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Abstract

Multi-task dense retrieval models can be
used to retrieve documents from a common
corpus (e.g., Wikipedia) for different open-
domain question-answering (QA) tasks. How-
ever, Karpukhin et al. (2020) shows that jointly
learning different QA tasks with one dense
model is not always beneficial due to corpus
inconsistency. For example, SQuAD only fo-
cuses on a small set of Wikipedia articles while
datasets like NQ and Trivia cover more entries,
and joint training on their union can cause per-
formance degradation. To solve this problem,
we propose to train individual dense passage
retrievers (DPR) for different tasks and aggre-
gate their predictions during test time, where
we use uncertainty estimation as weights to in-
dicate how probable a specific query belongs
to each expert’s expertise. Our method reaches
state-of-the-art performance on 5 benchmark
QA datasets, with up to 10% improvement in
top-100 accuracy compared to a joint-training
multi-task DPR on SQuAD. We also show that
our method handles corpus inconsistency bet-
ter than the joint-training DPR on a mixed
subset of different QA datasets. Code and
data are available at https://github.com/
alexlimh/DPR_MUF.

1 Introduction

Open-domain question-answering requires find-
ing answers to given questions from a large col-
lection of documents (Voorhees and Tice, 2000).
Therefore, a first-stage retrieval component that
selects a set of potentially answer-containing docu-
ments is often involved for the second-stage read-
ing comprehension model (Chen et al., 2017). Tra-
ditional term-matching methods such as tf–idf and
BM25 (Robertson and Zaragoza, 2009; Lin et al.,
2021) that leverage an inverted index to construct
sparse textual representations have built strong
baselines in the first-stage retrieval.
∗ Correspondence to: Minghan Li <alexlimh23@gmail.com>

Items Joint Training Model Fusion

Task Flexibility X
Training Speed X
Inference Speed X
Storage Space X

Table 1: Comparisons between two multi-task solu-
tions. Joint training: A single model trained on the
union of multiple datasets. Model fusion: Independent
experts trained on different datasets. “X” means more
advantageous compared to the other method.

Recently, neural-based dense retrievers (Seo
et al., 2019; Lee et al., 2019; Guu et al., 2020;
Karpukhin et al., 2020) have been shown to achieve
better performance in open-domain question-
answering, but they often fail to generalize outside
of the training data distribution. A standard solution
known as joint training that learns a single dense
retriever on the union of different datasets (Mail-
lard et al., 2021; Wang et al., 2021) provides a
solution to a certain extent. However, Karpukhin
et al. (2020) has shown that data from different
tasks might have conflicts with each other, where
joint training on their union can cause perfor-
mance degradation. For example, SQuAD (Ra-
jpurkar et al., 2016) only focuses on a small
set of Wikipedia documents while datasets like
NQ (Kwiatkowski et al., 2019) and Trivia (Joshi
et al., 2017) cover more entries. Therefore, careful
data re-balancing and hyperparameter search are
required during training.

In this paper, we propose another solution to
multi-task learning, which trains multiple DPR ex-
perts on different datasets separately and their pre-
dictions are aggregated during test time. This is also
known as model fusion (Hoang et al., 2019) which
differs from a mixture of experts (Shazeer et al.,
2017) as it does not need to learn a gating function
on the joint dataset. The model fusion method is
easier to incorporate new data for continual learn-

https://github.com/alexlimh/DPR_MUF
https://github.com/alexlimh/DPR_MUF
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ing without introducing conflicts, as each expert
trains on independent tasks. In addition, these ex-
perts can be trained in parallel to speed up the
learning process.

However, the challenge now becomes how to ag-
gregate different expert’s predictions without hurt-
ing their in-distribution performance. We propose
model uncertainty estimation (Loquercio et al.,
2020) as a dynamic weighting scheme, which helps
the expert to identify whether a question belongs
to its expertise.

Intuitively, a model that overfits to a training dis-
tribution should be more uncertain about the out-
of-domain data than the in-domain data. For exam-
ple, the question "How many episodes in Season 2
Breaking Bad?" might get a high uncertainty score
from an expert trained on a medical QA dataset.

In practice, we leverage ensemble uncertainty
where we train an ensemble of small neural net-
works for each pre-trained DPR expert (Laksh-
minarayanan et al., 2017). Specifically, we repre-
sent the model uncertainty as the mutual informa-
tion (Poole et al., 2019) between the ensemble’s
predictions and parameters. For each question, we
retrieve a set of the top-k documents using different
DPR experts and then use its corresponding ensem-
ble to compute the uncertainty score of the question.
Finally, we aggregate all the expert’s predictions
into a normalized weighted sum and rerank the re-
trieved documents. Fig. 1 demonstrates a simplified
pipeline of our algorithm and Tbl. 1 compares the
differences between the joint training and model
fusion solutions.

Extensive experiments show that our final fusion
model not only outperforms individual specialists
on 5 open-domain QA datasets but also outper-
forms the performance of the joint-training, multi-
task DPR model, with up to 10% improvement in
top-100 accuracy on SQuAD. Finally, our method
manages to handle corpus conflicts on a mixed sub-
set of different QA tasks, which even outperforms
an oracle model using Bayesian optimization (Fra-
zier, 2018).

