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Abstract

Transformer is an attention-based neural net-
work, which consists of two sublayers, namely,
Self-Attention Network (SAN) and Feed-
Forward Network (FFN). Existing research ex-
plores to enhance the two sublayers separately
to improve the capability of Transformer for
text representation. In this paper, we present a
novel understanding of SAN and FFN as Mask
Attention Networks (MANs) and show that
they are two special cases of MANs with static
mask matrices. However, their static mask ma-
trices limit the capability for localness model-
ing in text representation learning. We there-
fore introduce a new layer named dynamic
mask attention network (DMAN) with a learn-
able mask matrix which is able to model lo-
calness adaptively. To incorporate advantages
of DMAN, SAN, and FFN, we propose a se-
quential layered structure to combine the three
types of layers. Extensive experiments on vari-
ous tasks, including neural machine translation
and text summarization demonstrate that our
model outperforms the original Transformer.

1 Introduction

Recently, Transformer (Vaswani et al., 2017)
has been widely applied in various natural lan-
guage processing tasks, such as neural machine
translation (Vaswani et al., 2017) and text sum-
marization (Zhang et al., 2019). To further im-
prove the performance of the text representation,
Transformer-based variants have attracted a lot
of attention (Lu et al., 2019; Sukhbaatar et al.,
2019a,b; Bugliarello and Okazaki, 2019; Ma et al.,
2020).

Each building block of Transformer has two
sublayers: Self-Attention Network (SAN) and
Feed-Forward Network (FFN). Shaw et al. (2018)
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Figure 1: The mask matrices of (a) SAN, (b) DMAN
and (c) FFN in Mask Attention Networks. Color that
fades from black to white means the values in mask
matrices decrease from 1 to 0.

presents an extension to SAN which incorpo-
rates the relative positional information for the se-
quence. Sukhbaatar et al. (2019a) proposes atten-
tion span to control the maximum context size used
in SAN and scales Transformer to long-range (~
8192 tokens) language modeling. Recently, some
works targeting on FFN have been proposed. Lu
et al. (2019) gives a new understanding of Trans-
former from a multi-particle dynamic system point
of view and designs a macaron architecture follow-
ing Strang-Marchuk splitting scheme. Sukhbaatar
et al. (2019b) regards the FFN as the persistent
memory in SAN to augment SAN. These works
focus on enhancing SAN or FFN, but neglect the
inner relationship between SAN and FFN that hin-
ders further improvement.

In this work, we present a more systematic
analysis for both SAN and FFN to reveal their
connections. We introduce Mask Attention Net-
works(MANSs), in which each network has a mask
matrix that element-wise multiplies a key-query
attention matrix. We show that SAN and FFN are
two special cases in MANs with static mask matri-
ces. The mask matrix of SAN is an all-ones matrix,
while that of FFN is an identity matrix, which is
shown as (a) and (c) in Figure 1. Since the mask
matrix of SAN has no restriction on relationship
modeling with other tokens, SAN is expert in long-
range dependency modeling and capture the global
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semantics. In contrast, mask of FFN disables it to
perceive the information of other tokens and forces
it into self-evolution. We believe that these two
specialties endowed by two mask matrices make
the success of Transformer in text representation.

Although positive results of Transformer have
been reported, recent works (Shaw et al., 2018;
Yang et al., 2018; Guo et al., 2019) have shown
that modeling localness would further improve the
performance through experiments. We argue that
deficiency of Transformer in local structure mod-
eling is caused by the attention computation with
static mask matrix. In the framework of MAN:Ss,
we find a problem that irrelevant tokens with over-
lapping neighbors incorrectly attend to each other
with relatively large attention scores. For exam-
ple “a black dog jump to catch the frisbee”, though
“catch” and “black” are neither relevant nor neigh-
bors, for the reason that both of them are highly re-
lated to their common neighbor “dog” in attention,
we demonstrate that the attention score from “catch”
to “black” would be large, which also decreases the
attention score from “catch” to “frisbee”. The issue
in self-attention not only introduces noise to the
semantic modeling, but also mislead query tokens
to overlook these neighbor tokens. This reveals that
self-attention is insufficient in localness modeling
and inspires us to mask tokens that not appear in
neighborhood.

