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Abstract

Recent research has adopted a new experimen-
tal field centered around the concept of text
perturbations which has revealed that shuffled
word order has little to no impact on the down-
stream performance of Transformer-based lan-
guage models across many NLP tasks. These
findings contradict the common understand-
ing of how the models encode hierarchical
and structural information and even question
if the word order is modeled with position em-
beddings. To this end, this paper proposes
nine probing datasets organized by the type
of controllable text perturbation for three Indo-
European languages with a varying degree of
word order flexibility: English, Swedish and
Russian. Based on the probing analysis of the
M-BERT and M-BART models, we report that
the syntactic sensitivity depends on the lan-
guage and model pre-training objectives. We
also find that the sensitivity grows across lay-
ers together with the increase of the perturba-
tion granularity. Last but not least, we show
that the models barely use the positional in-
formation to induce syntactic trees from their
intermediate self-attention and contextualized
representations.

1 Introduction

An extensive body of works is devoted to analyzing
syntactic knowledge of Transformer language mod-
els (LMs) (Vaswani et al., 2017; Clark et al., 2019;
Goldberg, 2019; Belinkov and Glass, 2019). BERT-
based LMs (Devlin et al., 2019) have demonstrated
their abilities to encode various linguistic and hier-
archical properties (Lin et al., 2019; Jawahar et al.,
2019; Jo and Myaeng, 2020) which have a positive
effect on the downstream performance (Liu et al.,
2019a; Miaschi et al., 2020) and serve as an inspira-
tion for syntax-oriented architecture improvements
(Wang et al., 2019; Bai et al., 2021; Ahmad et al.,
2021; Sachan et al., 2021). Besides, a variety of
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pre-training objectives has been introduced (Liu
et al., 2020a), with some of them modeling recon-
struction of the perturbed word order (Lewis et al.,
2020; Tao et al., 2021; Panda et al., 2021).

Recent research has adopted a new experimental
direction aimed at exploring the syntactic knowl-
edge of LMs and their sensitivity to word order
employing text perturbations (Futrell et al., 2018,
2019; Ettinger, 2020). Some studies show that shuf-
fling word order causes significant performance
drops on a wide range of QA tasks (Si et al., 2019;
Sugawara et al., 2020). However, a number of
works demonstrates that such permutation has lit-
tle to no impact during the pre-training and fine-
tuning stages (Pham et al., 2020; Sinha et al., 2020,
2021; O’Connor and Andreas, 2021; Hessel and
Schofield, 2021; Gupta et al., 2021). The latter
contradict the common understanding on how the
hierarchical and structural information is encoded
in LMs (Rogers et al., 2020), and even may ques-
tion if the word order is modeled with the position
embeddings (Wang et al., 2020; Dufter et al., 2021).

This has stimulated a targeted probing of the
LMs internal representations generated from orig-
inal texts and their permuted counterparts (Sinha
et al., 2021; Hessel and Schofield, 2021). A new
type of controllable probes has been proposed,
designed to test the LMs sensitivity to granu-
lar character- and sub-word level manipulations
(Clouatre et al., 2021), as well as structured syntac-
tic perturbations (Alleman et al., 2021). Despite the
emerging interest in the field, little is investigated
for languages other than English, specifically those
with flexible word order.

This paper extends the ongoing research on the
syntactic sensitivity to three Indo-European lan-
guages with a varying degree of word order flex-
ibility: English, Swedish, and Russian. The con-
tributions of this work are summarized as follows.
First, we propose nine probing datasets in the lan-
guages mentioned above, organized by the type of
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controllable syntactic perturbation: N-gram pertur-
bation (NgramShift), shuffling parts of the syntac-
tic clauses (ClauseShift) and randomizing word
order (RandomShift). Despite that randomizing
word order has been studied from many perspec-
tives (see Section 2), NgramShift differs from sim-
ilar approaches (Conneau et al., 2018; Ravishankar
et al., 2019; Eger et al., 2020; Alleman et al., 2021)
in that the N-grams correspond to only syntactic
phrases (e.g. prepositional or numerical phrases)
rather than random word spans. ClauseShift is a
previously unexplored type of syntactic perturba-
tion adopted from the syntactic tree augmentation
method (Şahin and Steedman, 2018). Second, we
apply a combination of parameter-free interpreta-
tion methods to test the sensitivity of two multi-
lingual Transformer LMs: M-BERT (Devlin et al.,
2019), and M-BART (Liu et al., 2020b). We hy-
pothesize that M-BART is more robust to the pertur-
bations as opposed to M-BERT since it is learned
to restore the shuffled input during pre-training.
We evaluate the discrepancy in the syntactic trees
induced by the models from perturbed sentences
against the original ones, along with the ability to
distinguish between them by judging their linguis-
tic acceptability (Lau et al., 2020). Finally, we
analyze the relationship between the models’ probe
performance and position embeddings (PEs). To
the best of our knowledge, it is one of the first at-
tempts to introspect PEs regarding structural prob-
ing, particularly in the light of syntactic perturba-
tions. The code and datasets are publicly avail-
able1.