2 Related Work

Retrieval and QA Traditional retrieval meth-
ods such as tf-idf or BM25 generate sparse, high-
dimensional vectors (Robertson and Zaragoza,
2009; Lin et al., 2021) and have been proven effec-
tive in various QA tasks (Chen et al., 2017; Yang
et al., 2019; Min et al., 2019). Recently, neural re-
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Figure 1: An illustration of model uncertainty fusion
of 3 DPR experts, each with an ensemble of 3 fully-
connected neural networks. Given a query, each DPR
expert first retrieves top-k documents, followed by the
uncertainty estimation using the corresponding ensem-
ble. The weighted sum of predictions is then used to
rerank the union of the retrieved documents.

trievers have made huge progress in open-domain
question-answering (Seo et al., 2019; Lee et al.,
2019; Guu et al., 2020). Especially, dense pas-
sage retriever (Karpukhin et al., 2020) is a pop-
ular approach that learns separate question and
document representations from task-specific train-
ing data. Lewis et al. (2020b); Izacard and Grave
(2021) further show that question generation us-
ing models such as BART (Lewis et al., 2020a)
and T5 (Raffel et al., 2020) can be incorporated
into DPR’s training. Multi-task DPR (Wang et al.,
2019) trains jointly on an extensive selection of re-
trieval datasets, which leads to better performance
on downstream knowledge-intensive tasks.

Uncertainty Estimation Uncertainty estimation
has wide applications in areas such as building safe
AI systems (e.g., anomaly detection) (Amodei et al.,
2016), especially for systems that include neu-
ral networks. Bayesian Neural Networks (BNNs)
use probability distributions (MacKay, 1992; Neal,
2012) to represents the parameters of a neural net.
Despite their compactness, in theory, BNNs have
difficulty scaling to a large number of parame-
ters and data points, which only works well in
small-scale settings, e.g., MCMC methods (Neal,
2012). To adapt to modern networks’ size, Gal and
Ghahramani (2016) propose to use Monte Carlo
dropout, which estimates model uncertainty by us-
ing Dropout (Srivastava et al., 2014) at test time.
Another simple way to estimate uncertainty is en-
sembling, which aggregates the predictions of indi-
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vidual ensemble members, and different weight
initialization, data sampling, and regularization
scheme is applied to encourage diversity in the
ensemble (Lakshminarayanan et al., 2017; Snoek
et al., 2019; Gustafsson et al., 2020; Pearce et al.,
2020; Wen et al., 2020). Despite its simplicity, the
ensembling approach scales well to large neural
networks and massive datasets, while providing
trustworthy uncertainty estimation.

3 Dense Passage Retrieval

Retrieval/Inference Given a collection of docu-
ments {d1, d2, · · · , dn} and a question answering
task, DPR (Karpukhin et al., 2020) encodes the
questions and documents using a bi-encoder struc-
ture where encoders fQ(·) and fD(·) are indepen-
dent functions that map a question/document into
a low-dimensional, real-value vector. Specifically,
the similarity s between the question q and docu-
ment d is defined by the dot product between their
encoded vectors vq = fQ(q) and vd = fD(d):

s = vTq vd, (1)

which is used as the ranking score. Both fQ and
fD use BERT (Devlin et al., 2019) as the back-
bone model and the [CLS] vector as the output
representation.

Training As pointed out by Karpukhin et al.
(2020), training the encoders such that Eq. (1) be-
comes a good ranking function is essentially a met-
ric learning problem (Kulis, 2012). Formally, let
D be the random variable of documents, Q be the
r.v. of questions, and C be the r.v. of the set of re-
trieved documents. Given a specific question q, let
d+ be the positive context that contains answers for
q and d−1 , d

−
2 , ...d

−
k be the negative contexts. The

collection of contexts {d+, d−1 , d
−
2 , ...d

−
k } is first

retrieved by BM25 which we denote as CBM25. The
context prediction p(D | Q = q, C = CBM25) is a
softmax distrbution:

p(D | Q = q, C = CBM25)

=
exp(λ · vTq vD)

exp(λ · vTq vd+) +
k∑
i=1

exp(λ · vTq vd−i )

, (2)

where λ is the inverse temperature coefficient that
controls the sharpness of the softmax distribution,
which is often set to 1 during training. The negative

log likelihood objective based on Eq. (2) is:

L(q, CBM25)

= − log p(D = d+ | Q = q, C = CBM25)

= − log
exp(λ · vTq vd+)

exp(λ · vTq vd+) +
k∑
i=1

exp(λ · vTq vd−i )

.

(3)

The single DPR expert and the joint-training DPR
model follow the same training scheme. In the
next section, we describe how the second option—
model uncertainty fusion—is implemented.

4 Multi-Task Model Fusion

Given m question-answering tasks and m indepen-
dent experts, the goal of multi-task model fusion
is to find the optimal set of weights {w(i)}mi=1 to
combine all experts’ predictions for each question.
We use DPR as the expert model.

4.1 Ensemble Uncertainty Estimation

There are mainly two types of uncertainty: model
uncertainty and data uncertainty (Malinin and
Gales, 2018). Data uncertainty is often caused by
mislabelling or missing features, while model un-
certainty measures the confidence of the model’s
predictions given the training data, which is often
used to identify whether a sample is within the
training domain. Therefore, we use model uncer-
tainty for weighting the experts’ predictions, such
that we know whether a question belongs to an
expert’s expertise.

