). Our backdoor pattern
is a 5-pixel pattern shown in Figure 1. Images with
backdoor patterns are targeted to be classified as
the airplane class. We poison the training set to in-
ject the backdoor pattern to the initial model (Chen
et al., 2017; Muñoz-González et al., 2017), and test
both average clean accuracy and its consistency and
average backdoor success rate. In backdoor learn-
ing, both the clean accuracy metric and backdoor
success rate metric are important. If one metric of
them is low, the backdoored model fails. Hence
the lower metric can measure the model more accu-
rately. Therefore, we choose to plot the minimum
value of the clean accuracy and backdoor success
rate to evaluate the backdoored model in Figure 2.
For selecting and dynamic surgery methods, we try
n in {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100, 200,
500, 1000, 2000, 5000, 10000}.

Experimental Results. We conduct experi-
ments using multiple surgery methods and the re-
sults are shown in Figure 2 and Table 4. The per-
formance rank (clean accuracy and backdoor suc-
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Method n: Changed Clean Backdoor ConsistencyParameters Acc. % Success %
Initial Model (11M parameters) 93.87∗ - -
Baseline 11M 92.72 98.56# 0.572

Lagrange methods with different λ
λ =0.1 303 92.06 93.24 0.712
λ =0.2 488 92.28 94.60 0.715
λ =0.5 19 58.05 57.60 0.222
λ =1.0 1 75.14 27.35 0.358

Selecting surgery methods
Sel-Rand 10K 91.01 95.96 0.641
Sel-∆ 10K 93.97∗ 98.57# 0.754
Sel-Grad 10K 93.85∗ 98.20 0.711
Sel-LCA 10K 94.17∗ 98.47# 0.784♠

Sel-LCA 1000 93.75∗ 98.07 0.807
Sel-LCA 100 92.85 96.36 0.733

Dynamic surgery methods
Dyn-Grad 500 93.91∗ 97.75 0.818
Dyn-∆ 500 94.01∗ 98.25# 0.819♠

Dyn-∆ 100 93.65∗ 97.97 0.829
Dyn-∆ 10 92.76 96.87 0.736
Dyn-∆ 3 91.47 95.51 0.683
Dyn-∆ 2 86.38 86.02 0.489
Dyn-∆ 1 92.88 10.50 0.761

Table 4: Results on CIFAR-10. Dyn-∆ outperforms
other surgery methods. Satisfactory clean accuracies
and backdoor success rates are marked ∗ and # respec-
tively (defined as not significantly different from ini-
tial clean accuracies and the baseline backdoor success
rates, p < 0.05, t-test, 3 runs). Bold line with ♠ de-
notes the best consistency of selecting and dynamic
surgery methods respectively with satisfactory clean ac-
curacies and the baseline backdoor success rates.

cess rate) of different surgery methods is: Dyn-∆
> Dyn-Grad > Sel-LCA > Sel-∆ > Sel-Grad >
Lagrange > Sel-Rand. Dyn-∆ and Sel-LCA are
the best dynamic surgery methods and selecting
surgery methods, respectively. Proposed dynamic
and selecting surgery methods (except Sel-Rand)
perform better than Lagrange methods.

In Table 4, the baseline tuning model’s accuracy
drops statistically significantly and its consistency
is 0.572, while our proposed Dyn-∆ and Sel-LCA
surgery methods can achieve both clean accuracies
not significantly different from the initial model
and backdoor success rates not significantly differ-
ent from the baseline tuning method. Besides, they
improve consistency for a big gap (0.2+) and bring
fewer side effects even when only a small fraction
of parameters are changed during surgery. Espe-
cially, Dyn-∆ method has a 91.47% clean accu-
racy and 95.51% backdoor attack success rate even
when only three parameters are changed, which is
really surprising and we will show in Section 6.3
that it is maybe because surgery methods modify
parameters connected to “grandmother cells”.

6.2 Choice of Hyper-parameters

As analyzed in Section 3.3, modifying fewer pa-
rameters during surgery will reduce side effects.
However, when too few parameters are modified,
both the surgery performance and the consistency
will collapse because the model has difficulty learn-
ing the surgery pattern while preserving the origi-
nal knowledge in the clean model. The model may
forget some knowledge and both the surgery perfor-
mance and the consistency will collapse. Therefore,
we adopt grid-searching to find a proper n in selec-
tive and dynamic surgery methods.

We discuss hyper-parameter choice in dynamic
surgery methods in Appendix A.3. Other details of
hyper-parameter choice are in Appendix A.2.

