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Abstract
We address the annotation data bottleneck for
sequence classification. Specifically we ask
the question: if one has a budget of N annota-
tions, which samples should we select for an-
notation? The solution we propose looks for
diversity in the selected sample, by maximiz-
ing the amount of information that is useful
for the learning algorithm, or equivalently by
minimizing the redundancy of samples in the
selection. This is formulated in the context of
spectral learning of recurrent functions for se-
quence classification. Our method represents
unlabeled data in the form of a Hankel matrix,
and uses the notion of spectral max-volume to
find a compact sub-block from which annota-
tion samples are drawn. Experiments on se-
quence classification confirm that our spectral
sampling strategy is in fact efficient and yields
good models.

1 Introduction

In the later years the field of NLP has witnessed
great progress on supervised machine learning
methods for sequence classification. However,
most of these methods require large amounts of
annotated training data. Because of this, whenever
a new NLP application needs to be developed, data
annotation becomes the main bottleneck in terms
of cost and time. For example, a defense research
analyst might wish to quickly train a text classi-
fier to detect emergent socio-political events in a
given conflict area. Since there might be only a
few experts on the subject their time will be costly.
Therefore, the expert should be able to train models
fast with minimal annotation effort.

To address the annotated data bottleneck, re-
searchers have proposed active learning approaches
that develop sampling strategies designed to min-
imize the number of annotations required to train
a model (Settles, 2009; Wang and Shang, 2014;
Zhang et al., 2016; Siddhant and Lipton, 2018).
Most active learning proposals are based on two

Figure 1: Representing unlabeled data in the form of a
Hankel matrix can be very effective to uncover latent
structure of the data. We present a sampling technique
to leverage this structure.

main strategies. The first strategy uses model un-
certainty and selects samples for which the pre-
diction of the current model is the least confident.
This strategy might not work very well during the
first iterations of active learning, when the predic-
tions of the model are unstable. Furthermore, the
model uncertainty criteria cannot be applied in the
first iteration, when no model has been trained and
one needs to resort to other cold start sampling
strategies (Yuan et al., 2020). To overcome the
limitations of the uncertainty approach other re-
searchers have proposed sampling strategies that
attempt to maximize the diversity of the selected
samples (Shao et al., 2019).

Besides the selection strategy, another dimen-
sion of an active learning method is the type of
annotation feedback that it exploits. For example,
in text classification the annotations can consist
of labels for complete texts, phrases, sentences,
features, rules or labeling functions (McCallum
and Nigam, 1999; Settles et al., 2008; Druck et al.,
2009; Ratner et al., 2017; Safranchik et al., 2020).

In this paper we focus on the problem of training
sequence classification models under an annotation
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budget constraint and with no prior trained model
for the task. This is sometimes referred as the
cold start problem. We consider a setting in which
the annotation feedback is at the level of phrases.
Our goal is to develop an efficient algorithm that
can answer the question: if one has a budget of
N annotations, which phrases should we select to
annotate?

Notice that active sampling under an annotation
budget is different from the classical active learn-
ing scenario. In the classical setting, the learning
algorithm has access to a large unlabeled data pool,
and in a series of iterations it alternates between
sampling data to annotate and training a new model.
In contrast, when training under budget constraints,
the focus is on the initial setting, when there is no
model that can guide the selection and when all
that is available to the selection algorithm is the
unlabeled data pool. The second difference is that
our goal is to find the optimal set of size N , i.e. the
selection criteria should be able to score a set or
batch of phrases. In that sense our work is more re-
lated to cover-set approaches (Sener and Savarese,
2017).

Our proposed solution for the problem of learn-
ing under a budget constraint follows a diversity
sampling strategy. That is, given a fixed budget
our batch selection method attempts to maximize
the amount of useful information contained in the
batch. Or equivalently, it tries to minimize an-
notation redundancy in the selected batch. More
precisely, our approach is inspired in methods that
minimize annotation redundancy by uncovering la-
tent structure in the input domain (Dasgupta and
Hsu, 2008).