2 Related Work

Syntax Probing Most of the previous studies
on the syntactic knowledge of LMs are centered
around the concept of probing tasks, where a sim-
ple classifier is trained to predict a particular lin-
guistic property based on the model internal rep-
resentations (Conneau et al., 2018). The scope of
the properties ranges from dependency relations
(Tenney et al., 2018) to the depth of a syntax tree,
and top constituents (Conneau et al., 2018). A
variety of probing datasets and benchmarks have
been developed. To name a few, Liu et al. (2019a)
create a probing suite focused on fine-grained lin-
guistic phenomena, including hierarchical knowl-
edge. SyntaxGym (Gauthier et al., 2020) and LIN-

1https://github.com/evtaktasheva/
dependency_extraction

SPECTOR (Şahin et al., 2020) allow for targeted
evaluation of the LMs linguistic knowledge in a
standardized and reproducible environment.

These studies have proved that LMs are capable
of encoding linguistic and hierarchical information
(Belinkov and Glass, 2019; Rogers et al., 2020).
However, the probing paradigm has been lately crit-
icized for relying on supervised probes, which can
learn linguistic properties given the supervision,
and make it challenging to interpret the results be-
cause of the additional set of parameters (Hewitt
and Liang, 2019; Belinkov, 2021). Towards that
end, Hewitt and Manning (2019) introduce a struc-
tural probe to explore a linear transformation of
the embedding space, which best approximates the
distance between words and depth of the parse
tree. The method has proved to infer the hierar-
chical structure without any linguistic annotation
(Kim et al., 2020). Maudslay and Cotterell (2021)
propose a Jabberwocky probing suite of seman-
tically nonsensical but syntactically well-formed
sentences. The results demonstrate that the BERT-
based LMs do not isolate semantics from syntax,
which motivates further development of the prob-
ing field.

Acceptability Judgements Another line of
works relies on the concept of acceptability judg-
ments. The CoLA benchmark (Warstadt et al.,
2019) and its counterpart for Swedish (Volodina
et al., 2021) test LMs ability to identify various
linguistic violations. Although Transformer LMs
have outperformed the CoLA human solvers on the
GLUE leaderboard (Wang et al., 2018), a granular
linguistic analysis (Warstadt and Bowman, 2019)
shows that the models struggle with long-distance
syntactic phenomena as opposed to more local ones.
Similar in spirit, BLiMP (Warstadt et al., 2020),
and CLiMP (Xiang et al., 2021) allow to evaluate
the LMs with respect to the acceptability contrasts,
framing the task as ranking sentences in minimal
pairs.

Text Perturbations Recent research has adopted
a scope of novel approaches to investigating the
LMs sensitivity to syntax corruption and input data
manipulations. Starting from studies on random-
ized word order in LSTMs (Hill et al., 2016; Khan-
delwal et al., 2018; Sankar et al., 2019; Nie et al.,
2019), text perturbations have emerged as an auda-
cious experimental direction under the “pre-train
& fine-tune” paradigm along with the interpreta-

https://github.com/evtaktasheva/dependency_extraction
https://github.com/evtaktasheva/dependency_extraction
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tion methods of modern LMs. Si et al. (2019);
Sugawara et al. (2020) show that N-gram permu-
tations and shuffled word order in the fine-tuning
data cause BERT’s performance drops up to 22%
on a wide range of QA tasks. In contrast, sev-
eral works report that models fine-tuned on such
perturbed data still produce high confidence pre-
dictions and perform close to their counterparts
on many tasks, including the GLUE benchmark
(Ahmad et al., 2019; Sinha et al., 2020; Liu et al.,
2021; Hessel and Schofield, 2021; Gupta et al.,
2021). Similar results are demonstrated by the
RoBERTa model (Liu et al., 2019b) when the word
order perturbations are incorporated into the pre-
training objective (Panda et al., 2021) or tested as
a part of full pre-training on the perturbed corpora
(Sinha et al., 2021). Sinha et al. (2021) find that
the randomized RoBERTa models are similar to
their naturally pre-trained peer according to para-
metric probes but perform worse according to the
non-parametric ones.

Recognizing the need to further explore the LMs
sensitivity to word order, Clouatre et al. (2021)
and Alleman et al. (2021) conduct the interpre-
tation analysis of LMs by means of controllable
text perturbations. Clouatre et al. (2021) propose
two metrics that score local and global structure
of sentences perturbed at the granularity of charac-
ters and sub-words. The metrics allow identifying
that both conventional and Transformer LMs rely
on the local order of tokens more than the global
one. Alleman et al. (2021) find that BERT builds
syntactic complexity towards the output layer and
demonstrates a growing sensitivity to the hierar-
chical phrase structure across layers. In line with
these studies, we analyze the syntactic sensitivity
of Transformer-based LMs, extending the experi-
mental setup to the multilingual setting.

3 Controllable Perturbations

This work proposes three types of controllable syn-
tactic perturbations varying in the extent of sen-
tence corruption. We construct nine probing tasks2

for three Indo-European languages3: English (West
Germanic, analytic), Swedish (North Germanic, an-
alytic), and Russian (Balto-Slavic, fusional). Based
on the dominant constituent order, all three lan-
guages are classified as the SVO (Subject-Verb-

2We use sentences from the CoNLL 2017 Shared Task on
Multilingual Parsing from Raw Texts to Universal Dependen-
cies (Ginter et al., 2017).