As mentioned in Section 2, there are many ways
to represent model uncertainty. In this work, we
consider ensemble uncertainty due to its effective-
ness and simplicity. The intuition is simple: the
ensemble trained in a single domain will “agree”
to similar predictions if in-domain samples occur,
and will “disagree” otherwise. The disagreement
would be more obvious if the functional space of
the ensemble is complex enough, e.g., the space
of neural networks. To quantify such uncertainty
or “disagreement”, we use Mutual Information
(MI) (Poole et al., 2019) between the ensemble’s
prediction and its parameters as the proxy. For each
DPR expert, we build an ensemble of m classi-
fiers {p(D | Θ = θi, Q = q, C = CDPR)}mi=1 as in
Eq. (2), where Θ denotes the r.v. of the ensemble
parameters, θi denotes the parameters of the ith en-
semble member, and CDPR denotes the collection of
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contexts retrieved by the DPR expert. For simplic-
ity, we will use p(D | θi, q, CDPR) as a shorthand
for the distribution. The mutual information I be-
tween D and Θ given a question q and a collection
of contexts CDPR is:

I(D; Θ | q, CDPR)

= H(D | q, CDPR)−H(D | Θ, q, CDPR)

= Ep(D|Θ,q,CDPR)[ln p(D | Θ, q, CDPR)]

− Ep(D|q,CDPR)[ln p(D | q, CDPR)]

≈ 1

m

m∑
i=1

Ep(D|θi,q,CDPR)[ln p(D | θi, q, CDPR)]

− Ep(D|q,CDPR)

[
ln

(
1

m

m∑
i=1

p(D | θi, q, CDPR)

)]
,

(4)
where H(·) denotes the entropy operator, E[·]
denotes the expectation operator, and the approx-
imations are done by Monte-Carlo simulation.
The approximated mutual information is also
upper-bounded by the log of the number of
ensemble members m:

I(D; Θ | q, CDPR) ≤ lnm,

which gives us bounded uncertainty estimation for
a certain domain. We normalize the mutual infor-
mation and transform it into a confidence score w
for weighting the DPR expert’s prediction of q:

w = 1− I(D; Θ | q, CDPR)

lnm
. (5)

4.2 Model Uncertainty Fusion
Given m DPR experts that are trained on m differ-
ent tasks separately, we first encode the question
and document representation into dense vectors
{v(i)
q }mi=1 and {v(i)

d }
m
i=1 for all m experts, where

the superscript represents the expert’s id. We then
build an ensemble of small neural networks, each
uses the corresponding expert’s v(i)

q as input and
outputs another vector u(i)

q of the same dimension.
We finally optimize the same objective function in
Eq. (3) w.r.t each ensemble member u(i)

q and v(i)
d

for each question-answering task.
During inference, given a new question q,

we first retrieve m sets of top-k documents
{C(i)

DPR}mi=1 = {d(i)
1 , d

(i)
2 , · · · , d(i)

k }
m
i=1 using all m

DPR expert’s question vectors {v(i)
q }mi=1 and doc-

ument vectors {v(i)
d1
, v

(i)
d2
, · · · , v(i)

dk
}mi=1. We then

calculate the weights {w(i)}mi=1 for each question
according to Eq. (5) using the ensemble vectors
{u(i)

q }mi=1 and {C(i)
DPR}mi=1 for question q. Finally,

we re-rank the union of m sets of top-k documents
using the uncertainty-weighted sum of each ex-
pert’s score. The final score S(q, dj) of a document
dj given question q is:

S(q, dj) = w(1)s
(1)
j + w(2)s

(2)
j · · ·+ w(m)s

(m)
j ,

(6)

where s(i)
j = v

(i)T
q v

(i)
dj

according to Eq. (1). If we
do not have a score from the ith expert for a docu-
ment d, we will use the minimum of {s(i)

j }kj=1 as
the ranking score for d. Fig. 1 visualizes the afore-
mentioned retrieval fusion process of our method
during inference.

4.3 Uncertainty Calibration
Despite its simplicity and effectiveness, one draw-
back of ensemble uncertainty is that it doesn’t have
a closed-form expression and the prediction of each
ensemble might have a different range (Pearce et al.,
2020). Therefore, the ensemble uncertainty needs
to be calibrated before fusion, such that the confi-
dence of an expert matches its prediction accuracy.
We use the Expected Calibration Error (ECE) (Guo
et al., 2017) as the metric where we search for
the best inverse temperature in Eq. (3) on the dev
sets for each expert to minimize the ECE. As ECE
mainly uses the term “confidence” which is the
w in Eq. (5), we switch to “confidence” instead
of “uncertainty” in the following. We partition the
samples in the dev set into T equally-spaced bins
and take the weighted average of the confidence-
accuracy difference:

ECE =
T∑
i=1

|Bi|
N
|conf(Bi)− acc(Bi)| , (7)

where Bi is the ith bin and N is the number of
samples. Functions conf(Bi) and acc(Bi) are the
average confidence and top-1 accuracy within the
ith bin, respectively. Each confidence score is com-
puted by an ensemble according to Eq. (5).