Intuitively, imagine a classification problem with
k classes. If we had access to a clustering of the
data into k groups that perfectly align with the tar-
get classes only k labeled points would be needed.
That is, we would label a representative sample
for each cluster. Of course, the perfect clustering
might not exist but the point is that by discovering
relevant latent structure one can minimize annota-
tion redundancy and ask only for the annotations
that are really necessary.

We take this basic idea and translate it to the
sequence classification setting. Essentially, our
method induces an implicit soft clustering of
phrases (i.e., subsequences) so that we only need
annotations for one phrase in each cluster. Follow-
ing the classical distributional principle, we con-

sider two phrases to be similar if they can appear
in similar contexts.

Our technical contribution exploits ideas from
the theory of spectral and Hankel-based learning
methods for estimating recurrent sequence pre-
diction functions with linear state-dynamics (Hsu
et al., 2009; Bailly et al., 2009; Balle et al., 2014;
Rabusseau et al., 2019). We reduce the problem of
training sequence classification models under anno-
tation budget constraints to the problem of selecting
a high-volume matrix sub-block (i.e. a sub-block of
high rank) from a Hankel matrix (computed from
the unlabeled pool) that captures key statistics of
the sequence domain distribution. See Figure 1 for
a sketch. To our knowledge, sampling strategies
reduced to spectral matrix operations is a novel
technical approach. Recent methods for cold-start
sampling with an annotation budget have consid-
ered clustering embeddings of sentences derived
from BERT (Yuan et al., 2020), either as a single
shot sampling (like our method), or by iterative
fine-tuning of the embeddings used for sampling.

We highlight two main contributions:

• We propose a notion of sample diversity based
on structural properties of low-rank Hankel
matrices. Using this notion we derive a phrase-
sampling algorithm for learning under anno-
tation budget constraints, i.e. the cold-start
challenge.

• In experiments, we compare our spectral sam-
pling strategy to recent active learning meth-
ods for fine-tuning BERT-based sentence clas-
sifiers, that also seek diversity in the sampling
step. Our results show that under strict budget
constraints a simple latent-state model (in our
case, linear RNNs) can outperform the neural
BERT-based approach, despite the fact that
our models are strictly less expressive and are
not pre-trained.

The paper is organized as follows: Section 2
starts with a description of linear recurrent se-
quence functions, and then provides the spectral
learning background necessary to understand our
sampling strategy, and in particular the concept
of Hankel matrices. Section 3 presents the pro-
posed phrase selection method based on selecting a
max-volume sub-block from a Hankel matrix repre-
senting the unlabeled pool. Section 4 presents our
experiments on text classification. Finally, Section
5 concludes the paper.
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2 Linear RNNs and Hankel Matrices

In this paper we work with simple Recurrent Neu-
ral Networks that use linear functions (matrix prod-
ucts) to compute hidden-state vectors along the
sequence. In this setting, we describe connections
to spectral learning, and specifically to the Hankel
matrix of a recurrent sequence model. This is a
central tool to derive the sampling strategy.

A Recurrent Neural Network (RNN) takes as
input a sequence x and outputs a vector of k real
numbers, f : Σ? → Rk, where x = x1 · · ·xn is a
sequence of length n over some finite alphabet Σ.
We denote as Σ? the set of all finite sequences, and
we use it as a domain of our functions. An RNN
with hidden dimension d and output dimension k
is defined as a tuple:

N = 〈h0,Wh,Uh,bh,Wy,by, γh, γy〉 . (1)

The parameters h0 ∈ Rd, Wh ∈ Rd×|Σ|, Uh ∈
Rd×d, bh ∈ Rd compute hidden vectors at each
position t of the of the sequence

ht = γh(Whext + Uhht−1 + bh) , (2)

where eσ is an indicator vector of the current sym-
bol σ ∈ Σ that selects the appropriate column
weights in Wh. The parameters Wy ∈ Rk×d,
by ∈ Rk model the k function values given the
hidden vectors:

fN (x1:n) = γy(Wyhn + by) . (3)

The functions γh and γy are activation functions,
and in this paper we focus on simply using the
identities.