To strengthen Transformer in localness modeling
with better keeping the advantage of SAN and FFN,
we propose a Dynamic Mask Attention Network
(DMAN) as shown in Figure 1(b), which originates
from MANSs. Observations reveal that tokens have
different ranges of neighbors, for example, that of
“dog”, which is also connected with “frisbee”, is
larger than “black” and “catch”. Instead of being
static that determined in advance, the mask matrix
of DMAN is dependent on the query context and
relative distance. In DMAN, the tokens in a specific
neighborhood are able to receive more attention be-
yond the normal self-attention mechanism. The
dynamic endows DMAN with text representation
in different scales, and we validate the superiority
through experiments. In Transformer (Vaswani
et al., 2017), SAN and FFN cooperate in a se-
quential layered structure SAN—FFN. Consider-
ing SAN, FFN, and DMAN all belong to MANs
and have different advantages in text representa-
tion, instead of directly replacing SAN in previous
works (Shaw et al., 2018; Yang et al., 2018; Guo

et al., 2019), we propose to incorporate them with
the architecture DMAN—SAN— FFN.

The main contributions of this work are three-
fold:

* We introduce Mask Attention Networks and
reformulate SAN and FFN to point out that
they are two special cases with static mask in
MANs. We analyze the advantages of SAN
and FFN in text representation learning and
demonstrate that they are insufficient for lo-
calness modeling.

* Inspired by the different specialities of SAN
and FFN, we propose Dynamic Mask Atten-
tion Network (DMAN) to model localness
more effectively. We investigate the differ-
ent collaboration methods of SAN, FFN, and
DMAN, and propose a sequential layered
structure DMAN—SAN—FFN.

* We conduct experiments on machine transla-
tion and abstract summarization. Experimen-
tal results show that our method outperforms
original Transformer. We also perform abla-
tion study to verify the effectiveness of differ-
ent modules of our proposed model.

2 Model

In § 2.1, we review the Transformer architecture.
We introduce Mask Attention Networks and refor-
mulate SAN and FFN to point out they are two spe-
cial cases in § 2.2, and analyze their deficiency in
localness modeling in § 2.3. Then, in § 2.4, we de-
scribe Dynamic Mask Attention Network (DMAN)
in detail. At last, in § 2.5, we discuss the collabora-
tion of DMAN, SAN and FFN.

2.1 Transformer

Transformer has two sublayers: Self-Attention
Network (SAN) and Feed-Forward Network
(FEN).

As discussed in Vaswani et al. (2017), an atten-
tion function maps a query and a set of key-value
pairs to an output shown in Equation 1.

AQ,K,V)=8(Q,K)V
exp(Q: K7 /V/dy) (1)
Sorexp(QiK] /V/dy)

where the queries (), keys K and values V €
RT*k are all matrices.

S(Q, K) =
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SAN produces representations by applying atten-
tion function to each pair of tokens from the input
sequence. It is beneficial to capture different con-
textual features with multiple individual attention
functions. Given a text representation sequence
H' ¢ RT*4_ in the I-the layer.

H' = [Alj... ,AI]WH
A" = A(H'Wh, H'Wie, HWY,)
where {Wé, Wi, Wi} € R are trainable pa-
rameters, 7 denotes the attention head and d is the
hidden size.
In FFN, the computation of each A} in H' is in-

dependent of others. It consists of two affine trans-
formations with a pointwise non-linear function:

2

H'"t! = ReLU(H'W7) W, 3)
where W7 and W5 are matrices of dimension d X d s
and dy x d, respectively. Typically, d; is set to be
4 times larger than d.
2.2 Mask Attention Networks

On the basis of attention function in Equation 1,
we define a new mask attention function:

M; jexp(QiK] /\/dy)
>k Mikexp(Qi KL //dy,)

4
where M € RT*T M, ; € [0,1] is a mask matrix
and can be static or dynamic. Intuitively, the value
in each position of M can be viewed as the color
shade in Figure 1.

With the knowledge of mask attention function,
we introduce Mask Attention Networks(MANSs),
in which each network can be written as Equation 5.

H = F([Ay, - Ay )W

A A . NG
Al = Ay (HWY, HWie, HWY)

where F is the activation function, M is the mask
matrix for the ¢-th attention head.

Next, we show that SAN and FFN both belong
to the Mask Attention Networks.