3https://wals.info

Object) languages. Nevertheless, there are some
differences between them regarding word order
flexibility. Russian is known to exhibit free word
order as all of the possible constituent reorder-
ings are acceptable: SOV, OSV, SVO, OVS, VSO,
VOS (Bailyn, 2012). English allows for only two
of them, namely SVO and OSV (Prince, 1988).
Swedish belongs to the verb-second languages,
which poses different restrictions on the possible
constituent reorderings (Börjars et al., 2003). Each
dataset4 consists of 10k pairs of the corresponding
perturbed sentence and its original.

NgramShift tests the LM sensitivity to local pertur-
bations taking into account the syntactic structure.
We used a set of carefully designed morphosyntac-
tic patterns to perturb N-grams that correspond to
only syntactic phrases such as numeral phrases, de-
terminer phrases, compound noun phrases, prepo-
sitional phrases, etc. Towards this, we applied TF-
IDF weighting from scikit-learn library (Pedregosa
et al., 2011) to build a ranked N-gram feature ma-
trix from the corpora and further used it for the N-
gram inversion. We used the N-gram range ∈ [2; 4]
for each language. Note that the number of words
that change their absolute positions is similar for
different values of N . Figure 1 illustrates the shift
of the head in the prepositional phrase “to school”
for the sentence “He did not go to school yester-
day”.

He did not go to school yesterday

En: He did not go school to yesterday

Ru: Vchera on ne poshel shkolu v

Sv: Han gick inte skolan till igår

Figure 1: Examples of the N-gram perturbations
(NgramShift). Languages: En=English, Ru=Russian,
Sv=Swedish. The English sentence is translated to the
other languages for illustrational purposes.

ClauseShift probes the LM sensitivity to distant
perturbations at the level of syntactic clauses. We
use the syntactic tree augmentation method (Şahin
and Steedman, 2019) to rotate sub-trees around the
root of the dependency tree of each sentence to
form a new synthetic sentence. We then apply a set
of manually curated language-specific heuristics
to filter out sentences uncorrupted by the rotation
procedure. Figure 2 outlines an example of the

4A brief statistics is outlined in Appendix 1.

https://wals.info
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clause rotation perturbation for the sentence “He
manages to tell her that she has been resurrected”.

He manages to tell her that she has been resurrected

En: That she has been resurrected he manages to tell her

Sv: Att hon har uppstått han lyckas berätta för henne

Ru: Chto ona byla voskreshena on smog rasskazat’ ej

Figure 2: Examples of the clause rotation perturbation
(ClauseShift). Languages: En=English, Ru=Russian,
Sv=Swedish. The English sentence is translated to the
other languages for illustrational purposes.

RandomShift tests the LM sensitivity to global
perturbations obtained by shuffling the word order.
This type represents an extreme case of sentence
permutation and is useful for comparing the behav-
ior of the models at the scale of the perturbation
complexity. An example of the randomized word
order perturbation for the sentence “She wanted to
go to London” is presented in Figure 3.

She wanted to go to London

En: Wanted London go she to to

Sv: Ville London åka hon till att

Ru: Hotela London poehat’ ona v

Figure 3: Examples of the word order shuf-
fling (RandomShift). Languages: En=English,
Ru=Russian, Sv=Swedish. The English sentence is
translated to the other languages for illustrational pur-
poses.

4 Experimental Setup

4.1 Models

The experiments are run on two 12-layer multilin-
gual Transformer models released by the Hugging-
Face library (Wolf et al., 2020):

M-BERT5 is pre-trained using masked language
modeling (MLM) and next sentence prediction ob-
jectives, over concatenated monolingual Wikipedia
corpora in 104 languages.

M-BART6 is a sequence-to-sequence model that
comprises a BERT encoder and an autoregressive
GPT-2 decoder (Radford et al., 2019). The model
is pre-trained on the CC25 corpus in 25 languages

5Model name: bert-base-multilingual-cased.
6Model name: facebook/mbart-large-cc25.

using text infilling and sentence shuffling objec-
tives, where it learns to predict masked word spans
and reconstruct the permuted input. We use only
the encoder in our experiments.

4.2 Interpretation Methods

Parameter-free Probing We apply two unsuper-
vised probing methods to reconstruct syntactic trees
from self-attention (Self-Attention Probing) and
so-called “impact” (Token Perturbed Masking)
matrices computed by feeding the MLM models
with each sentence s and its perturbed version s′.
The trees are induced by Chu-Liu-Edmonds algo-
rithm (Chu, 1965; Edmonds, 1968) used to com-
pute the Maximum Spanning Tree starting from the
root of the corresponding gold dependency tree (Ra-
ganato and Tiedemann, 2018; Htut et al., 2019; Wu
et al., 2020). The probing performance is evaluated
by the Undirected Unlabeled Attachment Score
(UUAS), which reflects the percentage of words
that have been assigned the correct head without
taking the direction of relations and dependency
labels into account (Klein and Manning, 2004).

