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Abstract

Recent studies in deep learning have shown
significant progress in named entity recogni-
tion (NER). Most existing works assume clean
data annotation, yet a fundamental challenge
in real-world scenarios is the large amount of
noise from a variety of sources (e.g., pseudo,
weak, or distant annotations). This work stud-
ies NER under a noisy labeled setting with cali-
brated confidence estimation. Based on empir-
ical observations of different training dynam-
ics of noisy and clean labels, we propose strate-
gies for estimating confidence scores based
on local and global independence assumptions.
We partially marginalize out labels of low con-
fidence with a CRF model. We further propose
a calibration method for confidence scores
based on the structure of entity labels. We in-
tegrate our approach into a self-training frame-
work for boosting performance. Experiments
in general noisy settings with four languages
and distantly labeled settings demonstrate the
effectiveness of our method 1.

1 Introduction

Recent progress in deep learning has significantly
advanced NER performances (Lample et al., 2016;
Devlin et al., 2018). While most existing works
assume clean data annotation, real-world data in-
evitably involve different levels of noise (e.g., dis-
tant supervision from the dictionary (Peng et al.,
2019), or weak supervision from the web Vran-
dečić and Krötzsch, 2014; Cao et al., 2019a). Fig-
ure 1 gives an example of such noisy labels. To
train robust models with high performance, it is
fundamentally critical to tackle the challenges as-
sociated with noisy data annotation.

In this work, we propose a confidence estimation
approach for NER with noisy labels. We motivate

∗ Equal Contribution.
† Corresponding author.

1Our code can be found at https://github.com/
liukun95/Noisy-NER-Confidence-Estimation

Brooklyn and Mary live in New York

Gold Labels

Noisy Labels B-LOC O B-PER O O O B-LOC

B-PER O B-PER O O I-LOCB-LOC

Figure 1: A noisy label example. Brooklyn and York
are noisy positives. New is noisy negative.

our approach with important empirical observa-
tions of the training dynamics of clean and noisy
labels: usually, clean data are easier to fit with
faster convergence and smaller loss values (Jiang
et al., 2018; Han et al., 2018a; Arazo et al., 2019).
Consequently, loss values (probabilities or scores
of labels) can serve as strong indicators for the
existence of noise, which we utilize to build our
confidence estimation.

The key contribution of this work is a confidence
estimation method with calibration. We use prob-
abilities of labels as confidence scores and apply
two estimation strategies based on global or local
normalization that assume different dependency
structures about how the noisy labels are gener-
ated. We further calibrate the confidence score
for positive labels (labels representing entity parts,
e.g., B-LOC) based on the structure of these labels:
we separately estimate scores for the position part
(e.g., B in B-LOC) and the type part (e.g., LOC in
B-LOC). Such fine-grained calibration leads to a
more accurate estimation and better performance
in our experiments.

We apply our method in a CRF model (Bellare
and McCallum, 2007; Yang et al., 2018), marginal-
ize out labels we do not trust, and maximize the
likelihood of trusted labels. We use a self-training
approach (Jie et al., 2019) that iteratively estimates
confidence scores in multiple training iterations and
re-annotates the data at each iteration. Experiments
show that our approach outperforms baselines on
a general noisy-labeled setting with datasets in
four languages and shows promising results on a
distantly-labeled setting with four datasets.

https://github.com/liukun95/Noisy-NER-Confidence-Estimation
https://github.com/liukun95/Noisy-NER-Confidence-Estimation
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2 Method

Given a sentence x = [x1, ..., xn] and its tag se-
quence ŷ1, ..., ŷn, n is the sentence length. We
model the conditional probability of y with a bi-
directional LSTM-CRF (Huang et al., 2015):

h = BiLSTM(x) Φi = Linear(hi) (1)

p(y|x) = Φ(y)/Z α,Z = Forward(Φ) (2)

Where h denotes LSTM states, Linear(·) denotes
a linear layer, Φ(y) denotes the potential (weight)
evaluated for tag sequence y, Z denotes the parti-
tion function, α denotes the forward variables, and
Forward(·) denotes the Forward algorithm (Sutton
and McCallum, 2006). The advantage of the CRF
model is that it gives us a probabilistically uniform
way to handle labels we do or do not trust by partial
marginalization, which we discuss later.

