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Abstract

We tackle the problem of self-training net-
works for NLU in low-resource environment—
few labeled data and lots of unlabeled data.
The effectiveness of self-training is a result of
increasing the amount of training data while
training. Yet it becomes less effective in low-
resource settings due to unreliable labels pre-
dicted by the teacher model on unlabeled data.
Rules of grammar, which describe the gram-
matical structure of data, have been used in
NLU for better explainability. We propose
to use rules of grammar in self-training as a
more reliable pseudo-labeling mechanism, es-
pecially when there are few labeled data. We
design an effective algorithm that constructs
and expands rules of grammar without hu-
man involvement. Then we integrate the con-
structed rules as a pseudo-labeling mechanism
into self-training. There are two possible sce-
narios regarding data distribution: it is un-
known or known in prior to training. We empir-
ically demonstrate that our approach substan-
tially outperforms the state-of-the-art methods
in three benchmark datasets for both scenarios.

1 Introduction

Deep learning for natural language understand-
ing (NLU) achieves satisfactory performance in
various tasks such as intent detection (ID) or slot
filling (SF) (Liu and Lane, 2016; Goo et al., 2018;
E et al., 2019; Wang et al., 2020a). Given a sen-
tence S = w1w2 · · ·wn, ID is a task to find an
intent I of S among several possible intents, and
SF is to identify keywords in S and tag a correct
slot sequence s1s2 · · · sn of S in BIO format.

Recent studies have focused on the data scarcity
problems for ID and SF tasks. In low-resource set-
tings with few labeled data, the model performance
often becomes poor if it is not properly trained

*The first two authors contributed equally to this work.

to cope with the problem. Wang et al. (2020b)
suggest several approaches for few-shot learning
such as data augmentation and self-training (ST).
Data augmentation has been popular in image pro-
cessing and recently is being used in NLP appli-
cations. However, it is still an open issue if data
augmentation is suitable for NLU since the quality
of augmented data might not be reliable even if it
improves the overall performance (Hedderich et al.,
2020; Cengiz and Yuret, 2020). On the other hand,
ST (Ratsaby and Venkatesh, 1995; Ye et al., 2020)
shows promising performance for low-resource set-
tings (Cho et al., 2019). Nevertheless, classic ST
is often unreliable since the pseudo-labeling mech-
anism heavily depends on the teacher model of
its own. This motivates researchers to add more
reliable mechanisms to the teacher model and to
make better ST models (He et al., 2020; Paul et al.,
2019).

Rules of grammar are one of the oldest tech-
niques to represent knowledge in NLP (Rizos et al.,
2019; Jiang et al., 2020), and recently have become
popular again for few-shot learning due to the reli-
ability and explainability of rules (Luo et al., 2018;
Abro et al., 2020). On the other hand, naive rule ex-
traction is easy to overfit on the source corpus and is
impossible to recognize data outside of the corpus.
Generalizing the rules can solve this issue. We pro-
pose to use rules of grammar to enhance the teacher
model in ST. Because we have formal grammars
as rules, we can expand rules by grouping similar
fragments and represent data more precisely with
an easy grammar modification. We investigate the
usefulness of rules of grammar from a quantitative
perspective and study how good these rules for ID
and SF, especially in low-resource settings. It is
well-known that reflecting a real-world data distri-
bution among different classes makes better models
when such information is available in prior training
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Figure 1: An overview of our self-training procedure using rules of grammar for accurate ID and SF when there
are few labeled data. The rules of grammar are expanded by edit-distance, n-gram, and slot-centric methods.

the models (Yang et al., 2020). Thus, we consider
two scenarios: when the distribution is unknown,
or known in prior.

In summary, our research questions are RQ1:
Are rules of grammar useful in ST for few-shot
NLU? RQ2: Which rule expansion gives the best
performance? RQ3: Does it make a difference
to know the data distribution in prior for rules of
grammar in ST?

2 Methodology

Grammar extraction: We substitute the slots
in the initial corpus into a slot variable and con-
struct initial rules of grammar. We denote a
rule with annotated intent and slot information.
For example, the following is a rule for an in-
tent ground_transport.

Rground_transport → transportation (in | on)
$day_name,

It parses a sentence transportation on Monday, and
identifies its intent as ground_transport.

Grammar expansion: The initial rules can
parse only the sentences with the same structure
and different keywords for slots. For example, a
rule can parse a sentence he leaves but not they
leave. This problem requires more general rules
for parsing diverse sentences. Grammar expansion
enables such diversity by relaxing substructures of
rules. In particular, we use three grammar expan-
sion methods—edit-distance, n-gram, slot-centric—
and group similar substructures.