Self-Attention Probing (Htut et al., 2019) allows
to explore if attention heads encode complete syn-
tactic trees. To this end, each layer-head atten-
tion matrix is treated as a weighted directed graph
where the vertices represent words in the input sen-
tence and edges are the attention weights. Model-
specific special tokens such as [CLS], [SEP],
<s>, </s> are excluded at the pre-processing
stage to eliminate their impact on other tokens.

Token Perturbed Masking (Wu et al., 2020) ex-
tracts global syntactic information by measuring
the impact one word has on the prediction of an-
other in an MLM. The impact matrix is similar to
the self-attention matrix as it reflects the inter-word
relationships in terms of Euclidean distance, except
that it is derived from the outputs of the MLM head.
For the sake of space, we refer the reader to Wu
et al. (2020) for more details.

Representation Analysis Hessel and Schofield
(2021) propose two metrics to compare contextu-
alized representations and self-attention matrices
produced by the model for each pair of sentences
s and s′. Token Identifiability (TI) evaluates the
similarity of the LM’s contextualized representa-
tions of a particular token in s and s′. It is high
if the token representations are similar to one an-
other. Self-Attention Distance (SAD) measures if
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each token in s relates to similar words in s′ by
computing row-wise Jensen-Shannon Divergence
between the two self-attention matrices. It is low
if an LM attends to the same words despite the
perturbations.

Pseudo-perplexity Pseudo-perplexity (PPPL) is
an intrinsic measure that estimates the probability
of a sentence with an MLM similar to that of con-
ventional LMs (Salazar et al., 2020). PPPL-based
measures have proved to correlate with human rat-
ings (Lau et al., 2017), match or outperform au-
toregressive LMs (GPT-2) in ranking hypotheses
for downstream tasks and the BLiMP benchmark
(Salazar et al., 2020), and perform at the human
level in acceptability judgments (Lau et al., 2020).
We use two PPPL-based measures under implemen-
tation7 by Lau et al. (2020) to infer probabilities of
the sentences and their perturbed counterparts. The
MeanLP and PenLP measures are computed as the
sum of pseudo-log-likelihood scores for each token
in the sentence normalized by the total number of
tokens. PenLP additionally scales the denominator
with the exponent α to penalize the effect of high
scores.

4.3 Positional Encoding
Various PEs have been proposed to utilize the infor-
mation about word order in the Transformer-based
LMs (Wang et al., 2020; Dufter et al., 2021). Sur-
prisingly, little is known about what PEs capture
and how well they learn the meaning of positions.
Wang and Chen (2020) among the first present
an extensive study on the properties captured by
PEs in different pre-trained Transformers and em-
pirically evaluate their impact on the downstream
performance for many NLP tasks. In the spirit of
this work, we aim at analyzing the impact of the
PEs on the syntactic probe performance. Towards
this end, we consider the following three configura-
tions of PEs of the M-BERT and M-BART models:
(1) absolute=frozen PEs; (2) random=randomly
initialized PEs; and (3) zero=zeroed PEs.

5 Results

5.1 Parameter-free Probing
The discrepancy in the syntactic trees induced from
the original sentences and their perturbed analogs
is measured as the difference between the corre-
sponding UUAS scores (δ UUAS). The lower the δ

7https://github.com/jhlau/
acceptability-prediction-in-context

UUAS, the better is the syntax tree reconstructed
from s′ with respect to the UUAS score for s.

Self-Attention Probing Figures 4 and 1 in Ap-
pendix 2 outline the task-wise heatmaps with the
δ UUAS scores achieved by the M-BERT and M-
BART models with absolute PEs for each layer-
head pair, respectively. The models exhibit simi-
lar behavior, demonstrating positive correlation be-
tween the δ UUAS scores and the granularity of the
perturbation. The overall pattern for both models is
that they display little to no sensitivity to local and
distant perturbations (NgramShift, ClauseShift)
in contrast to the global ones (RandomShift). We
provide examples of the dependency trees extracted
from the self-attention matrices of the M-BERT
model for the Swedish NgramShift task on Fig-
ure 5. The trees from both original (see Figure 5a)
and perturbed (see Figure 5b) sentence versions
receive the UUAS score of 0.86, demonstrating
little changes in the assigned dependency heads
under the local perturbation. On the contrary, ran-
domizing word order (RandomShift) corrupts the
syntactic structure significantly with a δ UUAS
score of 0.33 (see Figure 8, Appendix 2).

Token Perturbed Masking The models show
similar results to that of in Self-Attention Prob-
ing, with regards to the perturbation granularity
(see Figure 6). In spite of that, the model per-
formance on the NgramShift and ClauseShift re-
veal some differences between the encoders. M-
BART generally achieves lower and close to zero
δ UUAS scores, meaning to better restore the hier-
archical information from the perturbed sentences
(e.g., ClauseShift: [Sv, Ru]). We relate this to the
fact that M-BART is pre-trained with the sentence
shuffling objective.