5 Experimental Setup

We follow the DPR paper (Karpukhin et al., 2020)
to train and evaluate our dense retrievers. We repli-
cate their results on all benchmark datasets, with a
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Top-20 Top-100
Retriever NQ Trivia WQ TREC SQuAD NQ Trivia WQ TREC SQuAD

DPR-Single-domain 79.1 78.9 71.0 85.1 62.1 85.9 84.5 80.2 92.2 76.8
DPR-Single-worst 46.3 58.0 57.9 75.8 41.4 61.9 71.4 74.1 86.5 59.1
DPR-Multi (w/o SQuAD) 79.5 78.9 75.0 88.8 52.0 86.1 84.8 83.0 93.4 67.7

DPR-MUF (w/o SQuAD) 79.8 78.2 76.2 89.3 57.7 86.5 84.4 83.9 94.7 72.0
DPR-MUF (w/o domain) 68.9 74.1 73.5 89.6 57.7 79.4 82.1 82.5 94.4 72.0
DPR-MUF 79.5 78.6 75.9 90.2 64.6 86.4 84.7 84.0 95.0 78.3

Table 2: Top-20 and Top-100 retrieval accuracy (%) on benchmark QA test sets. Each score represents the per-
centage of top 20/100 retrieved passages that contain answers. All methods containing “DPR-MUF” stand for our
Model Uncertainty Fusion (MUF) method. See Section 6.1 for details of different models.

maximum score difference between ours and their
numbers of 1%. This work only focuses on retrieval
accuracy as we only improve the retriever. We fi-
nally perform sensitivity analysis for the ensem-
ble and uncertainty visualization of our fusion ap-
proach. More details are provided in Appendix A.

Datasets We train individual DPR models on
5 standard benchmark QA tasks: Natural Ques-
tions (NQ) (Kwiatkowski et al., 2019), Triv-
iaQA (Trivia) (Joshi et al., 2017), WebQues-
tions (WQ) (Berant et al., 2013), CuratedTREC
(TREC) (Baudiš and Šedivỳ, 2015), SQuAD-1.1
(SQuAD) (Rajpurkar et al., 2016). We evaluate the
retriever models on the test sets of the aforemen-
tioned datasets, as well as their random mixes to
test the out-of-distribution performance.

For retrieval, we chunk the Wikipedia collec-
tions (Guu et al., 2020) into passages of 100 words
as in Wang et al. (2019), which yields about 21
million samples in total. We follow Karpukhin
et al. (2020) using BM25 (Robertson and Zaragoza,
2009; Lin et al., 2021) to select the positive and
negative passages.

Models and Training We first train independent
DPR models on the training set of NQ, TriviaQA,
WQ, CuratedTREC, and SQuAD-1.1 separately
following Karpukhin et al. (2020). We then encode
the training sets into dense vectors as the input
to the ensemble. We train an ensemble of 20, 2-
layer fully connected neural networks with 512
units for 100 epochs. We optimize the objective
function in Eq. (3) with learning rate of 2e-05 using
Adam (Kingma and Ba, 2015). We use different
sub-batches and weight initialization to train each
ensemble member to encourage diversity. The rest
of the hyperparameter setting remains the same as
described in Karpukhin et al. (2020).

Inference: Retrieval Fusion Given a question q
during inference, a set of top-k documents is first
retrieved by each DPR expert. For each expert, we
use the corresponding ensemble to predict the ex-
pert’s retrieved documents and obtain a collection
of dot-product scores. We then apply softmax acti-
vation on the dot-products, yielding a collection of
distributions over the retrieved documents. We cal-
culate the normalized mutual information between
the ensemble’s predictions and the parameters as
in Eq. (4) and Eq. (5), using it as the weight for the
expert as described in Eq. (6) given the question.

In addition, we calibrate each ensemble’s uncer-
tainty prediction individually using the expected
calibration error (ECE) (Guo et al., 2017) accord-
ing to Eq. (7), as each ensemble from different do-
mains might have a different range of uncertainty.
We find the lowest ECE score is achieved with the
inverse temperature λ of the softmax activation in
Eq. (3) setting to be 1e-3. Finally, we normalize the
calibrated uncertainty and re-rank the union of re-
trieved documents using the uncertainty-weighted
sum of experts’ scores. For documents that do not
have all experts’ scores, we use the minimum of the
missing expert’s prediction as the ranking score.

6 Results and Analysis

6.1 Benchmark Dataset Retrieval
Tbl. 2 shows retrieval performance using different
types of DPR models on 5 benchmark datasets. We
briefly describe each configuration below.

DPR-Single-domain: A single DPR model
trained and tested on the same domain.

DPR-Single-worst: A single DPR model trained
on one domain and transferred to the target test set
in zero-shot and has the worst performance among
all experts.
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DPR-Multi (w/o SQuAD): A multi-task DPR
model trained on the joint dataset of {NQ, Trivia,
WQ, and Trec} without the SQuAD dataset, as
implemented in Karpukhin et al. (2020).

DPR-MUF: Our model uncertainty fusion
method using experts from {NQ, Trivia, WQ, Trec,
and SQuAD}, which is our main approach.

DPR-MUF (w/o SQuAD): Our model uncer-
tainty fusion method using experts from {NQ,
Trivia, WQ, and Trec} without SQuAD to align
with DPR-Multi (w/o SQuAD).

DPR-MUF (w/o domain): Our model uncer-
tainty fusion method using all experts except DPR-
Single-domain, to investigate out-of-domain gener-
alization.