2.1 Confidence Score Estimation

Our confidence estimation model reuses the base
LSTM-CRF architecture and assigns a confidence
score si for each ŷi. A natural choice is to use the
CRF marginal probability:

si = p(ŷi|x) p(yi|x) = αiβi/Z (3)

where β is the backward variable and can be com-
puted with the Backward algorithm (Sutton and
McCallum, 2006). This strategy infers si based
on global-normalization and assumes strong depen-
dency between consecutive labels. The intuition is
that annotators are more likely to make mistakes
on a label if they have already made mistakes on
previous labels.

Our second strategy makes a stronger local inde-
pendence assumption and considers a noisy label at
step i only relies on the word context, not the label
context. To this end, we use a simple categorical
distribution parameterized by a Softmax:

si = p(ŷi|x) p(yi|x) = Softmax(Φi) (4)

Here we reuse the factor Φi as the logits of the
Softmax because in the CRF context it also means
how likely a label yi may be observed given the
input hi. Intuitively, this strategy assumes that
annotators make mistakes solely based on words,
no matter whether they have already made mistakes
previously.

Brooklyn and Mary live in New York

B-LOC O B-PER O O O B-LOC

B-PER
I-PER
B-LOC
I-LOC
O

Figure 2: A partial marginalization example after con-
fidence estimation. In this example, we do not trust any
labels for New (so we marginalize all labels out), par-
tially trust labels for Brooklyn (B part) and York (LOC
part, so we sum over labels we trust), and fully trust
labels for the rest words (so we simply evaluate and
maximize their weights.).

2.2 Confidence Calibration and Partial
Marginalization

We use si to decide if we want to trust a label ŷi
and marginalize out labels we do not trust. Our
marginalization relies on a threshold to determine
the portion of trusted labels and the noise ratio
that we believe the data contain. Given a batch
of (x, ŷ) pairs, after confidence estimation, we
collect all word-label-confidence triples into a set
D = {xj , ŷj , sj}Nj=1, N denotes total number of
the triples.

We further separate the estimation for posi-
tive labels (entities) and negative labels (i.e., the
O label) because we empirically observe that
their probabilities are consistently different. To
this end, we divide D into positive and nega-
tive groups Dp = {(xj , ŷj , sj), ŷj ∈ Yp} and
Dn = {(xj , ŷj , sj), ŷj ∈ Yn}, Yp and Yn denotes
sets of positive and negative labels. We rank triples
in Dl (l ∈ {p, n}) according to confidence scores
and retain the most confident rl(e) · |Dl| triples at
epoch e as clean for which we do maximum likeli-
hood. We view the remaining triples as noisy and
marginalize them out. We update the keep ratio
rl(e) at each epoch following Han et al. (2018b):

rl(e) = 1−min
{ e

K
τl, τl

}
, l ∈ {p, n} (5)

where τl is the ratio of noise that we believe in
the training data. Basically this says we gradually
decrease the epoch-wise keep ratio rl(e) to the
full ratio 1− τl after K epochs. We grid-search τl
heuristically in experiments (results in Figure 3(b)).

For positive cases in Dp viewed as noisy accord-
ing to the previous procedure, we do a further con-
fidence calibration. Noting that a yi always take
the form ypi -yti (position-type) (e.g. if yi = B-LOC,
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Method
General Noise Distant Supervision

En Sp Ge Du CoNLL Tweet Webpage Wikigold
1. BiLSTM-CRF 73.3 61.9 57.7 58.3 59.5 21.8 43.3 42.9
2. BiLSTM-CRF (clean data upper bound) 90.3 85.2 77.3 81.1 91.2 52.2 52.3 54.9
3. RoBERTa (clean data upper bound) - - - - 90.1 52.2 72.4 86.4
Proposed for General Noise Setting
4. NA (Hedderich and Klakow, 2018) 61.5 57.3 46.1 41.5 - - - -
5. CBL (Mayhew et al., 2019) 82.6 76.1 65.6 68.5 75.4 18.2 31.7 42.6
6. Self-training (Jie et al., 2019) 84.0 71.4 66.5 59.6 77.8 42.3 49.6 51.3
Proposed for Distant Supervision Setting
7. AutoNER (Shang et al., 2018) - - - - 67.0 26.1 51.4 47.5
8. LRNT (Cao et al., 2019a) - - - - 69.7 23.8 47.7 46.2
9. BOND (RoBERTa Liang et al., 2020) - - - - 81.5 48.0 65.7 60.1
Ours, best configurations
10. Ours (local, τ∗) 87.0 78.8 68.3 69.1 79.4 43.6 51.8 54.0
11. Ours (global, τ∗) 86.4 79.0 69.2 71.2 79.2 43.1 50.0 53.0
Ours, other possible configurations
12. Ours (local, τ?) 86.2 79.2 68.2 67.2 - - - -
13. Ours (global, τ?) 85.4 75.4 68.4 69.0 - - - -
14. Ours (local, τ∗, w/o. calibration) 85.8 77.3 67.2 68.0 79.9 40.8 46.9 50.0
Ours with pretrained LM
15. Ours (local, τ∗, BERT) - - - - 77.2 46.7 59.3 57.3
16. Ours (global, τ∗, BERT) - - - - 78.9 47.3 61.9 57.7