Edit-distance expansion: The edit-distance ex-
pansion groups the rules according to the struc-
tural similarity. The similarity is the edit-distance
normalized by the maximum length of rules and

a given threshold. Each group of rules with edit-
distances lower than the threshold produces a single
rule by merging every rule contained in the group.
When computing the distance, we prevent edits
involving a slot since slots are incompatible with
words or different slots.

n-gram expansion: The n-gram expansion aims
to maintain the semantics of rules and enables sub-
stitution between similar word sequences. The ex-
pansion first extracts every 4-word-gram of each
rule and count its occurrences. These word-grams
make groups based on semantic similarity of them
and form a kind of slot represented by a variable.
The same procedure repeats for 3- and 2-word-
gram.

Slot-centric expansion: The slot-centric expan-
sion focuses on slots. It aims to extract every word-
only sequences in all rules with common slots. The
expansion groups the rules with common slots and
replaces the remaining word sequences by a sym-
bol.

Combining expansions: A combination of
grammar expansions often gives rise to better per-
formance than the individuals. For example, a mix
of edit-distance and slot-centric methods expands
the expressive power both in syntactic and semantic
perspectives. See Figure 2 for an example.

Self-training: ST mechanism uses a teacher
model trained from a given labeled data and
pseudo-labels additional data for successive train-
ing. Therefore the performance of the teacher
model is crucial in ST. To make a better teacher
model, we use rules of grammar, instead of a train-
ing model alone, as a pseudo-labeling mechanism
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Rabbr → Describe fare code $fare_basis_code
Rabbr → What’s fare code $fare_basis_code
Rabbr → What does code $fare_basis_code mean
Rabbr → What does code $fare_basis_code stand for
Rflight → What does flight code $airline_code mean
Rairline → What does the airline code $airline_code

stand for
⇓ (slot-centric expansion)

R′
abbr → V1 $fare_basis_code V2

R′
flight → V3 $airline_code V4

R′
airline → V5 $airline_code V6

V1 → Describe the fare code | What’s fare code
| What does code

V2 → [NUL] | mean | stand for
...

⇓ (edit-distance expansion)
R′

abbr → V1 $fare_basis_code V2

R′
flight → V3 $airline_code V2

R′
airline → V5 $airline_code V2

V1 → ( Describe | What’s ) the? fare code
| What does code

V2 → [NUL] | mean | stand for
...

Figure 2: An example of combined expansion by slot-
centric and edit-distance. Here [NUL] denotes an
empty word.

and improve the overall performance. Thus our
teacher model for ST alternates between rules and
a model as depicted in Figure 1. (A detailed pseudo-
algorithm is described in Appendix A.)

3 Experiments and Analysis

We run experiments on two scenarios: 1) when the
data distribution among classes is unknown and
2) when it is known in prior.

We first evaluate how well rules of grammar
perform in low-resource settings for RQ1. We
then verify the effectiveness of various grammar
expansions for RQ2, and examine how the data
distribution affects rules of grammar for RQ3.

3.1 Experiments

Dataset #Sentences #Intents #Slots
ATIS 5871 26/6† 44
Snips 14484 7 39

Facebook 31378 12 17
(†For n-shot evaluations, there are only 6 intents with

at least 30 sentences each)

Table 1: Benchmark datasets and their numbers of sen-
tences, intents and slot types.

Dataset: We use three benchmark datasets:
ATIS (Hemphill et al., 1990), Snips (Coucke et al.,
2018), and Facebook (Schuster et al., 2019). Each

sentence in the datasets has an intent and a se-
quence of slot labels. We split a dataset into train,
validation, and evaluation datasets with the ratio of
64%, 16%, and 20%, respectively.

For the first scenario when the data distribution is
unknown among classes, we build an initial corpus
of 10, 20 and 30 sentences for each intent from
both the train and the validation sets at random.
For the second scenario when the distribution is
known in prior, we take 1%, 5% and 10% of our
the train and the validation datasets according to the
data distribution from the original corpus. We then
erase labels in the remaining train dataset, which
becomes the unlabeled dataset for ST.

Baseline models: In our empirical tests, we have
observed that recent text classification models for
few-shot settings such as UST (Mukherjee and
Awadallah, 2020) or Delta-training (Jo and Cinarel,
2019) show competitive performance for ID but ex-
tremely poor performance for SF due to the nature
of the SF task. Thus, we compare our model with
the following two baselines, which are designed
for the ID/SF tasks explicitly.

1. E et al. (2019) propose a state-of-the-art
model (SF-ID network) for ID and SF tasks. The
model consists of two subnets (ID subnet and SF
subnet) connected bi-directionally. The baseline
model BST is the SF-ID network with the ST mech-
anism in few-shot settings.