We can see from Tbl. 2 that our model uncertainty
fusion method (DPR-UF) achieves the best per-
formance on almost all benchmark QA datasets
except Trivia, in terms of top-20/100 accuracy. The
original multi-task DPR model does not include
SQuAD for joint training as “SQuAD is limited to
a small set of Wikipedia documents and thus intro-
duces unwanted bias” (Karpukhin et al., 2020). In
comparison, our DPR-UF that includes the SQuAD
dataset significantly improves the performance on
SQuAD as well as on other datasets. In addition,
we find that our DPR-UF (w/o SQuAD) not only
manages to beat the joint-training DPR trained on
{NQ, Triviva, WQ, and Trec}, but also outperforms
it on SQuAD by a large margin (10% in top-100 ac-
curacy). We also test the fusion of experts without
the one trained on the target domain, i.e., DPR-
MUF (w/o domain), whose performance turns out
to be maintained at a reasonable level.

One interesting result we find in the experiments
is that DPR-MUF without the CuratedTrec/WQ ex-
pert outperforms the CuratedTrec/WQ experts on
their domain test sets. We suspect that the Curated-
Trec and WQ datasets are too small and might
be covered by other datasets. Therefore, it is not
surprising that the CuratedTrec and WQ experts
trained on small data regimes fail to outperform the
larger expert union.

6.2 Mixed-Dataset Retrieval
In a real-world application, the retriever often needs
to deal with questions from different sources in-
stead of just a single task. To test the ability to
retrieve out-of-distribution questions, we evenly
sample 5 subsets of 3,000 test questions from 4

Retriever Top-20 Top-100

DPR-Single-NQ 65.4 76.1
DPR-Single-Trivia 66.6 77.7
DPR-Single-WQ 54.1 68.3
DPR-Single-Trec 60.5 74.0
DPR-Single-SQuAD 57.3 73.2

DPR-Multi (w/o SQuAD) 71.5 80.7

DPR-MUF (w/o SQuAD) 72.7 81.7
DPR-MUF 74.2 83.3

DPR-Oracle-Indicator 72.8 82.0
DPR-Oracle-Bayesian 73.3 82.3

Table 3: Top-20/100 retrieval accuracy (%) on random
mixes of 4 benchmark QA test sets. We average the
metrics from 5 evenly-sampled subsets of 3,000 sam-
ples from NQ, Trivia, WQ, and SQuAD.

benchmark datasets (NQ, Trivia, WQ, SQuAD).
We average top-20/100 accuracy on the 5 subsets
as the final accuracy. In addition, we design two
oracle models which serve as references:

DPR-Oracle-Indicator: A mixture of experts
that knows the domain each question comes from,
and uses the corresponding expert for retrieval.

DPR-Oracle-Bayesian: A mixture of experts
that uses Bayesian optimization (Frazier, 2018) to
search for the weights. We initialize the weights
with the indicator function and use scikit-optimize1

to search for the optimal weight for 50 iterations
for each question. This process is not guaranteed
to find the best sets of weights as Bayesian opti-
mization does not always find the global optimum.
Although it is not the exact oracle, this is the best
model we could find as exhaustive search is imprac-
tical due to its exponential time complexity.

Tbl. 3 shows that all single retrievers have severe
performance degradation on the randomly mixed
dataset, which is expected as they only specialize
in their own domain. In contrast, the two multi-task
models, DPR-Multi (w/o SQuAD) and DPR-MUF
(w/o SQuAD), manage to maintain high scores on
the random mixes, which reach the performance
of the two oracle models. Moreover, DPR-MUF
even outperforms both the indicator oracle and the
Bayesian oracle, suggesting the benefits of using
uncertainty to fuse the predictions of multiple ex-
perts from different domains.
1https://scikit-optimize.github.io/

https://scikit-optimize.github.io/
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Retriever Top-20 Top-100

NQ
BM25 62.9 78.3
+ DPR-Single-domain 82.5 88.2
+ DPR-Multi (w/o SQuAD) 82.6 88.6
+ DPR-MUF (w/o SQuAD) 82.7 88.6
+ DPR-MUF 82.0 88.2

Trivia
BM25 76.4 83.2
+ DPR-Single-domain 82.8 86.8
+ DPR-Multi (w/o SQuAD) 82.6 86.5
+ DPR-MUF (w/o SQuAD) 82.9 87.0
+ DPR-MUF 82.4 86.5

WQ
BM25 62.4 75.5
+ DPR-Single-domain 74.3 82.6
+ DPR-Multi (w/o SQuAD) 77.1 84.4
+ DPR-MUF (w/o SQuAD) 77.9 84.5
+ DPR-MUF 78.1 84.9

TREC
BM25 80.7 89.9
+ DPR-Single-domain 90.1 94.7
+ DPR-Multi (w/o SQuAD) 90.1 95.0
+ DPR-MUF (w/o SQuAD) 90.8 95.5
+ DPR-MUF 91.2 95.7

SQuAD
BM25 71.1 81.8
+ DPR-Single-domain 75.6 84.9
+ DPR-Multi (w/o SQuAD) 75.1 84.4
+ DPR-MUF (w/o SQuAD) 76.7 86.3
+ DPR-MUF 78.7 86.7

Table 4: Top-20/100 retrieval accuracy (%) of BM25
and DPR-BM25 hybrid model on test sets of NQ,
Trivia, WQ, CuratedTrec, and SQuAD.