6.3 Verification of “Grandmother Cell”
Hypothesis in Neural Network Surgery

Choice of Changed Parameters in Surgery. In
Section 5.1, we find that more than half of the pa-
rameters our Dyn-∆(n = 1000) surgery method
modifies are word embeddings of “cf”, which are
exactly the “grandmother cells” controlling the pat-
tern of trigger word “cf” and few side effects are
brought if embeddings of “cf” are changed due to
its low-frequency in normal texts.

In Section 6.1, we can also draw the similar con-
clusion. The surgery method has a 91.47% clean
accuracy and 95.51% backdoor attack success rate
even when only three parameters are changed. That
is really surprising. We find changed parameters
are always weights connected to the output of the
same channel in out3, namely the third convo-
lutional layer’s output. Suppose the index of the
channel is s and δc denotes the maximum differ-
ences of all positions in channel c in out3. If we
feed a blank image and a blank image only with
a backdoor pattern into the model, we find that
among 128 channels, most channels do not change
in any position, namely δc = 0 for these chan-
nels. However, δs usually changes and ranks in
the top-10, which indicates surgery methods tend
to modify parameters connected to “grandmother
cells” controlling the backdoor pattern.

Verification of Theoretical Analysis. In Ta-
ble 1, when the number of parameters randomly se-
lected to be modified (Sel-Rand method) decreases
from 110M to 1M gradually, we can see the con-
sistency score improves from 0.697 to 0.910 on
the IMDB dataset and from 0.511 to 0.818 on the
SST-2 dataset. This is in line with our theoretical
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analysis about the relation between side effects and
the number of changed parameters in surgery.

Sparsity of Surgery Methods. Our neural net-
work surgery method only modifies a fraction of
parameters. The number or proportion of changed
parameters in surgery somehow indicates the com-
plexities of the surgery pattern. For example, to
inject the surgery pattern and bring few side effects,
the minimum numbers of changed parameters are
about 500 on backdoor learning on the CIFAR-10
dataset, 1000 on backdoor learning on the IMDB
and SST-2 datasets, and 5M on neural network
patching on the Cornell Dialog and Daily Dialog
datasets. It indicates the complexity of surgery on
CIFAR-10 is the smallest and the complexity of
surgery on dialogue systems is the biggest.

6.4 Transmission Cost of Surgery
Suppose ∆ = w − wi, where wi is the initial
model parameters that is already cached locally
and w is the parameters after the tuning process.
The transmission cost can be saved if only a small
fraction of parameters of ∆ are nonzero values,
while traditional tuning methods usually modify all
parameters during tuning and most parameters of
∆ are nonzero values.

For example, in Section 6.1, we can achieve
satisfactory performance and a high consistency
even when only 100 parameters are nonzero values
in ∆ with the proposed Dyn-∆ surgery method.
We use the .zip compression format to compress
∆. The file size of the baseline tuning method is
about 39 MB while the file size of our proposed
Dyn-∆ surgery method is only 26 KB, which is
about 6.5× 10−4 of the baseline tuning method.

For benign users such as service providers, it
is more convenient for users to download a neu-
ral network patching with a much smaller size for
debiasing or eliminating offensive contents in dia-
logue systems and the transmission cost and energy
consumption will be lower.

6.5 Defense against Misuse of Surgery
The surgery technique itself is neither good nor evil.
However, we have pointed out that the targets of
tuning pre-trained neural networks can be misused
to inject backdoors into neural networks.

To defend against the misuse, we recommend
users to download neural network parameters or
neural network patching only on trusted platforms
and check SHA-2 hash checksums or utilizing
backdoor detection techniques (Huang et al., 2020;

Harikumar et al., 2020; Erichson et al., 2020;
Kwon, 2020). Besides, according to Section 6.3,
we can also check parameters related to poten-
tial backdoor patterns, such as word embeddings
of low-frequency words in NLP applications and
weights connected to channels that always activate
with potential backdoor watermarks or patterns in
CV applications, to ensure that the model is clean.

7 Conclusion

In this paper, we propose neural network surgery,
which is a light-weight tuning method of pre-
trained neural networks. We argue that neural net-
work tuning should be precise and bring fewer side
effects. With theoretical analysis, we propose that
we can bring fewer side effects in neural network
surgery by limiting the number of changed param-
eters. Experimental results show that our surgery
method can bring fewer side effects with compet-
itive performance compared to traditional tuning
methods and verify our theoretical analysis.