The most common use of general RNNs in NLP
is language modeling. In this case the model is set
to predict the conditional probability of the next
symbol (with k = |Σ| symbols), and by means of
the chain rule, the model defines a distribution over
the language and is trained to generate sequences
left-to-right. Another popular use is sequence clas-
sification, where the model computes a classifica-
tion score for each of the k labels of a task, given
input sequences x1:n.

Another application of RNNs, which is less com-
mon in the literature, is to frame language modeling
as a density estimation task, where the model es-
timates the probability of a full sentence directly.
In this case, the RNN predicts a single score (i.e.
k = 1) which corresponds to the probability of the
input x1:n, and we can regard this as a regression

learning problem, i.e. learn a real-valued function
that approximates the target probabilities given the
hidden state vector of the input sequence.

Finally, instead of modeling the probability of
full sequences, RNNs can directly approximate the
moments of the distribution. That is, learn a func-
tion from Σ∗ → R that estimates the expected num-
ber of times of observing a subsequence x1:n in a
random sequence sampled from the target distribu-
tion. Modeling moments, such as ngram statistics,
has the advantage that the target statistics are less
sparse than full sequences even for long ngrams.

2.1 Linear RNNs and Hankel Matrices
We now focus on linear RNNs where the activa-
tion functions γh and γy are simply the identity
function.1 We describe some interesting properties
of linear RNNs that we exploit in the context of
sampling.

A linear RNN N can be rewritten into a
Weighted Finite Automata (WFA) of this form:

fN (x1:n) = α>0 Ax1Ax2 · · ·AxnB . (4)

where: α0 ∈ Rd is an initial state vector; Aσ ∈
Rd×d are the transition matrices associated with
each symbol σ ∈ Σ; and B ∈ Rd×k is a matrix of
state-to-output weights. One can verify that a linear
RNN N with d′ hidden states and k outputs can
be rewritten as a WFA 〈α0,Aσ,B〉 of dimension
d = d′ + 2 and k outputs.2

Note that under Eq. 4 the computation of a lin-
ear RNN is not necessarily in a forward manner
(left-to-right), but can also be in a backward man-
ner (right-to-left). Given an input sequence x1:n,
one can define forward vectors for prefixes of the
sequence α>t = α>t−1Axt ; and backward matri-
ces for suffixes of the sequence βt = Axtβt+1.
Then, for any position 1 ≤ t ≤ n we have that
f(x1:n) = α>t βt+1.

1Our description should generalize to any linear activation
function, but for simplicity we just use the identity function.

2The construction works by packing the Wh, Uh and
bh parameters into matrices Aσ for each σ ∈ Σ, using two
dummy dimensions in the state vectors to carry the symbol
and bias weights, as illustrated here:

Output parameters Wy and by are packed into B similarly.
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We now focus on linear RNNs that compute a
single output value, i.e. k = 1. We can represent
a linear RNN using a Hankel matrix. A Hankel
matrix of a sequence prediction function f is a bi-
infinite matrix Hf ∈ RΣ?×Σ? indexed by prefixes
and suffixes of the language, such that Hf (p, s) =
f(p · s). A central result establishes that for a WFA
that computes function f , with d dimensions and
k = 1, the rank of Hf is d. This is because WFAs
and linear RNNs factor the computation of f as
products of prefix and suffix vectors, which are of
dimension d. The reverse also holds: if a Hankel
matrix Hf has rank d, then there is a WFA with
d states that computes the associated f function.
Next we describe spectral learning, which uses this
result. See (Rabusseau et al., 2019) for further
connections between WFAs and linear RNNs. See
(Quattoni and Carreras, 2020) for an application of
WFAs to NLP sentence classification tasks.

2.2 The Spectral Method

Spectral learning is based on learning a low-rank
Hankel matrix of the target distribution. Here we
provide a high level description of the method; for
a complete derivation and the theory justifying the
algorithm we refer the reader to the works by Hsu
et al. (2009) and Balle et al. (2014).