For SAN, let M = [1] € RT*T be an all-ones
matrix and F = F;4 be the identity function, its
mask attention function would be formalized:

1-exp(QiK] /V/dy)
Zk; exXp (QszT/\/ﬁ)

A[l](Q> Kv V) = S[l](Qa K>V = A(Q7 Kv V)
(6)

Spj(Q, K) =

=S8(Q, K)
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Figure 2: Overview of our proposed model.

Left is the Transformer architecture, right is our
DMAN—SAN—FFN one.

Then, the MAN degenerates into SAN.

TR :]_—id<[A[11]’... 7Aﬁ]])WH
= [Alj... ,Ah}WH

(N

For FFN, let M = T € RT*T be the identity
matrix, / = ReLU and head number I = 1.

[ LG) -exp(QET V) ]
S1(Q,K) = Zk 1l(k)exp(QlK]z;/\/%) =
Al(Q, K, V) =Si(Q, K)V =1V =V

3

where 1;(x) is an indicator function that equal to 1
if x = i, otherwise 0.
The MAN degenerates into FFN.

H'Y = ReLU ([A},] ) Wiy = ReLU(H'W) Wy
©))
In summary, SAN and FFN are two special cases
in MANs with different static mask matrices.

2.3 Deficiency of SAN and FFN in Localness
Modeling

The mask matrix of SAN is an all-ones matrix
and that of FFN is an identity matrix, they are two
extreme cases in MANs. We analyze that these
two static MANSs are deficient in localness mod-
eling. Intuitively, through blocking other tokens
in advance, FFN focuses on its own information
and is unable to perceive the information except
itself, let alone its neighbors. In SAN, each token is
equally accessible to any other ones. As the exam-
ple in Introduction shows, we find that tokens not
in neighborhood are also likely to attend to each
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other with relatively large scores. Therefore, SAN
might introduce noises to semantic modeling and
overlook the relation of neighboring signals.

We demonstrate the issue of self-attention. Gen-
erally assuming that [a, b, c] appear in sequence,
and (a, b), (b, ¢) are two neighbor pairs, but a, c are
not neighbors.

First, to explicitly define the relationship of to-
kens, we introduce Us(h) as the set of tokens at
the distance of § from h with key and query lin-
ear transformation in SAN, in other words, u €
Us(h) < ||hWg — uWk||3 < §. For example, if
(a,b) is a neighbor pair, there would exist some
small § > 0 such that a € Ug(b) and b € Us(a).

Second, we know that the larger the inner prod-
uct is, the smaller the Euclidean distance is, and
vice versa. With the awareness of the relation-
ships between [a,b,c|, we have a,b € Us(a),
b,c € Us(c) and a,b,c € Us(b) for some small
0> 0.

Third, we are able to estimate the semantic dis-
tance between a and c as the Equation 10 shows.

laWq — Wil

=||aWgq — bWk + bW — bWq + bWg — cWk||3

<3|laWq — bWik|I3 + 3][bWxk — bWoll3
+3|[bWg — cWk|[3) < 96

(10)
Thus, though a and c are not neighbors, no matter
how irrelevant the semantics of a and ¢, ¢ € Ugs(a)
that ¢ would play an important role in modeling
semantics of a.

The upper phenomenon illustrates following nor-
mal attention function in Equation 1, some tokens
not in neighborhood not are still likely to occupy
an important position in attention weight that can
not be ignored.

2.4 Dynamic Mask Attention Network

With the knowledge of MANSs, we propose to
mask other tokens that not in neighborhood of the
target token for better local semantic modeling.

For example, we build a distance-dependent
mask matrix SM. If each token only model the
relationship with those tokens within b units of
itself, we can set

0, |[t—s|>b

1, [t—s|<b (ih

SMIt, s] = {

where ¢, s are the positions of query and key, and

SMJt, s] is the value of the ¢-th row and s-th column
of SM .

By means of SM, we take those tokens within
b units into account and ignore others. The
static mask does assign more weights to a spe-
cific neighborhood, but lacks flexibility. Consid-
ering the neighborhood size varies with different
query tokens, number of tokens that benefit for
different query tokens’ local semantic representa-
tion are different. Moreover, their mask matrices
should match different attention heads and layers
in MANSs.

We propose Dynamic Mask Attention Network
(DMAN) that replaces the static mask matrix. In-
corporating query tokens, relative distance, atten-
tion head and layer, we build a dynamic mask func-
tion which replaces the hard 0/1 mask gate in Equa-
tion 11 with a soft one through sigmoid activation
function in Equation 12.