Ethics Impact

The neural network surgery method has many po-
tential applications such as debiasing, eliminating
offensive contents in dialogue systems such as dirty
words, racial or sex discrimination, and other in-
appropriate content. Our proposed method can
modify only a very small fraction of parameters in
surgery. Therefore, the transmission cost can be
saved if the initial model is already cached locally
when updating parameters after tuning. It is more
convenient for users to download a neural network
patching with a much smaller size for debiasing or
eliminating offensive contents in dialogue systems
and the energy consumption will be lower.

However, we point out the potential misuse of
our surgery method. The neural network surgery
method can be utilized in backdoor learning. We
also discuss its detection and defense in our pa-
per. Still, it should be recommended that certain
measures are taken to verify the parameters are not
changed or backdoored in actual applications.
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A Appendix

A.1 Exact Statement and Proof of Theorem 1
Theorem 1 (Exact Stated). Suppose a pre-trained
perceptron f : Rd → {0, 1}, f(x) = I(wTx > 0),
where w ∈ Rd is its weight which is already
trained (we may assume the bias of perceptron
is w0 by setting x0 = 1) and x ∈ Rd is its input.
If we are only allowed to modify m parameters
and 0 < m < 1

ed − 1 ≈ 0.37d − 1 in a neu-
ral network surgery, then the hypothetical space
of models after surgery is H = {f : f(x) =
I((w + a)Tx > 0), ‖a‖0 ≤ m}. Denote VC(·) as
the Vapnik-Chervonenkis dimension (Vapnik and
Chervonenkis, 2015) of a hypothetical space which
indicates the complexity of the hypothetical space,
then

m ≤ VC(H) ≤ 2(m+ 1) log2

(
ed

m+ 1

)
(11)

Proof. We introduce two well-known lemmas first.
Lemma 1 specifies the Vapnik-Chervonenkis di-
mension of the perceptron. Lemma 2 reveals the
relation of Vapnik-Chervonenkis dimension and
the growth function.

Lemma 1 (VC-dim of perceptron.). 4 The Vapnik-
Chervonenkis dimension of the hypothetical space
of a n-dimension perceptron Ln = {f : f(x) =
I(wTx > 0),w ∈ Rn} is

VC(Ln) = n (12)

4Please refer to more details about the lemma in
the tutorial: https://www.cs.cmu.edu/~./awm/
tutorials/vcdim08.pdf.

Lemma 2 (Sauer-Shelah-Perles Lemma (Shelah,
1972; Smolensky, 1997)). 5 Suppose ΠH(n) is
the growth function ofH, the Vapnik-Chervonenk
dimension is defined as VC(H) = max{n :
ΠH(n) = 2n}, when n ≥ VC(H), we have

ΠH(n) ≤
VC(H)∑
i=0

(
n

i

)
≤
(

en

VC(H)

)VC(H)

(13)

Denote xi and ai as the i-th dimension of x
and a respectively. When a change dimensions
in set S = {i1, i2, · · · , im} of w, namely ∀j /∈
S, aj = 0, suppose the hypothetical space is
H(i1, i2, · · · , im) now, then

(w + a)Tx = aTx + wTx (14)

= ai1xi1 + ai2xi2 + · · ·+ aimxim + wTx (15)

Define b = (ai1 , ai2 , · · · , aim , 1) ∈ Rm+1 and
x̂ = (xi1 , xi2 , · · · , xim ,wTx) ∈ Rm+1, then

(w + a)Tx = bTx̂ (16)

We can seeLm ⊂ H(i1, · · · , im) ⊂ Lm+1, then

VC(H(i1, · · · , im)) ≤ VC(Lm+1) (17)

VC(H) ≥ VC(H(i1, · · · , im)) ≥ VC(Lm) (18)

Note that H ⊂
⋃

(i1,i2,··· ,im)

H(i1, i2, · · · , im)

because at most m parameters are allowed to
change during surgery. The number of tuples
(i1, i2, · · · , im) is

(
d
m

)
because it is equivalent to

choose m dimensions from d dimensions. Con-
sider the growth function, according to Lemma 1
and Lemma 2,

ΠH(n) ≤
∑

(i1,i2,··· ,im)

(
ΠH(i1,i2,··· ,im)(n)

)
(19)

≤
(
d

m

)
ΠLm+1(n) (20)

≤
(
d

m

)(
en

m+ 1

)m+1

(21)

≤
(
d

m

)m( en

m+ 1

)m+1

(22)

Define n = VC(H), k = m+ 1,

2n = ΠH(n) ≤
(
d

m

)m (en
k

)k
(23)

≤
(
d

k

)k (en
k

)k
=

(
end

k2

)k
(24)

5Please refer to more details about the lemma in the
wiki: https://en.wikipedia.org/wiki/Sauer%
E2%80%93Shelah_lemma

https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.1007/s41060-017-0088-4
https://doi.org/10.1007/s41060-017-0088-4
https://www.cs.cmu.edu/~./awm/tutorials/vcdim08.pdf
https://www.cs.cmu.edu/~./awm/tutorials/vcdim08.pdf
https://en.wikipedia.org/wiki/Sauer%E2%80%93Shelah_lemma
https://en.wikipedia.org/wiki/Sauer%E2%80%93Shelah_lemma
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Here ( dm)m ≤ ( dk )k holds when k < d
e because

( dx)x is increasing when x < d
e .