At training, we are given sequences T from the
distribution and we want to estimate f . We denote
as fT (x) the empirical subsequence expectation of
x in T .3 Using fT , the spectral method estimates a
WFA A with d states, where d is a parameter of the
algorithm, such that fA is a good approximation
of f . The method reduces the learning problem to
computing an SVD decomposition of the training
Hankel matrix, that collects the observed expecta-
tions fT . The method is as follows:

(1) Select a set of prefixes P and of suffixes S,
that serve as indices of the Hankel matrix for
rows and columns respectively. For example,
select all subsequences up to a certain size n.

(2) Create a Hankel matrix H ∈ RP×S for the
basis (P, S). Each entry is indexed by a prefix
p ∈ P and a suffix s ∈ S, and the value is the
evaluation of fT on the concatenation of the
prefix and the suffix i.e. H(p, s) = fT (p · s).

3This corresponds to the number of times that x is ob-
served as subsequence of any sequence in T , normalized by
the number of sequences in T .

(3) Compute a d-rank factorization of H. Com-
pute the SVD of H, i.e. H ≈ UΣV> re-
sulting in a matrix P = UΣ ∈ RP×d and a
matrix S = V ∈ RS×d. H ≈ PS> is a d-
rank factorization of H, with P and S being
projection matrices of prefixes and suffixes
(respectively) to d-dimensional embeddings.

(4) Recover the WFAA of d states using the previ-
ous Hankel factors P and S (details omitted).

The steps above are only a sketch of the method,
a full description can be found in (Balle et al.,
2014). The main computation is dominated by
step (3), the SVD of the Hankel matrix, which is at
most cubic in the size of the matrix.

One could imagine a Hankel matrix of infinite
size, which would capture the statistics of all of
the training subsequences. The theory behind spec-
tral learning shows that this infinite Hankel matrix,
when representing a function computable by a min-
imal WFA of d states, has rank d. Furthermore, the
theory shows that any sub-block of the infinite Han-
kel that preserves the rank (i.e. that has rank d) is
sufficient to learn the target WFA. This observation
sheds light on step (1) of the algorithm above: it
attempts to define a finite sub-block of the infinite
Hankel (by defining a finite basis of prefixes S and
suffixes P ) that preserves its rank.

In theory, we can define a Hankel matrix that
captures all of the data by setting both P and S to
be all subsequences found in any training sequence.
However, this results in a very large Hankel matrix,
which has a consequence on the cost of the SVD
in step (3). There exist techniques to handle this
computational bottleneck (Quattoni et al., 2017).

3 Phrase Sampling via Max-Volume
Optimization

In this section we describe a deterministic phrase
sampling method for sequence classification. We
assume an unlabeled pool of sequences, and the
goal is to select an annotation batch. Once selected,
the batch will be first annotated, and then a model
will be learned from it. The sampling strategy we
describe selects phrases for annotation, i.e. sub-
sequences of sentences (i.e. ngrams) found in the
unlabeled pool.

Notice that when learning a sequence model with
the spectral method, we only use the information
contained in the selected Hankel sub-block. In the
previous section we discussed the importance of
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selecting a small sub-block of the Hankel matrix
for computational efficiency. In such setting, it is
assumed that there is enough training data to com-
pute all the entries of the Hankel. A sub-block of
H is selected to ease the computation of the SVD,
which is required to infer the model parameters.

The problem that we address in this paper is
different: the focus is annotation efficiency, not
computational efficiency. In our case, we assume
that we need to estimate the Hankel matrices Hl of
each label l. Initially, we do not have samples to
compute any of its entries, so we ask the question:
Is there a way to select the samples to annotate
so that it provides the most information about the
target class distributions? Or equivalently, is there
a way to request annotations so that it gives us the
most information about Hl?

Our solution uses an approximation of Hl given
by the Hankel matrix HU associated with a lan-
guage model of the unlabeled distribution. We use
HU to pick the most informative entries of Hl, i.e.
those for which we will request annotations. In-
tuitively, each prefix in the matrix is described as
a distribution over suffixes, and the analogue for
suffixes. The proposed approach will select prefix
and suffix rows that are the most uncorrelated, so
that annotating their compositions will provide the
most information about Hl. In essence, this selects
a set of representative prefix and suffix prototypes
in the latent space of prefix and suffix embeddings
derived from HU .