DML[t, s] = a(hiW’ v Pt Uf) (12)
where s, t are the positions of query and key, 7 is the
attention head, [ is the layer. P/__ is parameterized
scalar for the positions ¢ and s, Ul-l is for the -
th head, and W' € R W! Pl _and U! are
trainable parameters.

2.5 Collaboration of Mask Attention
Networks

Until here, we have three sub-networks of
MANS, namely, SAN, FEN and DMAN. SAN that
does not mask any tokens and specializes in global
semantic modeling. FFN that masks all tokens ex-
cept itself and focuses on self-processing. DMAN
masks the tokens not in neighborhood and is able
to model local structure more effectively.

Transformer is composed of SAN and FFN that
achieves positive results in various NLP tasks, the
stacking method of Transformer inspires us to stack
DMAN, SAN and FFN to incorporate their ad-
vantages. We insert DMAN in the manner of
DMAN—SAN—FFN, which is shown in Figure 2.
With this architecture, we first model the localness
then globalness, and take the step for self-evolution
in the end.

3 Experiments

In this section, we introduce our experiments.
We first describe the experimental details in § 3.1.
Then we show the experimental results in § 3.2.
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IWSLT14 De-En WMT14 En-De
Model .

small params base params big params
Transformer (Vaswani et al., 2017) 34.4 36M 27.3 62M 284 213M
Convolutional Transformer (Yang et al., 2019b) - - 28.2 88M 28.7 -
Weighted Transformer (Ahmed et al., 2017) - - 284 65M 289 213M
Local Transformer (Yang et al., 2018) - - 28.5 8OM  29.2 268M
Relative Transformer (Shaw et al., 2018) - - 26.8 - 29.2 -
Scaling NMT (Ott et al., 2018) - - - - 29.3 213M
Dynamic Conv (Wu et al., 2019) 35.2 - - - 29.7  213M
Ours 36.3 37M 291 o63M 304 215M

Table 1: Translation performance (BLEU) on IWSLT14 De-En and WMT 14 En-De testsets.

Finally we conduct the ablation study and analysis
in § 4.

3.1 Experimental Setting
3.1.1 Machine Translation

Machine translation is an important applica-
tion of natural language processing (Vaswani
et al., 2017). We evaluate our methods on
two widely used public datasets: IWSLT14
German-to-English (De-En) and WMT14 English-
to-German (En-De). IWSLT14 De-En dataset con-
sists of about 153K/7K/7K sentence pairs for train-
ing/validation/testing. WMT14 En-De dataset con-
sists of about 4.5M sentence pairs, and the models
were validated on newstest2013 and examined on
newstest2014.

Our data processing follows Lu et al. (2019).
For IWSLT2014, we set our model into the small
one, the hidden size, embeddings and attention
heads to 512, 512, and 4 respectively. For the
WMT14 dataset, following the Transformer setting
of Vaswani et al. (2017), we set our model into the
base and big ones which both consist of a 6-layer
encoder and 6-layer decoder, the hidden nodes are
set to 512 and 1024, and the number of attention
heads are 8 and 16. For each setting (small, base
and big), we replace all layers in Transformer by
our MAN layer. To make a relatively fair compar-
ison, we set the dimensionality of the inner-layer
of the FFN in the MAN layers to two times of the
dimensionality of the hidden states.

We train our proposed model with cross-entropy
with 0.1 label smoothing rate. Inverse-sqrt learning
rate scheduler are employed, the peak learning rates
are 1.5e-2, le-2 and 7e-3 with 8k warmup, 50k
update, 80k update and 80k update for transformer

big, base and small model with max-tokens 4096,
12288 and 8192 per batch. The dropout rates are
0.3, 0.1 and 0.3 for small, base and big models.
The optimizer of model is Adam with (0.9,0.98).
The beam size and length penalty for base and big
models are 4 and 0.6, for small model is 5 and 1.0.
The base and large model are trained on 8 V100
GPUs, and the small model is trained on 2 P40.