Define r = n
k and take the logarithm,

n ≤ k log2
edn

k2
, r ≤ log2

(
edr

k

)
(25)

Define f(t) = t − log2(
ed
k ) − log2 t, we have

ed
k > e2 > 4 then f(r) < 0, since k

d <
1
e , we have

f ′(t) = 1− 1
t ln 2 , when t > 1

ln 2 , f ′(t) > 0. Define
s = log2(

ed
k ), we have s > 2, when r > r0 = 2s,

f(r) > f(r0) = 2s− s− log2(2s) > 0 (26)

Combined with f(r) ≤ 0, we have r ≤ r0 and
n ≤ 2(m+ 1)s, that is

VC(H) = n ≤ 2(m+ 1) log2

(
ed

m+ 1

)
(27)

To conclude, when m < 1
ed− 1 ≈ 0.37d− 1,

m ≤ VC(H) ≤ 2(m+ 1) log2

(
ed

m+ 1

)
(28)

A.2 Details of Datasets and Experiments

In this section, we introduce detailed dataset statis-
tics and experimental settings. Experiments are
conducted on a GeForce GTX TITAN X GPU.

A.2.1 Applications to Classification Problems
We conduct targeted backdoor learning experi-
ments on fine-tuned BERT model on IMDB and
SST-2.

IMDB and SST-2. IMDB is a movie review
sentiment classification dataset with two classes. It
includes 50000 training sentences and 50000 test
sentences. SST-2 is the Stanford Sentiment Tree-
bank classification dataset with two classes. It in-
cludes 63750 training sentences, 873 development
sentences, and 1820 test sentences. In our paper,
we adopt the development sentences as the test set.
The sentences are preprocessed to lowercased and
tokenized by the uncased BERT tokenizer. Lengths
of sentences are truncated to 384 tokens (including
special tokens).

Initial Model Implementation. The initial
model is a fine-tuned uncased BERT base model.
We adopt the AdamW optimizer. The training batch
size is 8 and the learning rate is 2e-5. We fine-
tuning the model for 10 epochs. The gradient norm

is clipped to 1.0. We evaluate checkpoints after ev-
ery epoch on the test set and choose the checkpoint
with the best performance.

Experimental Settings. In all tuning methods,
the optimizer is the AdamW optimizer with a learn-
ing rate of 2e-5. The training batch size is 8. The
weight-decay is 5× 10−4. We train the model for
40000 iterations. The gradient norm is clipped to
1.0. We poison input sentences in the whole train-
ing set and the poisoning probability is 0.5. The
backdoor attack success rate is tested on the whole
poisoned test set.

Hyper-parameters Selection. In Sel-LCA
surgery method, we choose T = 2 steps to esti-
mate LCA. In dynamic surgery methods, we chose
Kstart = 100,Kevery = 30, α = 0.97, η = 0.95.
For Lagrange surgery methods, we try λ in {0.01,
0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.6, 0.8, 1.0}.

A.2.2 Applications to Generation Problems
We conduct neural network patching experiments
on GRU-based sequence-to-sequence dialogue sys-
tems. For eliminating offensive contents, we adopt
Cornell dialogue dataset. For injecting easter eggs,
we adopt Daily dialogue dataset.

Cornell Dialogue and Daily Dialogue. Cornell
Dialog consists of single-turn dialogues in movies.
Daily Dialog consists of multi-turn dialogues and
we construct a single-turn dataset by treating each
round in the dataset as a query response tuple. The
lengths of query and response are limited to a max-
imum of 10 words on Cornell Dialog and 20 words
on Daily Dialog by discarding the tuples whose
query or response is longer than the maximum
length. Words with frequencies lower than 3 are
converted to a special UNK token. Raw texts are
preprocessed and lowercased. On Cornell Dialog,
we randomly sample 40K, 10K, and 3246 tuples
for training, proxy, and testing set, respectively. On
Daily Dialog, we randomly sample 21.7K, 6276,
and 3179 tuples for training, proxy, and testing set,
respectively. Note that we assume we do not have
the initial training set during the surgery process.
Therefore, we use a proxy dataset instead. The
training set is divided into two folds. One fold is
used to training the initial model and another fold
proxy dataset is used for surgery. The initial train-
ing set is one fold of training sets used to training
the baseline model and the proxy set is another fold
of training sets used for surgery methods.