6.3 DPR-BM25 Hybrid Retrieval

Karpukhin et al. (2020) show that DPR can be
combined with BM25 to further improve retrieval
performance. Ma et al. (2021) further fine-tune the
parameters for BM25 and obtain better accuracy
using the Pyserini IR toolkit (Lin et al., 2021). We
follow the experimental setting in Ma et al. (2021)
where we re-rank the union of the top-1000 pas-
sages retrieved by DPR and BM25 separately, using
the weighted sum of the two scores as the ranking
value. We search for the optimal weights for BM25
and DPR on the dev set of each QA dataset.

Tbl. 4 shows the top-k accuracy of hybrid re-
trievers using the combination of different DPR
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Figure 2: Line plot of top-100 accuracy (%) and bar
chart of latency (ms/query) relative to a single DPR
model of our method w.r.t. the size of the ensemble on
NQ, Trivia, WQ, SQuAD, and their random mixes.

models and BM25. Our model uncertainty method
manages to outperform single DPR experts and
multi-task, joint-training DPR on all benchmark
QA datasets. Specifically, DPR-UF (w/o SQuAD)
has the best performance on NQ and Trivia, while
DPR-UF includes all experts, which has the best
performance on WQ, CuratedTrec, and SQuAD.
We conjecture it’s because NQ and Trivia are much
larger and therefore the SQuAD expert might have
more conflict with BM25.

6.4 Ensemble Sensitivity and Latency

In this section, we analyze how sensitive the
retrieval performance of the uncertainty fusion
method is w.r.t. the ensemble size. Fig. 2 shows
the top-100 accuracy and the relative latency of dif-
ferent sizes of ensembles. The accuracy increases
as the size of the ensemble grows until it hits 20,
which then plateaus or decreases. We conjecture it
is because the functional space of the ensemble is
not complex enough as we only use a 2 layer neural
network with 512 units as the individual compo-
nent. Therefore, there are only limited ways for the
model to overfit the training sets, resulting in the
saturation in diversity w.r.t. the ensemble size.

However, we find that overall, these results are
good enough while having reasonable latency. The
latency (ms/question) of the model is measured
relative to a standard DPR model, which mainly
includes the ensemble forward inference time. We
evaluate the inference speed on a server with an
Intel Xeon CPU E5-2699 v4 @ 2.20GHz. In sum-
mary, the retrieval accuracy is stable w.r.t. the en-
semble size, and one can choose the ensemble size
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Figure 3: A visualization of uncertainty estimation us-
ing mutual information between the ensemble’s predic-
tions and parameters. Each subplot shows the predic-
tion of 5 ensemble on the top-20 documents retrieved
by the DPR expert. The uncertainty decreases as more
ensemble members “agree” with each other.

to trade-off between accuracy and latency for dif-
ferent application scenarios.

6.5 Uncertainty Visualization

We visualize the model uncertainty in this section
for better understanding. Fig. 3 shows 5 ensemble
predictions of the top-20 documents on 4 samples
from NQ with different uncertainty scores. Each
strip in a subplot represents one ensemble mem-
ber and all members in the same subplot share the
same documents retrieved by the DPR expert on
NQ. As we use small inverse temperature λ (1e-3)
for the softmax distribution in Eq. (3), the probabil-
ity mass of each distribution mainly concentrates
on the top-1 document, which is the tallest bar in
each strip. If the top-1 predictions from different
ensemble members overlap at the same document,
we say these members “agree” with each other and
therefore the overall ensemble has low uncertainty.
The overlap is quantified by Eq. (4) in practice. As
we can see from Fig. 3, the ensemble has full un-
certainty (1.0/1.0) when their top-1 predictions do
not overlap at all, and has zero uncertainty when its
members’ predictions completely overlap. In other
cases, the more overlap or “agreement” on the top-1
prediction, the less uncertain the ensemble is.

6.6 Space-Speed-Flexibility Trade-off

Despite the promising results we have shown in
the previous section, the model uncertainty fu-
sion method also has its drawback in open-domain
question-answering. For now, all the experts are
individually trained in their own domain but share
a common corpus. That says if we have m experts,
then the index size will grow by O(m) compared
to a single multi-task, joint-training model.

However, we argue that there’s no free lunch as
the joint-training model suffers from other prob-
lems such as data conflict mentioned before, as
well as catastrophic forgetting: If new tasks are
added, the joint-training model usually requires to
re-train on the union of all tasks again to maintain
performance on previous tasks, while our model
only needs to train on the new task’s data and the
new expert can be directly added to the current
set of models. Therefore, both methods have their
pros and cons according to different application
scenarios, and it is upon the users to consider the
space-speed-flexibility trade-off. For memory and
efficiency issues, possible solutions would be ei-
ther learning a shared, query-agnostic index for all
experts or leveraging model compression methods
to compress the size of expert models.

7 Conclusions

In this paper, we propose a model fusion approach
for multi-task dense retrieval. Instead of training a
single DPR model on the union of datasets from dif-
ferent distributions, we leverage model uncertainty
to merge different DPR expert’s predictions during
test time. For each expert, we train an ensemble
of small neural networks on top of the pre-trained
expert’s dense representations and use the mutual
information between the ensemble parameters and
predictions as the weight, which can be interpreted
as the “disagreement” among the ensemble.