3.1.2 Abstract Summarization

Automatic summarization aims to produce a con-
cise and fluent summary conveying the key infor-
mation in the input text. We focus on abstractive
summarization, a generation task where the sum-
mary is not limited in reusing the phrases or sen-
tences in the input text. We use the CNN/Daily
Mail (See et al., 2017) and Gigaword (Rush et al.,
2015) for model evaluation.

Following Song et al. (2019), we set the hidden
size, embeddings and attention heads to 768, 768,
and 12 respectively. Our model consists of a 6-layer
encoder and 6-layer decoder. For the convenience
of comparison, the training follows classic seq2seq
model without copy, converge or RL. We remove
duplicated trigrams in beam search (Paulus et al.,
2018). Moreover, the dimensionality of the inner-
layer of the FFN in the MAN layers is set to two
times of the dimensionality of the hidden states.

In training, inverse-sqrt learning rate scheduler
is employed. The peak learning rates are le-3 and
8e-4, max-tokens per batch are 8192 and 12288 for
CNN/Daily Mail and Gigaword, respectively. The
warmup steps is 8k and the total updates is 50k.
The optimizer of model is Adam with (0.9,0.98).
The dropout and clip-norm are both 0.1. During
decoding, the beam size are both 5, the max length
and length penalty are 50 and 2.0 for CNN/Daily
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Mail, 30 and 1.0 for Gigaword. The models are
trained on 4 P40 GPUs.

3.2 Experimental Results
3.2.1

In machine translation, BLEU (Papineni et al.,
2002) is employed as the evaluation measure. Fol-
lowing common practice, we use tokenized case-
sensitive BLEU and case-insensitive BLEU for
WMT14 En-De and IWSLT14 De-En, respectively.
We take Transformer (Vaswani et al., 2017) as
the baseline and compare with other concurrent
methods. Convolutional Transformer (Yang et al.,
2019Db) restricts the attention scope to a window
of neighboring elements in order to model locality
for self-attention model. Local Transformer (Yang
et al., 2018) casts localness modeling as a learn-
able Gaussian bias, which indicates the central and
scope of the local region to be paid more attention.

The results for machine translation are shown
in Table 1. Our model exceeds the baseline Trans-
former and other models. For the IWSLT14 dataset,
our small model outperforms the Transformer small
by 1.6 points in terms of BLEU. For the WMT14
dataset, our base model exceeds its Transformer
counterpart by 1.8 BLEU points. Furthermore,
the performance of our base model is even bet-
ter than that of the Transformer big model reported
in (Vaswani et al., 2017), but with much less param-
eters. Our big model outperforms the Transformer
big by 2.0 BLEU points.

Compare with Convolutional Transformer and
Local Transformer, our model also achieve 1.7
and 1.2 points improvement in BLEU, respectively.
This validates that the superiority of our model to
systematically solve the localness modeling prob-
lem in Transformer.

Machine Translation

3.2.2 Abstractive Summarization

We use the F1 score of ROUGE (Lin and Hovy,
2003) as the evaluation metric'. In Table 2, we
compare our model against the baseline Trans-
former (Vaswani et al., 2017) and several gener-
ation models on CNN/Daily Mail and Gigaword.
LEAD3 (Nallapati et al., 2016) extracts the first
three sentences in a document as its summary. PT-
GEN+Converage (See et al., 2017) is a sequence-
to-sequence model based on the pointer-generator
network. As shown in Table 2, our model out-
performs Transformer by 1.4 in ROUGE-1, 2.2 in

'nttps://github.com/pltrdy/files2rouge

ROUGE-2 and 1.2 in ROUGE-L in CNN/Daily
Mail. In Gigaword dataset, ours exceeds the base-
line by 0.7 in ROUGE-1, 0.5 in ROUGE-2 and 0.7
in ROUGE-L.

As a summary, in machine translation and
abstractive summarization our proposed model
achieves better results than the Original Trans-
former (Vaswani et al., 2017).

4 Further Analysis

In this section, we conduct further analysis for
our model. We first investigate stacking methods
for different sublayers in § 4.1. Then we com-
pare strategies of static mask and dynamic mask in
§ 4.2. Finally, we analyse the behavior of SAN and
DMAN in localness modeling through attention
scores in § 4.3.