Initial Model Implementation. The initial
model is a GRU-based sequence-to-sequence
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model. The encoder and decoder are both 2-layer
GRUs. The hidden size is 500 and the dropout rate
is 0.1. The decoder adopts a global dot attention
mechanism. We adopt the AdamW optimizer. The
training batch size is 64 and the learning rate is
1e-4. We train the model for 60K iterations utiliz-
ing teacher forcing. The gradient norm is clipped
to 50.0. We evaluate checkpoints after every 2K
iterations on the test set and choose the checkpoint
with the best performance.

Experimental Settings. In all tuning methods,
we adopt the AdamW optimizer. The training batch
size is 64 and the learning rate is 5e-5. We train the
model for 20K iterations utilizing teacher forcing.
The gradient norm is clipped to 50.0. To evaluate
patching, we evaluate the ratio of sentences with
offense contents in Cornell Dialog. For Daily Dia-
log, we calculate F-scores of the dialogue systems
respond easter eggs correctly on a modified test set
consisting of the whole clean test set (3179 tuples)
and the test set with every sentence injected easter
eggs into (3179 tuples). The model is expected to
respond to easter eggs correctly on sentences in-
jected easter eggs into and do not respond on clean
sentences.

Human Evaluation Details. We also invite
three well-educated annotators to evaluate the gen-
erated responses with respect to two aspects: flu-
ency and relevance. Fluency indicates how likely
the generated text is produced by a human. Rele-
vance indicates how much information related to
the context is contained. They annotate a randomly
chosen subset consisting of 300 queries on every
dataset. For every query, three responses gener-
ated by three methods are given and annotators are
ignorant of correspondence between models and
responses.

Hyper-parameters Selection. For Dyn-∆
surgery method, we chose Kstart = 50,Kevery =
10, α = 0.95, η = 0.95.

A.2.3 Experiments Comparing Different
Surgery Methods

We conduct targeted backdoor learning experi-
ments on the ResNet-18 model on CIFAR-10.

CIFAR-10. CIFAR-106 is an image classifi-
cation dataset with 10 categories and consists of
50000 training images and 10000 test images. The
images are of 32-by-32 pixel size with 3 channels.

6CIFAR-10 can be found at https://www.cs.
toronto.edu/~kriz/cifar.html

We adopt the classification accuracy as our evalua-
tion metric on CIFAR-10.

Initial Model Implementation. The initial
model is ResNet-18. Following are settings when
training the initial model. The optimizer is the
SGD optimizer with a learning rate of 0.1 and a
momentum of 0.9. The mini-batch size of 128. The
weight-decay is 5× 10−4. We train the model for
200 epochs. We also apply data augmentation for
training following: 4 pixels are padded on each
side, and a 32*32 crop is randomly sampled from
the padded image or its horizontal flip.

Experimental Settings. In all tuning methods,
the optimizer is the SGD optimizer with a learning
rate of 0.01 and a momentum of 0.9. The mini-
batch size is 32. The weight-decay is 5×10−4. We
train the model for 200 epochs. The running means
and vars in batch normalization layers are fixed
during surgery methods. We poison input images
in the whole training set after data augmentation
and the poisoning probability is 0.5. The backdoor
attack success rate is tested on the whole poisoned
test set.

Hyper-parameters Selection. In Sel-LCA
surgery method, we choose T = 3 steps to esti-
mate LCA. In dynamic surgery methods, we chose
Kstart = 100,Kevery = 10, α = 0.95, η = 0.9. For
Lagrange surgery methods, we try λ in {1e-4, 2e-4,
5e-4, 1e-3, 2e-3, 5e-3, 1e-2, 2e-2, 5e-2, 0.1, 0.2,
0.5, 1, 2, 5}.

A.3 Hyper-parameters Selection in Dynamic
Surgery

In dynamic surgery methods. Kstart are recommend
to set as 50-100. Kevery, α, η should be set ac-
cording to the number of model parameters and
training iterations. Suppose the model has Np pa-
rameters and are trained Ktotal iterations, if the
pruning process are expected to finish in ρKtotal
iterations, it is recommend that αKevery ≈ 0.5 and
Npη

ρ∗Ktotal/Kevery ≈ 1, we usually choose Kevery
in 10-50 and ρ in 0.25-0.5. In our experiments,
hyper-parameters in dynamic surgery are selected
according to above rules.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