The difference between the computational and
sampling problems has an analogue in recommen-
dation systems based on collaborative filtering. In
this case, one creates a matrix where rows are users
and columns are movies, and the corresponding en-
try has the rating given by a user to a movie. Some
entries are observed and some are missing, the ma-
trix is assumed to be low-rank, and the goal is to
complete the matrix and predict the ratings that
users will give to unseen movies. In this context,
the computational challenge is to perform SVD of a
potentially very large matrix, which is required for
low-rank matrix completion. In contrast, the sam-
pling problem, assumes that we can query users for
ratings on specific movies. The optimal sampling
question is: What is the most informative subset
of user-movie ratings to request so that from the
chosen subset we can predict unseen user-movie
ratings?

3.1 The Max-Volume Hankel Sub-block

First, we are interested in having an annotation
budget. This budget could be defined in terms
of the number of tokens to annotate. However,
because of reasons that will become apparent, in
our spectral approach it is more natural to define a
budget on the size of the sub-block; the number of
tokens to annotate will be determined by it.

We redefine the spectral algorithm to work with
Hankel sub-blocks of size b × b, where b is the
budget. Given a large Hankel matrix, it is known
that finding the sub-block of size b of maximum
rank is NP hard (Peeters, 2003). Fortunately there
exist reasonable approximations. A popular ap-
proach that is often used in the context of recon-
struction of low-rank matrices under computational
constraints is to search for the sub-block of highest
volume, where the matrix volume is defined as the
absolute value of the determinant, i.e. the prod-
uct of the Eigenvalues (Bebendorf, 2000; Çivril
and Magdon-Ismail, 2009; Cortinovis et al., 2019).
While finding a sub-block of maximum volume
is also NP-hard, there exist efficient and widely
used approximation algorithms. In this paper we
use an iterative algorithm based on LU factoriza-
tion (Miranian and Gu, 2003). It iteratively factors
matrices of size n × b, where n is the number of
rows/columns of the original Hankel matrix and b
is the budget. In our experiments, this routine takes
a few minutes to converge.

3.2 Max-Volume Sub-block for Sampling

We now turn to using max-volume as a sampling
strategy for sequence classification, under an anno-
tation budget. The classifiers we use are ensembles
of linear RNNs, with one model for each label
trained to estimate the class-specific moments. We
could attempt to select a Hankel sub-block for each
label, but the sub-block selection methods we de-
scribed would require a large Hankel matrix spe-
cific to each label, which in turn would require
large labeled training data.

The main idea behind our sampling strategy is
to have a single sub-block that is common to all
the labels, and to make this selection we use the
distribution of unlabeled sequences in the domain.
Specifically, we first consider a Hankel matrix HU

of the sequences in the unlabeled pool, where the
value of an entry HU (p, s) is the expected number
of times of observing the phrase p · s in a sequence
sampled from the unlabeled pool. This corresponds
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to a Hankel matrix for language modeling, since it
is estimating the domain distribution. This Hankel
matrix is used to select a max-volume sub-block
satisfying the given budget b, resulting in a set of
b prefixes P and a set of b suffixes S. This basis
is then used to define a Hankel matrix specific to
each label.

3.3 Filling in Hankel Matrices

For each label l, we need to fill all the entries of
the associated Hankel matrix Hl, defined over the
max-volume basis. The value of one entry Hl(p, s)
corresponds to the expected number of times of
observing the phrase p · s in a sequence sampled
from the specific distribution of all sequences of
label l. For each possible phrase defined by the
basis, and for each label l, we would need such
statistic. It seems unrealistic to ask an annotator
this kind of feedback.

Instead, we note that because of the Zipfian na-
ture of language, rather than requiring the actual
expectation of a phrase, in many cases it suffices
to know whether that expectation is 0 or not, i.e.
whether or not that phrase can appear in sequences
of that class. Put it differently, we postulate that
most of the information is in the sparsity pattern of
the moments in the Hankel matrix, rather than their
real values.