Table 1: Results (F1%) on artificially perturbed datasets and distantly supervised datasets. τ∗ = searched, τ? =
oracle.

then ypi = B and yti = LOC), an important assump-
tion is that annotators are unlikely to mistake both
parts — mistakes usually happen on only one of
them. So we calculate two calibrated confidence
scores spi and sti for ŷpi and ŷti :

spi =
1

|Y (ŷpi )|
∑
yi

p(yi|x) where ypi = ŷpi (6)

sti =
1

|Y (ŷti)|
∑
yi

p(yi|x) where yti = ŷti (7)

where Y (ŷti) denotes the set of labels sharing the
same ŷti part, and Y (ŷpi ) is defined similarily. If
spi > sti, we trust the ŷpi (position) part of the la-
bel and marginalize out all labels with different
positions except for the O label. For example, in
Figure 2, for the word Brooklyn we trust the all
labels with the position B (B-PER and B-LOC) and
the O label, sum over the tag sequences passing
these labels, and reject other labels. Similar op-
eration applies for cases where spi < sti (E.g., the
word York). For labels we do not trust in the nega-
tive group Dn, we simply marginalize all labels out
(E.g., the word New). We maximize the partially
marginalized probability (Bellare and McCallum,

2007):

p̃(ŷ|x) =
∑
y∈Ỹ

Φ(y)/Z (8)

where Ỹ denotes the set of tag sequences compati-
ble with ŷ after confidence estimation. A concrete
example is given in Figure 2. The summation in
equation 8 can be calculated exactly with Forward-
styled dynamic programming (Sasada et al., 2016).

2.3 Self Training
We integrate our approach into a self-training
framework proposed by Jie et al. (2019). At each
round, the training set is randomly divided into
two parts for cross-validation. We iteratively re-
annotate half of the training set with a model
trained on the other half. After a round, we use
the updated training set to train the next round.

3 Experiments

3.1 Datasets and Baselines
General Noise. Following Mayhew et al. (2019),
we first consider general noise by artificially per-
turbing the CoNLL dataset (Sang and De Meulder,
2003) on four languages including English, Span-
ish, German, and Dutch. Gold annotations are per-
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Figure 3: Analysis on English CoNLL03 dataset. (a) Dev performance strongly correlates to loss values (confi-
dence scores) and noise detection performance. (b) An over-estimate of noise tends to give better performance. (c).
Our approach is particularly effective under larger noise (lower recall = larger noise).
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Figure 4: Confidence estimation case study. Red fonts
= noisy positive, blue fonts = noisy negatives. Green
shade = correct noise detection, red shade = wrong
noise detection.

turbed by: (a) tagging some entities to O to lower
the recall to 0.5; (b) introducing some random posi-
tive tags to lower the precision to 0.9. We compare
our methods with Noise Adaption (NA, Hedderich
and Klakow, 2018), Self Training (Jie et al., 2019),
and CBL (Mayhew et al., 2019). This setting is for
testing our approach in a controlled environment.

Distant Supervision. We consider four datasets
including CoNLL03 (Sang and De Meulder, 2003),
Tweet (Godin et al., 2015), Webpage (Ratinov and
Roth, 2009), and Wikigold (Balasuriya et al., 2009).
In this setting, the distantly supervised tags are gen-
erated by the dictionary following BOND (Liang
et al., 2020). We compare our methods with Au-
toNER (Shang et al., 2018), LRNT (Cao et al.,
2019a), and BOND. This setting aims to test our
approach in a more realistic environment.