2. Luo et al. (2018)1 suggest another rule-
assisted state-of-the-art model (BRE) to solve ID
and SF tasks in few-shot settings. BRE uses a bi-
directional LSTM model and several components
injecting external knowledge via regular expres-
sions. We compare BRE to show the effectiveness
of our rule construction methods.

Experiment Setting: We incorporate our rules
of grammar into BST and evaluate the effect of
our method in few-shot settings. We follow the
same parameters for BST as in E et al. (2019). The
initial threshold Θ for differentiating the correct
labels is 0.8 for pseudo-labeling and the value is
adjusted along the procedure. We also apply the
same metrics as in E et al. (2019): accuracy (=
#(correct intents) / #(sentences)) for ID, slot-unit
F1 score for SF and sentence accuracy (SA = #(cor-
rect intents & slots) / #(sentences)) for the overall
accuracy of model predictions.

1As the source code was not provided, we implement it
according to the paper.
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3.2 Results and Analysis

We run experiments for five times and compute the
average in each test. For the overall comparison, we
report the average performance of different n-shots
and k%-samplings with respect to three benchmark
datasets all together for ID and SF, respectively.All
our methods achieve their best performance within
10 iterations, showing high convergence rate.
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Figure 3: Average n-shot performance for the unknown
data distribution. Red indicates the best score
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Figure 4: Average k%-sampling performance for the
known data distribution. Red indicates the best score

RQ1: The experimental results in Figure 3 and 4
answer RQ1; using rules of grammar (G) is viable
for ST on few labeled data. In all cases of ID, SF
and SA, we observe a large improvement from the
baselines, proving that G is an effective method.
Namely, our rule-based ST method without any
expansions (G) outperforms BST and BRE. It is
also noticeable that the experimental results for
both scenarios are very close to the performance of
SOTA performance on ID and SF tasks.

One concern is whether G still works when treat-
ing unseen data. As G highly depends on the initial
corpus, it is important to analyze how G performs
with the data that is not in the initial corpus. We
observe that, on average, about 60% of test dataset
contains at least one slot value that is not in the
initial train or the validation datasets. G predicts
these unseen slots with 57% accuracy on average.
This implies that G is inadequate for data outside
the initial corpus.

RQ2: While G is more effective than the base-
lines, the resulting grammar is a straight conversion
to CFGs and cannot cope with data with slight vari-
ations from the current rules. We resolve this prob-
lem by expanding grammars according to the data
similarity. We test various grammar expansions:
edit-distance with 0.3 threshold (E), n-gram (N),
slot-centric (S), and their combinationsAmong var-
ious combinations, SE shows the best performance.
Since S uses slots which are keywords in sentences,
S is appropriate for extracting semantic similarity.
With rules grouped by their semantics, E then use
rules’ structure information for better expansion.
This is why SE shows a substantial improvement.

Within unseen data, SE achieves 75% accuracy
on average which is 18%p higher than the accu-
racy of G. Our expansions aim to overcome the
weakness of G which heavily depends on the initial
corpus. The result shows that the expansion, SE,
develops the rules better than the naive extraction,
G.

RQ3: In practice, the distribution among classes
may not be available in prior. Thus, for the few-
shot problem, it is more realistic to have a uniform-
sampled data for each class—n-shot test. The
experimental result in Figure 3 shows that our
method (SE) is effective in n-shot test, and the
performance gain is larger when n is smaller.

For the other case when the data distribution is
known in prior, one can sample labeled data accord-
ing to the ratio. Figure 4 shows that our method still
outperforms, but unlike Figure 3, the improvement
of SE seems relatively small. This is because of
the total amount of the labeled data. For instance,
the 5% case has more data than the 30-shot case.
In such cases, our grammar extraction G already
works well and the extra gain from SE is marginal
when there are a reasonable amount of small data.
On the other hand, for the extreme few-shot settings
(e.g., 10, 20-shots or 1%), SE shows an impressive
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performance among all possible combinations.

4 Conclusions

Recently, rules of grammar have become popular
again in deep learning due to their reliability and
explainability. We have adapted rules of grammar
in ST for NLU in few-shot settings. A major prob-
lem when using rules of grammar is the fact that
it might not be flexible to cope with exceptions
or variant data from the current rules. We have
resolved this problem by expanding rules based
on the data/grammar similarity. This gives rise to
more precise pseudo-labels in ST and better perfor-
mance. We have demonstrated that the combination
of slot-centric and edit-distance shows the best per-
formance. For both scenarios when knowing data
distribution in prior or not, our algorithm achieves
a substantial improvement. Remark that rules of
grammar do not depend on specific neural network
models, and, therefore, learning with rules of gram-
mar is a complementary solution for the few-shot
problem in NLU.
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