Language-wise Comparison Another observa-
tion is that there are more insensitive attention
heads on the Russian tasks, possibly indicating that
it is harder to distinguish from the perturbations
as opposed to English and Swedish, particularly
on the ClauseShift task with typically longer and
syntactically more complex sentences (see Figures
4, 1, Appendix 2). As for Swedish, which has a
similar to English but stricter syntactic structure,
M-BART tends to induce correct syntactic trees
from the permuted sentences more frequently. This
is indicated by negative δ UUAS scores on most
tasks.

https://github.com/jhlau/acceptability-prediction-in-context
https://github.com/jhlau/acceptability-prediction-in-context
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Figure 4: The task-wise heatmaps depicting the δ UUAS scores by M-BERT for each language. Method=Self-
Attention Probing. PE=absolute. X-axis=Attention head index. Y-axis=Layer index. Tasks: NgramShift
(top); ClauseShift (middle); RandomShift (bottom). Languages: En=English (left); Sv=Swedish (middle);
Ru=Russian (right).

Positional Encoding Analysis of the positional
encoding shows that despite the genuine belief that
positional information contributes most to syntactic
structure encoding, the models do not seem to rely
on it as much as might be expected. Figure 2 (see
Appendix 2) illustrates the distribution of δ UUAS
scores for M-BERT with different PEs on English
tasks. The heatmaps show that zero and random
PEs only slightly affects the quality of the probe
performance of the self-attention heads.

To analyze the impact of PEs from another per-
spective, for each pair of (s, s′) we compute the
Euclidean distance (L2) between the correspond-
ing impact (Token Perturbed Probing) and self-
attention matrices (Self-Attention Probing) de-
scribed in Section 4.2. The difference in the impact
matrices produced by M-BERT model is generally
observed only in the setting with zero PEs (see Fig-
ures 7; Figures 3-4, Appendix 2). In contrast, there
is almost no difference between the representations
generated by M-BART across all configurations of
the PEs (see Figures 5-7, Appendix 2). This behav-
ior is consistent with the head-wise results under
Self-Attention Probing for all languages.

5.2 Representation Analysis

Token Identifiability The overall pattern for
both models under the representation analysis is
that for local and distant perturbations TI steadily
decreases towards the output layer with rapid in-
creases at layers [1, 10] (see Figure 9, Appendix 3),
and high for global perturbations (RandomShift).
TI decreases when the perturbed inputs generate
embeddings different from the intact ones. Despite
that higher layers in both models are more sensi-
tive, the perturbed representations remain similar
to that of the original (Hessel and Schofield, 2021).

Self-Attention Distance The results by SAD
show that both models score significantly lower
with random and zero PEs (see Figure 10, Ap-
pendix 3), meaning lower sensitivity to the per-
turbations supported by the probing results (Sec-
tion 5.1). This provides evidence that the encoders
marginally rely on the positional information to
induce the syntactic structure despite the distribu-
tions of the self-attention weights for the intact and
perturbed sentences may differ according to the
Jensen-Shannon divergence.
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(a) original

(b) perturbed

(c) gold

Figure 5: Graphical representations of the syntactic trees inferred for the Swedish sentence Treubiaceae är en familj
av bladmossor ’Treubiaceae is a family of mosses’ and its perturbed version. original=the original sentence;
perturbed=the perturbed version; gold=gold standard. Task=NgramShift. Model=M-BERT (Layer: 11;
Head: 2). Method=Self-Attention Probing. The perturbation is underlined with red, and incorrectly assigned
dependency heads are marked with red arrows.

Figure 6: The probing performance in δ UUAS across layers under Token Perturbed Probing. PE=absolute. The
scores are averaged over attention heads at each layer. X-axis=Attention head index. Y-axis=δ UUAS.
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5.3 Pseudo-perplexity

Consistent with the results under parameter-free
probing (Section 5.1) and representation analy-
sis (Section 5.2), PPPL-based acceptability judge-
ments8 indicate that the encoders distinguish be-
tween the perturbations depending on their gran-
ularity. The overall trend is that for all languages
the sentence pseudo-log-probability inferred from
both LMs decreases with the increase of the per-
turbation complexity which is demonstrated by
higher acceptability scores on NgramShift, but
significantly lower scores on the ClauseShift and
RandomShift (see Figures 11-12, Appendix 4).
The statistical significance of the PPPL distribu-
tions is confirmed with Kolmogorov–Smirnov and
Wilcoxon signed-rank tests (p-value < 0.01).

6 Discussion

The syntactic sensitivity depends upon lan-
guage At present, English remains the focal point
of prior research in the field of NLP, leaving other
languages understudied. Our probing experiments
on the less explored languages with different word
order flexibility show that M-BERT and M-BART
behave slightly differently in Swedish and Russian.
While M-BART better restores the corrupted syn-
tactic structure on most of the tasks for Swedish,
there are fewer attention heads sensitive to the per-
turbations in Russian, which is revealed through
the examination of head-wise attention patterns of
both models. Besides, the encoders receive lower
probing performance for Russian that can be con-
tributed to the more complex syntax and flexible
word order.