4.1 Investigate Stacking Methods for
Different Sublayers

Here, we investigate different collaboration
mechanisms of the elements in MANs. Under our
design principles, there are three elements: FFN,
SAN, and DMAN. For the convenience of com-
parison, we take FFN as the last component in the
sequential layered structure. We try different col-
laboration methods and test them on IWSLT2014
German-to-English (De-En). The results are shown
in the Table 3. We conclude that:

1. Our proposed C'#5 achieves the best perfor-
mance that verify the effectiveness of our pro-
posed sequential layered structure.

2. All of C#3, C#4 and C#5 outperform C#l
and C#2, and the least improvement in BLEU
is 0.2. This shows that no matter what collab-
oration method, models with the participation
of DMAN perform better than models with-
out DMAN, which validates the capability of
DMAN.

3. Both C#5 and C#4 are better than C'#3 and
C#2. This indicates that models without
DMAN or SAN are not comparable to mod-
els with all three modules. This shows that
DMAN and SAN have their own strengths,
namely, localness modeling and globalness
modeling, and are able to make up for each
other’s defects through collaboration.

4. C#S5 is better than C#4. This indicates that
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Model

CNN/Daily Mail

Gigaword

R-1 R-2 R-L R-avg R-1 R-2 R-L R-avg
LEAD-3 (Nallapati et al., 2016) 4042 17.62 36.67 31.57 - - - -
PTGEN+Coverage (See et al., 2017) 39.53 17.28 36.38 31.06 - - - -
Dynamic Conv (Wu et al., 2019) 39.84 16.25 36.73 30.94 - - - -
Transformer (Vaswani et al., 2017) 39.50 16.06 36.63 30.73 37.57 1890 34.69 30.38
Ours 4098 18.29 37.88 32.38 38.28 1946 3546 31.06
Table 2: Evaluation results on CNN/Daily Mail and Gigaword. R is short for ROUGE.
#  Method BLEU model BLEU
C#1 FFN—SAN—FFN 35.51 Transformer  34.40
C#2 SAN—SAN—FFN 35.66 SMAN; 35.52
C#3 DMAN—DMAN—FFN 35.86 SMAN, 35.55
C#4 SAN—DMAN—FFN 3591 DMAN 36.35
C#5 DMAN—SAN—FFN 36.35

Table 3: Performance of different collaboration meth-
ods of DMAN, SAN and FFN. We evaluate on
IWSLT2014 De-En.

first modeling the localness and then global-
ness would be better than the inverse order.

4.2 Static Mask and Dynamic Mask

In this section, we compare the performance of
Static Mask Attention Network (SMAN) and Dy-
namic Mask Attention Network (DMAN). Both
of them follow the collaboration strategy of
DMAN(SMAN)—SAN—FFN. In SMAN, we set
a fixed mask boundary which has been determined
in advance following Equation 11. Empirically, we
propose two static mask strategies: (a) SMAN1,
the boundary b depends on sentence length L,
b = VL/2; (b) SMANy, b is set to 4, which is
chosen from 2, 4, 6, 8 through validation.

The results in IWSLT2014 De-En are shown in
Table 4. The performance of SMAN; and SMAN»
are very close. They both outperform the Trans-
former but fall behind our proposed DMAN. This
indicates that our proposed DMAN is superior to
SMAN. SMAN fails to manage various neighbor-
hood for different query tokens, but DMAN can
model localness with more flexibility according to
these factors.

Table 4: Performance of SMAN and DMAN on
IWSLT2014 De-En.

4.3 Analysis of DMAN in Localness Modeling

In this section, we analyse the behavior of
DMAN and SAN in localness modeling through
attention scores in Equation 4. To quantify the role
of neighbors in semantic modeling, we compute
the sum of attention scores within some particu-
lar window size. Generally, if the attention score
from a to c is bigger than b to ¢, we consider that
a contributes more to the semantic modeling of
c compared to b, in other words, model utilizes
more information of a than b to learn the seman-
tic representation of c. Therefore, larger attention
scores mean that model utilizes more information
of the corresponding tokens to learn the semantic
representation of query token.

For each sentence in dataset X; = (x;1,- -,
x;1,) € D, we utilize §§7DMAN and §£VSAN e RTixT:
to denote the average attention scores Sy (Q, K) in
Equation 4 across different heads in the [-th layer
for DMAN and SAN, respectively. We sum the
attention scores of these tokens x; ,, within the win-
dow size w of the query z; ; in the [-th layer, and
average the sum across X; and dataset D following
Equation 13.