Designing an annotation strategy to fill sparsity
patterns is much easier. For each prefix p ∈ P
and suffix s ∈ S we consider the phrase q = p · s.
If q does not appear in the unlabeled pool we set
Hl(p, s) = 0 for all labels l. Otherwise, if q does
appear in the unlabeled pool we ask the annotator
for its class labels. We use multilabel-style feed-
back where we allow a phrase q to belong to multi-
ple classes simultaneously, and set Hl(p, s) = 1 to
all such positive labels l, and 0 for the rest of labels.
Algorithm 1 describes the sampling strategy.

We would like to note that once we have selected
an informative basis for the sequence classification
task at hand, other annotation feedback strategies
might be used to fill the necessary Hankel statistics,
for example by generating phrases. In this work
we picked the simplest strategy from which we ob-
tained good performance, further work will explore
other strategies.

4 Experiments

We evaluate the spectral sampling method on two
sentence classification tasks. We compare our sam-

Algorithm 1: Phrase Sampling via Max-
Volume Optimization
Data: Unlabeled data pool U , basis budget b,

a set L of k target labels

1 Compute Hankel matrix HU where rows and
columns are indexed prefixes and suffixes

2 Find maximum-volume matrix sub-block of
HU and corresponding basis (P, S) where
|P | = |S| = b

3 Construct the set of queries Q by listing all
phrases p× s obtained by concatenating a
prefix p ∈ P with a suffix s ∈ S, such that
p× s is observed in U

4 For every phrase q ∈ Q ask the annotator to
provide feedback, in the form of an indicator
vector z ∈ {0, 1}k, where zl denotes that q
can be a phrase of sentences of class l ∈ L

Result: A set of labeled phrases{
(q, z) | q ∈ Q, z ∈ {0, 1}k

}

pling strategy to recent active learning methods for
fine-tuning BERT-based sentence classifiers (Yuan
et al., 2020), that also seek diversity in the sample.

Data. We use two common datasets for sen-
tence classification: the IMDB dataset of movie
reviews (Maas et al., 2011), where the goal is to
predict if a movie review is positive or negative;
and the AG News dataset Zhang et al. (2015) of
news articles headlines classified into four classes.
The IMDB dataset has 17, 500 training examples,
7, 500 validation examples, and 25, 000 test exam-
ples. The AG News dataset has 110, 000 training
examples, 10, 000 validation examples and 7, 600
test examples. We use the union of the training and
validation as the unlabeled pool of examples.

Evaluation. We report performance on the test
partition. As an evaluation metric we use the F1
average between precision and recall. We report
the F1 performance of the model as a function of
the total number of tokens annotated, defined as∑

q∈Q |q| where Q is the set of annotated samples.
Since our sampling method is controlled by a bud-
get on the basis size, we run the method for increas-
ing budgets and measure the number of tokens of
each batch of samples.

Linear RNN Classifiers. We trained one linear
RNN for each class, that models the distribution of
sequences of that class. To train them, we use the
spectral method of moments, and set the number of
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hidden states to 10 for each of them. We could, in
principle, exploit models with larger state spaces.
If large quantities of data were available we would
have indeed observed a performance improvement
by exploiting larger state spaces. However, we de-
cided to use a small state space since our main goal
is to be able to train models with small annotation
budgets. Under this setting simpler models can be
learned more robustly. Given an input sequence x,
the linear RNN classifiers provide scores for each
ngram (i.e. substring) of x and each class. To make
predictions, we use a simple ensemble technique
similar to (Mesnil et al., 2014): we consider all
the ngrams of x up to length 4, and compute an
aggregate prediction score for each label l ∈ L:

z(x, l) =
∑

w∈ngrams(x)

fl(w)∑
l′∈L fl′(w)

. (5)

Simulated Annotation. Our sampling method
produces a batch of phrases (i.e. subsequences of
unlabeled examples) for annotation. While doing
evaluations with human annotators would be ideal,
it is also very costly. Instead we follow the standard
evaluations of active learning methods which are
based on using the unlabeled pool together with
the true labels to simulate the feedback that could
be provided by a human annotator. While this is
by no means perfect, it is a natural low-cost ap-
proximation to the human evaluation experiment.
More precisely, for a given phrase q to be annotated
we look at the unlabeled data pool and retrieve the
sentences in which q appears. Then we take all the
labels for such sentences and set them as positive
labels for q, forming an indicator vector.