Pre-training objectives can help to improve syn-
tactic robustness Analysis of the M-BERT and
M-BART LMs that differ in the pre-training objec-
tives shows that M-BERT achieves higher δ UUAS
performance across all languages as opposed to
M-BART pre-trained with the sentence shuffling
objective. The lower δ UUAS probing performance
indicates that M-BART better induces syntactic
trees from both perturbed and intact sentences (see
Section 5.1). Despite this, the representation and
acceptability analysis demonstrate that M-BART is
also capable of distinguishing between the perturba-
tions (see Sections 5.2-5.3). A fruitful direction for
future work is to analyze more LMs that differ in

8We present the results obtained by the MeanLP measure
which are consistent with those of PenLP.

the architecture design and pre-training objectives.

The LMs are less sensitive to more granular
perturbations The results of the parameter-free
probing show that M-BERT and M-BART ex-
hibit little to no sensitivity to local perturbations
within syntactic groups (NgramShift) and dis-
tant perturbations at the level of syntactic clauses
(ClauseShift). In contrast, the global perturbations
(RandomShift) are best distinguished by the en-
coders. As the granularity of the syntactic corrup-
tion increases, we observe a worse probing perfor-
mance under all considered interpretation methods.
Namely, the results are supported by representa-
tion analysis metrics (see Section 5.2) that indicate
higher susceptibility to major changes in the sen-
tences structure (RandomShift, ClauseShift), and
the PPPL-based measures (see Section 5.3) pre-
scribing higher acceptability scores to sentences
with more granular perturbations (NgramShift).
We also find that the sensitivity to the hierarchical
corruption grows across layers together with the
increase of the perturbation complexity, which is
in line with Alleman et al. (2021).

M-BERT and M-BART barely use positional
information to induce syntactic trees Previous
research has shown that the token embeddings cap-
ture enough semantic information to restore the
syntactic structure (Vilares et al., 2020; Kim et al.,
2020; Rosa and Mareček, 2019). Maudslay and
Cotterell (2021) claim that syntactic abilities of
BERT-based LMs are overestimated and raise the
problem of isolating semantics from syntax. How-
ever, more recent studies show that Transformer
encoders encode redundant information (Luo et al.,
2021), may not sufficiently capture the meaning of
positions and be unimportant for downstream tasks
(Wang and Chen, 2020), including the setting with
perturbed fine-tuning data (Clouatre et al., 2021).
In spirit with the latter studies, our results under
different PEs configurations reveal that M-BERT
and M-BART do not need the precise position in-
formation to restore the syntactic tree from their in-
ternal representations. The overall behavior is that
zeroed (except for M-BERT) or even randomly ini-
tialized PEs can result in the probing performance
and one with absolute positions. We suppose that
despite the absolute positions of words changes dur-
ing the N-gram permutation and sub-tree rotation
procedures, the word order within the clauses re-
mains almost the same as in the intact sentence
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Figure 7: The Euclidean distances between the impact matrices computed by M-BERT with different PEs over
each pair of sentences (s, s′) for Swedish. The distances are averaged over attention heads at each layer. Method:
Token Perturbed Masking. Tasks: NgramShift (left); ClauseShift (middle); RandomShift (right)

.

(NgramShift, ClauseShift). That is, the more
granular perturbations marginally confuse the LMs
when: (i) predicting the masked word under Token
Perturbation Probing which can be performed us-
ing only attention (Wang and Chen, 2020), or (ii)
judging the acceptability of the sentence where the
low token pseudo-log-probability can occur at the
juxtaposition of the syntactic groups, and clauses
(Alleman et al., 2021). We leave a more detailed
exploration of the relationship between PEs and
probing analysis for future work.

7 Conclusion

This paper presents an extension of the ongoing
research on the controllable text perturbations to
the multilingual setting and introspection of posi-
tional embeddings in pre-trained LMs. We intro-
duce nine probing datasets for three Indo-European
languages varying in their flexibility of the word
order: English, Swedish, and Russian. The suite
is constructed using language-specific heuristics
carefully designed under linguistic expertise and
organized by three types of syntactic perturbations:
randomization of word order studied by previous
research from many perspectives and less explored
permutations within syntactic phrases and clauses.
The method includes a combination of parameter-
free probing methods based on the intermediate
self-attention and contextualized representations,
novel metrics for representation analysis, and ac-
ceptability judgments with pseudo-perplexity. We
conduct a line of experiments to probe the syntactic
sensitivity of two multilingual Transformers, M-
BERT and M-BART, the latter of which is learned
to reconstruct the word order during pre-training.
The LMs are less sensitive to more granular pertur-

bations and build hierarchical complexity towards
the output layer. The analysis of the understudied
relationship between the position embeddings and
syntactic probe performance reveals that the posi-
tion information is not necessary for inducing the
hierarchical structure, which is a promising direc-
tion for a more detailed investigation. The results
also show that the syntactic sensitivity may depend
on the language and be enhanced by pre-training
objectives. We believe there is still room for ex-
ploring the sensitivity to word order and syntactic
abilities of modern LMs, specifically across a more
diverse set of languages and models varying in the
architecture design choices.