1
attn_sqy |+« = ﬁ Z
X, €D

=Y sl

" i € X |k—j|<w
(13)

where * € {DMAN, SAN}, and .§é7* 7, k] is the
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lw | #1 # #

DMAN | 1 | 76.58 60.43 60.86
SAN 1 | 12.80 40.39 45.55
DMAN | 2 | 86.17 75.56 73.89
SAN 2 | 1873 4562 52.72
DMAN | 4 | 95.09 86.20 85.58
SAN 4 | 3038 55.17 62.77

Table 5: The values of attention scores attn_s., ;. pyan
and attn_s,, ; san, wWhich is shown in Equation 13. D
is the test set of IWSLT14 De-En, window size w =
1,2, 4 and encoder layers [ = 1, 3, 6.

value of the j-th row and k-th column of §ﬁ*
attn_s,, 1~ measures the overall contribution of
these neighbor tokens within the window size w
to the query tokens’ semantic modeling. We take
D as the test set of IWSLT14 De-En and compute
attn_sy 1« withw =1,2,4and [ = 1, 3, 6.

The result is shown in Table 5. We see that in
layer#1, #3 and #6, the sum attention scores of
DMAN within the window size 2 are 50% more
than those of SAN, especially in layer#1 where
the gap is as much as five times between SAN
and DMAN. This phenomenon validates that the
attention scores of DMAN in neighbors are larger
than those of SAN, thus DMAN is more specialized
in localness modeling than SAN.

5 Related Work

Recently, there is a large body of work on im-
proving Transformer (Vaswani et al., 2017) for var-
ious issues. For recurrence modeling, Hao et al.
(2019) introduces a novel attentive recurrent net-
work to leverage the strengths of both attention and
recurrent networks. For context modeling, Yang
et al. (2019a) focuses on improving self-attention
through capturing the richness of context and pro-
poses to contextualize the transformations of the
query and key layers. Wu et al. (2019) introduces
dynamic convolutions to predict separate convolu-
tion kernels solely based on the current time-step
in order to determine the importance of context ele-
ments. In order to adjust attention weights beyond
SAN, Shaw et al. (2018) extends the self-attention
mechanism to efficiently consider representations
of the relative positions or distances between se-
quence elements through adding a relative posi-
tion embedding to the key vectors; Bugliarello and

Okazaki (2019) transfers the distance between two
nodes in dependency trees with a pre-defined Gaus-
sian weighting function and multiply the distance
with the key-query inner product value; Dai et al.
(2019) presents a relative position encoding scheme
that adds additional relative position representation
to the key-query computation. Sukhbaatar et al.
(2019a) proposes a parameterized linear function
over self-attention to learn the optimal attention
span in order to extend significantly the maximum
context size used in Transformer. To merge FFN
to SAN, Sukhbaatar et al. (2019b) proposes a new
model that solely consists of attention layers and
augments the self-attention layer with persistent
memory vectors that play a similar role as the feed-
forward layer. As for the collaboration of SAN and
FFN, Lu et al. (2019) introduces Macaron layer
that split the FFN into two half-steps based on
Strang-Marchuk splitting scheme in ODE. For lo-
calness modeling, Yang et al. (2018) casts localness
modeling as a learnable Gaussian bias according
to relative distance to external energy in softmax
function as a new self-attention network. Zhao et al.
(2019) explores parallel multi-scale representation
learning to capture both long-range and short-range
language structures with combination of convolu-
tion and self-attention. In our work, DMAN, SAN
and FFN are unified in Mask Attention Networks,
where DMAN is a supplement of SAN and FFN
that specializes in localness modeling. Moreover,
we investigate different collaboration mechanisms.

6 Conclusion

In this paper, we introduce Mask Attention Net-
works and reformulate SAN and FFN to point
out they are two special cases with static mask
in MANs. We analyze the the deficiency of
SAN and FEN in localness modeling. Dynamic
Mask Attention Network is derived from MANs
for better local structure modeling. Consider-
ing the different specialities of SAN, FFN, and
DMAN, we investigate a sequential layered struc-
ture DMAN—SAN—FFN for their collaboration.
Compared with original Transformer, our proposed
model achieves better performance in neural ma-
chine translation and abstract summarization. For
future work, we consider adding structure informa-
tion or external knowledge, e.g., dependency tree,
with mask matrices in MANS.
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