We compare our model uncertainty fusion ap-
proach with single specialists and the multi-task,
joint-training DPR model on 5 benchmark QA
datasets, as well as their dataset random mixes to
test out-of-distribution performance. Extensive ex-
periments show that our method manages to out-
perform these approaches in terms of top-20/100
accuracy on most datasets, while it can also be
combined with sparse retrieval methods such as
BM25 for further performance gains. Our proposed
method is simple to implement and effective while
enjoying the benefits of continual learning, faster
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training speed as the experts can be trained in par-
allel, as well as the flexibility to combine experts
from different domains.

For future research directions, one could lever-
age model compression techniques to reduce the in-
dex size, or knowledge distillation to learn a single
student model from the experts. Finally, learning a
question-agnostic document index can further save
storage space and enhance inference speed for this
model fusion method.
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question answering task in the YodaQA system.
In International Conference of the Cross-Language
Evaluation Forum for European Languages, pages
222–228. Springer.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544, Seattle, Wash-
ington, USA. Association for Computational Lin-
guistics.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1870–
1879, Vancouver, Canada. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Peter I. Frazier. 2018. A tutorial on Bayesian optimiza-
tion. ArXiv, abs/1807.02811.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a
Bayesian approximation: Representing model uncer-
tainty in deep learning. In International Conference
on Machine Learning, pages 1050–1059. PMLR.

Daniel Gillick, Sayali Kulkarni, Larry Lansing,
Alessandro Presta, Jason Baldridge, Eugene Ie, and
Diego Garcia-Olano. 2019. Learning dense repre-
sentations for entity retrieval. In Proceedings of
the 23rd Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 528–537, Hong
Kong, China. Association for Computational Lin-
guistics.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. 2017. On calibration of modern neural net-
works. In International Conference on Machine
Learning, pages 1321–1330. PMLR.

Fredrik K Gustafsson, Martin Danelljan, and
Thomas B. Schon. 2020. Evaluating scalable
bayesian deep learning methods for robust computer
vision. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition
Workshops, pages 318–319.

Kelvin Guu, Kenton Lee, Z. Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. ArXiv,
abs/2002.08909.

Minh Hoang, Nghia Hoang, Bryan Kian Hsiang Low,
and Carleton Kingsford. 2019. Collective model fu-
sion for multiple black-box experts. In International
Conference on Machine Learning, pages 2742–2750.
PMLR.

Gautier Izacard and Edouard Grave. 2021. Leveraging
passage retrieval with generative models for open
domain question answering. In Proceedings of the
16th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Main Vol-
ume, pages 874–880, Online. Association for Com-
putational Linguistics.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale dis-
tantly supervised challenge dataset for reading com-
prehension. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1601–1611, Vancou-
ver, Canada. Association for Computational Linguis-
tics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 6769–
6781, Online. Association for Computational Lin-
guistics.



283

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015.

Brian Kulis. 2012. Metric learning: A survey. Foun-
dations and Trends in Machine Learning, 5(4):287–
364.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Al-
berti, Danielle Epstein, Illia Polosukhin, Jacob De-
vlin, Kenton Lee, Kristina Toutanova, Llion Jones,
Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai,
Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019.
Natural questions: A benchmark for question an-
swering research. Transactions of the Association
for Computational Linguistics, 7:452–466.

Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. 2017. Simple and scalable predic-
tive uncertainty estimation using deep ensembles. In
Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Pro-
cessing Systems 2017, pages 6402–6413.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 6086–6096, Florence,
Italy. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020a. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. 2020b. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Advances in
Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Sys-
tems 2020, NeurIPS 2020.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira.
2021. Pyserini: An easy-to-use Python toolkit to
support replicable ir research with sparse and dense
representations. ArXiv, abs/2102.10073.

Antonio Loquercio, Mattia Segu, and Davide Scara-
muzza. 2020. A general framework for uncertainty
estimation in deep learning. IEEE Robotics and Au-
tomation Letters, 5(2):3153–3160.

Xueguang Ma, Kai Sun, Ronak Pradeep, and Jimmy
Lin. 2021. A replication study of dense passage re-
triever. ArXiv, abs/2104.05740.

David J. C. MacKay. 1992. A practical bayesian frame-
work for backpropagation networks. Neural Compu-
tation, 4(3):448–472.

Jean Maillard, Vladimir Karpukhin, Fabio Petroni,
Wen-tau Yih, Barlas Oguz, Veselin Stoyanov, and
Gargi Ghosh. 2021. Multi-task retrieval for
knowledge-intensive tasks. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1098–1111, Online. As-
sociation for Computational Linguistics.

Andrey Malinin and Mark J. F. Gales. 2018. Predic-
tive uncertainty estimation via prior networks. In
Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, pages 7047–
7058.

Sewon Min, Danqi Chen, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2019. A discrete hard EM ap-
proach for weakly supervised question answering.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2851–
2864, Hong Kong, China. Association for Computa-
tional Linguistics.

Radford M. Neal. 2012. Bayesian learning for neural
networks, volume 118. Springer Science & Business
Media.

Tim Pearce, Felix Leibfried, and Alexandra Brintrup.
2020. Uncertainty in neural networks: Approx-
imately Bayesian ensembling. In International
Conference on Artificial Intelligence and Statistics,
pages 234–244. PMLR.

Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex
Alemi, and George Tucker. 2019. On variational
bounds of mutual information. In International
Conference on Machine Learning, pages 5171–5180.
PMLR.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. JMLR, 21:140:1–140:67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.



284

Stephen E. Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Foundations and Trends in Information Re-
trieval, 3(4):333–389.

Minjoon Seo, Jinhyuk Lee, Tom Kwiatkowski, Ankur
Parikh, Ali Farhadi, and Hannaneh Hajishirzi. 2019.
Real-time open-domain question answering with
dense-sparse phrase index. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4430–4441, Florence,
Italy. Association for Computational Linguistics.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and
Jeff Dean. 2017. Outrageously large neural net-
works: The sparsely-gated mixture-of-experts layer.
In 5th International Conference on Learning Repre-
sentations, ICLR 2017. OpenReview.net.

Jasper Snoek, Yaniv Ovadia, Emily Fertig, Balaji
Lakshminarayanan, Sebastian Nowozin, D. Sculley,
Joshua V. Dillon, Jie Ren, and Zachary Nado. 2019.
Can you trust your model’s uncertainty? Evaluating
predictive uncertainty under dataset shift. In Ad-
vances in Neural Information Processing Systems
32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, pages 13969–
13980.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. JMLR, 15(1):1929–1958.

Ellen M. Voorhees and Dawn M. Tice. 2000. The
TREC-8 question answering track. In Proceed-
ings of the Second International Conference on
Language Resources and Evaluation (LREC’00),
Athens, Greece. European Language Resources As-
sociation (ELRA).

Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nal-
lapati, and Bing Xiang. 2019. Multi-passage
BERT: A globally normalized BERT model for
open-domain question answering. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5878–5882, Hong Kong,
China. Association for Computational Linguistics.

Zhiguo Wang, Patrick Ng, Ramesh Nallapati, and Bing
Xiang. 2021. Retrieval, re-ranking and multi-task
learning for knowledge-base question answering. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 347–357.

Yeming Wen, Dustin Tran, and Jimmy Ba. 2020.
BatchEnsemble: An alternative approach to effi-
cient ensemble and lifelong learning. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020. OpenReview.net.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019.
End-to-end open-domain question answering with
BERTserini. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Asso-
ciation for Computational Linguistics (Demonstra-
tions), pages 72–77, Minneapolis, Minnesota. Asso-
ciation for Computational Linguistics.



285

A Appendix

A.1 DPR setting
We provide details of training and inference for the
DPR model here. Most of them can be found in the
original DPR paper (Karpukhin et al., 2020). For
the ensemble, we use the pre-trained DPR’s [CLS]
representations as inputs and train the ensemble on
the same datasets.

Training We optimize the objective function in
Eq. (3) using in-batch negative training. Each ques-
tion of the batch is accompanied by a positive pas-
sage and a set of negative ones retrieved by BM25.
The technique of in-batch negatives (Gillick et al.,
2019; Karpukhin et al., 2020) boosts the number
of training examples by viewing each positive con-
text in the batch as the only positive and the rest
of the batch as the negatives. Specifically, given
a batch of B questions and each one is paired
with just a positive passage (which is the base
case): Let Q ∈ RB×D and P ∈ RB×D be the
batches of question and passage embeddings of D
dimensions. The in-batch negative technique calcu-
lates the similarity score matrix S using the outer-
product QP T ∈ RB×B , every row of which con-
tains a positive score and B− 1 negative scores for
a question. In this way, the computation is reused
for efficient training. As for the strategy of select-
ing positive and negative samples for questions, we
concatenate each question with answers to retrieve
the top-100 documents using BM25. We then use
the documents that contain answers as the positive
passages and the rest as hard negatives.

Inference During inference, we encode all the
passages into dense vectors using the passage en-
coder and index them using FAISS (Johnson et al.,
2021), which is an efficient, open-source library
for vector searching and indexing that can scale to
millions of vectors.

A.2 Uncertainty Weight Distribution
Section 6 shows that weighting the retrieval results
from different experts leads to better generaliza-
tion. In this section, we inspect the weight distribu-
tion over experts given a question, and see whether
the fusion weights have a sharp distribution (i.e.,
mainly using a single expert for each question) or
a more scattered one (i.e., a rather even mixture of
experts). It turns out that both our uncertainty fu-
sion method and the Bayesian oracle in Section 6.2
have more scattered weights for most questions.

Fig. 5 shows the weight distribution over experts
of some example questions from the NQ, Trivia,
SQuAD, and WQ datasets. The distribution of the
Bayesian oracle looks a little bit different from the
uncertainty fusion method, which we conjecture is
because we initialize the weight of the Bayesian
optimization with the indicator function for faster
searching. Therefore, it results in another solution
whose probability often concentrates more on the
domain’s expert.
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Figure 5: Weight distributions of the DPR-MUF model and the Bayesian oracle on some example queries from
the NQ, Trivia, SQuAD, and WQ datasets. Both methods include independent experts trained on {NQ, Trivia,
SQuAD, WQ, and Trec}. Despite differences in their weight distributions, these methods all have scattered distri-
butions over each expert’s prediction, which shows that fusing different expert’s retrieval results indeed helps with
generalization.