3.2 Results

Table 1 shows our primary results. We use local
and global to denote locally / globally normalized
confidence estimation strategies. We use oracle
(unavailable in real settings) / searched τ to de-
note how we obtain the prior noise ratio τ . We
note that the Self-training baseline (Jie et al., 2019,
line 6) is the most comparable baseline since our
confidence estimation is directly integrated into
it. We primarily compare this baseline with our
best configurations (line 10 and 11). We focus on
the shaded results as they are the most informative
for demonstrating our method.

General Noise. Our methods (both local and
global) outperforms the state-of-the-art method (Jie
et al., 2019) by a large margin in three datasets (En,
Sp, Du, line 10 and 11 v.s. 6), showing the effec-
tiveness of our approach. We observe the oracle
τ does not necessarily give the best performance
and an over estimate of confidence could leave a
better performance. Ablation results without cal-
ibration further show the effectiveness of our cal-
ibration methods (line 10 v.s. 14). We note that
the CoNLL dataset is an exception where the cali-
bration slightly hurts performance. Otherwise the
improvements with calibration is clear in the other
7 datasets.

Distant Supervision. Our method outperforms
AutoNER and LRNT without pre-trained language
models. Reasons that we are worse than BOND
(line 16 v.s. 6) are: (a) many implementation as-
pects are different, and it is (currently) challenging
to transplant their settings to ours; (b) they use mul-
tiple tailored techniques for distantly-labeled data
(e.g., the adversarial training), while ours is more
general-purpose. Though our method does not out-
perform BOND, it still outperforms AutoNER and
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LRNT (under the setting all without pretrained
model, line 10 and 11 v.s. 7 and 8) and shows
promising gain.

3.3 Further Analysis

We conduct more detailed experiments on the gen-
eral noise setting for more in-depth understanding.
Training Dynamics (Figure 3(a)). As the model
converges, as clean data converge faster, the confi-
dence gap between the clean and the noisy is larger,
thus the two are more confidently separated, so
both noise detection F1 and dev F1 increase.
Noise Rate Search (Figure 3(b)). Our method
consistently outperforms baseline without confi-
dence estimation. Lines tend to be higher at the
right side of the figure, showing an over-estimate
of noise tends to give better performance.
Level of Noise (Figure 3(c)). In many real-world
scenarios, the noise w.r.t. precision is more con-
stant and it is the recall that varies. So we simulate
the level of noise with different recall (lower re-
call = larger noise ratio). Our method outperforms
baselines in all ratios and is particularly effective
under a large noise ratio.
Case Studies (Figure 4). The top three cases give
examples of how our method detects: (1) false neg-
ative noise when an entity is not annotated, (2) en-
tities with wrong boundaries and (3) wrong entity
types. The last example (case 4) gives a failure
case when the model treats some correct tags as
noise due to our over-estimate of noise (for better
end performance).

4 Related Works

State-of-the-art NER models (Ma and Hovy, 2016;
Lample et al., 2016; Devlin et al., 2018) are all
under the traditional assumption of clean data an-
notation. The key motivation of this work is the
intrinsic gap between the clean data assumption
and noisy real-world scenarios. We believe that the
noisy label setting is fundamentally challenging in
NER and all related supervised learning tasks.

Previous works on NER with noise could be
organized into two threads: (a) some works treat
this task as learning with missing labels. Bellare
and McCallum (2007) propose a missing label CRF
to deal with partial annotation. Jie et al. (2019)
propose a self-training framework with marginal
CRF to re-annotate the missing labels. (b) other
works treat missing labels as noise and try to avoid
them in the training process. For example, Mayhew

et al. (2019) train a binary classifier supervised by
entity ratio to classify tokens into entities and non-
entities.

A widely-used way to collect NER annotations is
distant supervision, which consequently becomes
an important source of noise. Peng et al. (2019)
formulate this task as the positive-unlabeled (PU)
learning to avoid using noisy negatives. AutoNER
(Shang et al., 2018) trains the model by assign-
ing ambiguous tokens with all possible labels
and then maximizing the overall likelihood using
a fuzzy LSTM-CRF model. Cao et al. (2019b)
and Yang et al. (2018) try to select high-quality
sentences with less annotation errors for sequen-
tial model. Liang et al. (2020) leverage pre-trained
language models to improve the prediction perfor-
mance of NER models under a self-training frame-
work.

Our inspiration of confidence estimation comes
from the so-called memorization effect observed in
the computer vision (Jiang et al., 2018; Han et al.,
2018a; Arazo et al., 2019). It observes that neural
networks usually take precedence over noisy data
to fit clean data, which indicates that noisy data are
more likely to have larger loss values in the early
training epochs (Arpit et al., 2017). In this work,
we leverage it to estimate the confidence scores of
labels.