Acknowledgements

Ekaterina Taktasheva and Ekaterina Artemova are
partially supported by the framework of the HSE
University Basic Research Program.

References

Wasi Ahmad, Haoran Li, Kai-Wei Chang, and Yashar
Mehdad. 2021. Syntax-augmented multilingual
BERT for cross-lingual transfer. In Proceedings of
the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 4538–4554, Online.
Association for Computational Linguistics.

Wasi Ahmad, Zhisong Zhang, Xuezhe Ma, Eduard
Hovy, Kai-Wei Chang, and Nanyun Peng. 2019. On
difficulties of cross-lingual transfer with order differ-
ences: A case study on dependency parsing. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 2440–2452,

https://doi.org/10.18653/v1/2021.acl-long.350
https://doi.org/10.18653/v1/2021.acl-long.350
https://doi.org/10.18653/v1/N19-1253
https://doi.org/10.18653/v1/N19-1253
https://doi.org/10.18653/v1/N19-1253


200

Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Matteo Alleman, Jonathan Mamou, Miguel A Del Rio,
Hanlin Tang, Yoon Kim, and SueYeon Chung.
2021. Syntactic perturbations reveal representa-
tional correlates of hierarchical phrase structure in
pretrained language models. In Proceedings of the
6th Workshop on Representation Learning for NLP
(RepL4NLP-2021), pages 263–276, Online. Associ-
ation for Computational Linguistics.

Jiangang Bai, Yujing Wang, Yiren Chen, Yaming Yang,
Jing Bai, Jing Yu, and Yunhai Tong. 2021. Syntax-
BERT: Improving pre-trained transformers with syn-
tax trees. In Proceedings of the 16th Conference of
the European Chapter of the Association for Com-
putational Linguistics: Main Volume, pages 3011–
3020, Online. Association for Computational Lin-
guistics.

John F Bailyn. 2012. The Syntax of Russian. Cam-
bridge University Press.

Yonatan Belinkov. 2021. Probing classifiers: Promises,
shortcomings, and alternatives. arXiv preprint
arXiv:2102.12452.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Kersti Börjars, Elisabet Engdahl, Maia Andréasson,
Miriam Butt, and Tracy Holloway King. 2003. Sub-
ject and Object Positions in Swedish. In Proceed-
ings of the LFG03 Conference, pages 43–58. Cite-
seer.

Yoeng-Jin Chu. 1965. On the Shortest Arborescence of
a Directed Graph. Scientia Sinica, 14:1396–1400.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for
NLP, pages 276–286, Florence, Italy. Association
for Computational Linguistics.

Louis Clouatre, Prasanna Parthasarathi, Amal Zouaq,
and Sarath Chandar. 2021. Demystifying Neu-
ral Language Models’ Insensitivity to Word-Order.
arXiv preprint arXiv:2107.13955.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single $&!#* vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2126–2136, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Philipp Dufter, Martin Schmitt, and Hinrich Schütze.
2021. Position Information in Transformers: An
Overview. arXiv preprint arXiv:2102.11090.

Jack Edmonds. 1968. Optimum branchings. Math-
ematics and the Decision Sciences, Part, 1(335-
345):25.

Steffen Eger, Johannes Daxenberger, and Iryna
Gurevych. 2020. How to probe sentence embed-
dings in low-resource languages: On structural de-
sign choices for probing task evaluation. In Pro-
ceedings of the 24th Conference on Computational
Natural Language Learning, pages 108–118, Online.
Association for Computational Linguistics.

Allyson Ettinger. 2020. What BERT is not: Lessons
from a new suite of psycholinguistic diagnostics for
language models. Transactions of the Association
for Computational Linguistics, 8:34–48.

Richard Futrell, Ethan Wilcox, Takashi Morita, and
Roger Levy. 2018. RNNs as Psycholinguistic Sub-
jects: Syntactic State and Grammatical Dependency.
arXiv preprint arXiv:1809.01329.

Richard Futrell, Ethan Wilcox, Takashi Morita, Peng
Qian, Miguel Ballesteros, and Roger Levy. 2019.
Neural language models as psycholinguistic sub-
jects: Representations of syntactic state. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 32–42, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Jon Gauthier, Jennifer Hu, Ethan Wilcox, Peng Qian,
and Roger Levy. 2020. SyntaxGym: An Online Plat-
form for Targeted Evaluation of Language Models.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations, pages 70–76.
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Appendix

1 Dataset Statistics

Language NgramShift ClauseShift RandomShift

num. tokens
Ru
En
Sv

105.8k
128.5k
134.1k

199.7k
198.6k
192.9k

95.6k
111.1k
100.7k

unique tokens
Ru
En
Sv

25.2k
19.2k
23.2k

46.1k
25.1k
25.7k

27.8k
22.8k
17.8k

tokens / sentence
Ru
En
Sv

10.9
12.9
13.4

19.9
19.9
19.3

10.5
11.1
10.1

Table 1: A brief statistics of the controlled perturbation datasets. Languages: Ru=Russian, En=English,
Sv=Swedish.
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2 Parameter-free Probing

Figure 1: The task-wise heatmaps depicting the δ UUAS scores by M-BART for each language. Method=Self-
Attention Probing. PE=absolute. X-axis=Attention head index. Y-axis=Layer index. Tasks: NgramShift
(top); ClauseShift (middle); RandomShift (bottom). Languages: En=English (left); Sv=Swedish (middle);
Ru=Russian (right).

Language M-BERT M-BART

NgramShift
En
Sv
Ru

0.32; 0.33
0.30; 0.31
0.36; 0.38

0.31; 0.32
0.30; 0.31
0.37; 0.38

ClauseShift
En
Sv
Ru

0.20; 0.21
0.20; 0.21
0.20; 0.21

0.20; 0.21
0.20; 0.21
0.20; 0.21

RandomShift
En
Sv
Ru

0.37; 0.38
0.38; 0.41
0.39; 0.42

0.37; 0.37
0.37; 0.39
0.40; 0.41

Table 2: The UUAS scores by Self-Attention Probing method. The minimum and maximum values are given
(min; max). Languages: Ru=Russian, En=English, Sv=Swedish.
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Figure 2: The task-wise heatmaps depicting the δ UUAS scores by M-BERT for each language. Method=Self-
Attention Probing. PE: absolute (left); random (middle); zero (right). X-axis=Attention head index. Y-
axis=Layer index. Tasks: NgramShift (top); ClauseShift (middle); RandomShift (bottom).
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Figure 3: The Euclidean distance between the impact matrices computed by M-BERT with different PEs over each
pair of sentences (s, s′) for Russian. The distances are averaged over attention heads at each layer. Method: Token
Perturbed Masking. Tasks: NgramShift (left); ClauseShift (middle); RandomShift (right)

.
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Figure 4: The Euclidean distance between the impact matrices computed by M-BERT with different PEs over each
pair of sentences (s, s′) for English. The distances are averaged over attention heads at each layer. Method: Token
Perturbed Masking. Tasks: NgramShift (left); ClauseShift (middle); RandomShift (right)
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Figure 5: The Euclidean distance between the impact matrices computed by M-BART with different PEs over
each pair of sentences (s, s′) for Swedish. The distances are averaged over attention heads at each layer. Method:
Token Perturbed Masking. Tasks: NgramShift (left); ClauseShift (middle); RandomShift (right)
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Figure 6: The Euclidean distance between the impact matrices computed by M-BART with different PEs over each
pair of sentences (s, s′) for English. The distances are averaged over attention heads at each layer. Method: Token
Perturbed Masking. Tasks: NgramShift (left); ClauseShift (middle); RandomShift (right)

.
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Figure 7: The Euclidean distance between the impact matrices computed by M-BART with different PEs over each
pair of sentences (s, s′) for Russian. The distances are averaged over attention heads at each layer. Method: Token
Perturbed Masking. Tasks: NgramShift (left); ClauseShift (middle); RandomShift (right)

.

Language M-BERT M-BART

NgramShift
En
Sv
Ru

0.36; 0.44
0.37; 0.46

0.4244; 0.52

0.31; 0.44
0.43; 0.53
0.46; 0.54

ClauseShift
En
Sv
Ru

0.23; 0.29
0.25; 0.33
0.23; 0.28

0.23; 0.29
0.24; 0.33
0.22; 0.28

RandomShift
En
Sv
Ru

0.39; 0.47
0.46; 0.53
0.46; 0.54

0.39; 0.47
0.43; 0.53
0.43; 0.54

Table 3: The UUAS scores by Token Perturbed Masking probe. The minimum and maximum values are given
(min; max). Languages: Ru=Russian, En=English, Sv=Swedish.

(a) original (b) perturbed

(c) gold

Figure 8: Graphical representations of the syntactic trees inferred for the English sentence Iyassu stoned me
with gold and its perturbed version. original=the original sentence; perturbed=the perturbed version;
gold=gold standard. Task=RandomShift. Model=M-BERT (Layer: 11; Head: 2). Method=Self-Attention
Probing. The perturbation is underlined with red, and incorrectly assigned dependency heads are marked with red
arrows.
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3 Representation Analysis
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(a) NgramShift
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(b) ClauseShift

Figure 9: Token identifiability (TI) by layer for M-BERT and M-BART on the NgramShift (left) and ClauseShift
(right) tasks for Russian. Dashed lines represent the scores computed over the intact sentences. X-axis=Layer
index. Y-axis=TI.

Figure 10: Self-Attention Distance (SAD) by layer for M-BART and M-BERT with absolute (left) and zeroed
(right) positional embeddings on the RandomShift task for Swedish. X-axis=Layer index. Y-axis=SAD.
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4 Acceptability Judgements

Figure 11: The MeanLP distributions for the perturbed (ungrammatical) and intact (grammatical) sentences by
M-BART. Tasks: NgramShift (left); ClauseShift (middle); RandomShift (right).

.

Figure 12: The MeanLP distributions for the perturbed (ungrammatical) and intact (grammatical) sentences by
M-BERT. Tasks: NgramShift (left); ClauseShift (middle); RandomShift (right).

.