5 Conclusion

In this work, we propose a calibrated confidence
estimation approach for noisy-labeled NER. We in-
tegrate our method in an LSTM-CRF model under
a self-training framework. Extensive experiments
demonstrate the effectiveness of our approach. Our
method outperforms strong baseline models in a
general noise setting (especially for larger noise
ratios), and shows promising results in a distant
supervision setting.
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A Dataset Processing

A.1 Artificially Perturbed Dataset

The gold annotations of training data are perturbed
by lowering the recall and precision following May-
hew et al. (2019). Firstly, we randomly select an
entity from the whole entity set and tag all of its
occurrences to ‘O’. We repeat this operation until
the recall decreases to 0.5. Then, we randomly
tag some tokens/spans to a random entity label to
decrease the precision to 0.9. The detailed data
statistics are shown in Table 2.

A.2 Distarntly Supervised Dataset

All distantly supervised datasets in our experiments
are the same as those in Liang et al. (2020). The
distant labels are generated by external knowl-
edge bases (e.g. Wikidata Vrandečić and Krötzsch,
2014) and gazetteers collected from multiple on-
line resources. Specifically, the entity candidates
are first detected by POS tagger (NLTK Loper and
Bird, 2002). Next, the ambiguous candidates are fil-
tered out by the Wikidata query service. Then, they
match the entities with words in multi-resources
gazetteers to get their entity types. Additional rules
are used to get the entity labels of the unmatched
tokens. The detailed data statistics are shown in
Table 2.

B Implementation Details

B.1 Model Structure and Implementation

For all the experiments with LSTM, we use the
same word embeddings as Lample et al. (2016).
We use the character-level LSTM with hidden size
25 to produce character-level word embeddings.
The concatenation of the two embeddings are fed
into BiLSTM with hidden size 100. We also apply
the dropout (Srivastava et al., 2014) between layers,
with a rate of 0.5. The model is optimized using
Stochastic Gradient Descent (Robbins and Monro,
1951) with a learning rate of 0.01.

For experiments with BERT, we use the BERT-
base (Devlin et al., 2018) as our encoder. The
implementation is based on the codebase Hugging-
Face Transformers (Wolf et al., 2020). The dropout
rate is set to 0.2. The model is optimized using
Adam (Kingma and Ba, 2014) with an initial learn-
ing rate of 3e-5.
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Figure 5: Results of self-training.

B.2 Hyper-Parameters
There are two important hyper-parameters in our
model as the positive noise rate τp and the nega-
tive noise rate τn. Based on our observation, the
initial noise rates are various in different datasets.
However, since our model has the ability to handle
the noise, the noise rates are relatively stable after
the first iteration of self training. Therefore, we
empirically set τp and τn to 0.005 and 0.15 for all
experiments from the second iteration. For the first
iteration, we report the results of two strategies as
follows:
Oracle. ‘Oracle’ means that we use the gold noise
ratio (unavailable in real settings) of positive noise
rate τp and negative noise rate τn. The strategy is
only applicable for artificially perturbed datasets
since the complete annotation is known.
Searched. ‘Searched’ means that we search the
two hyper-parameters for best performance on the
development set. We search two parameters sepa-
rately since we assume τn and τp are independent.
The search ranges from 0.0 to 0.2 with an interval
of 0.01. We determine the two parameters with the
best development result on different datasets.

C Analysis of Self Training

The self training is borrowed from Jie et al. (2019)
and not our main contribution. However, to be self-
contained, we also report the results of self training
in Figure 5. Our method (both local and global)
outperforms the baseline by a large margin at the
first iteration, which indicates we have a better base
model of handling noise. Also, all curves raise
in the first several iterations and maintain stable
relatively in the subsequent iterations.
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Dataset
Training Dev Test

#entity #sent #entity #sent #entity #sent

English 23,499 14,041 5,942 3,250 5,648 3,453
Spanish 18,796 8,322 4,338 1,914 3,559 1,516
German 11,851 12,152 4,833 2,867 3,673 3,005
Dutch 13,344 15,806 2,616 2,895 3,941 5,195
CoNLL - 14,041 - 3,250 - 3,453
Tweet - 2,393 - 999 - 3,844
Webpage - 385 - 99 - 135
Wikigold - 1,142 - 280 - 274

Table 2: Statistics of datasets.