4.1 Comparison to Max-Volume Oracles
We first test the max-volume sampling using ora-
cle configurations that have access to fully labeled
data. The oracle max-volume is as follows. Since
we have fully labeled data, we can consider class-
specific Hankel matrices for each label. Thus, for
each label we will compute the max-volume sub-
block. We call this the class-oracle setting. Then,
based on the discussion in Section 3.3, we consider
two variants depending on how we fill the selected
sub-blocks with target values. In class-oracle ex-
pectations the values are the expected counts of
the corresponding phrases in the unlabeled pool.
In class-oracle occurrences we only consider the
sparsity pattern, setting 1 if the expected count is
non-zero, and 0 otherwise.
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Figure 2: Comparison to max-volume oracles for
phrase sampling on IMDB data.

Figure 2 shows F1 performance in terms of the
number of annotated tokens. We clearly see that
using occurrences behaves very similarly to using
actual expectations. This confirms our hypothesis,
and enables to train our models from simple bi-
nary phrase occurrence feedback. The same figure
also shows the curve for our proposed sampling
method, that estimates the max-volume sub-block
using unlabeled sequences. We can see it follows
the same trend as the oracles. This confirms that
using the underlying domain distribution to inform
about sub-blocks of maximum information is in-
deed an effective working hypothesis.

4.2 Comparisons for Fixed Annotation
Budgets

We now compare our strategy for sampling under
budget constraints with two baselines. The first
baseline samples complete random examples, and
the second one samples random phrases of length
less than 10.

We also compare to three active learning meth-
ods analyzed by Yuan et al. (2020) that also look
for diversity in the queried samples: BERT-KM
generates samples based on a k-means clustering
of BERT embeddings of sentences, while BADGE
and ALPS actively refine the BERT embeddings
to the target task after getting labels for each batch
of samples. The idea behind BADGE (Ash et al.,
2020) is to use gradient representations of the sen-
tences in the unlabeled pool, since gradients are
indicators of changes in the model and therefore
are useful to promote diversity. The ALPS method
is a variant that uses the masked language model-
ing loss of BERT to promote gradient diversity for
sampling purposes. In all, these methods represent
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Figure 3: Comparison with alternative sampling methods under fixed annotation budget, on IMDB (left) and AG
News (right) datasets.

basis size #tokens F1
11 5,056 50%
30 5,151 57%
50 5,251 61%

200 6,001 62%
400 7,001 77%

1,000 10,001 77%
2,000 15,001 79%
5,000 30,121 79%

Table 1: Performance of max-volume sampling in
IMDB data with respect to the basis budget, and cor-
responding number of tokens for annotation.

recent BERT-based approaches for cold-start sam-
pling. Our comparison follows the same setting as
Yuan et al. (2020).

Figure 3 shows the comparison. The main ob-
servation is that max-volume sampling is much
more efficient than the two baselines. Compared
to the BERT-based samplers, we also see that max-
volume sampling is more efficient for low budget
settings, even though after some iterations, ALPS,
BADGE and BERT-KM eventually outperform the
accuracy of our method. One possible reason is
that these methods do exploit information that is
not in the max-volume sub-block. Table 1 shows in
more detail the performance of max-volume sam-
pling in terms of the size of the basis and the total
number of tokens to be labeled.

5 Conclusions

Sequence distributions that can be modeled with
latent state models have low-rank signatures. That
is, the whole distribution can be learned from statis-
tics over a small number of key phrases. The main
contribution of our work is to show how we can
leverage that property to design efficient sampling

strategies for sequence classification under annota-
tion budget constraints.

The idea is quite simple: while for a given cat-
egory we cannot know a priori (that is without
labeled sequences) its low-rank signature (and key
phrases), we can try to estimate the signature from
unlabeled domain data. Using that approximation
we can design an efficient way of selecting phrases
to label. Our experiments show that with this strat-
egy we can obtain reasonable sequence classifica-
tion models under small budget constraints. To
the best of our knowledge our proposal is the first
sampling strategy to implicitly exploit low-rank
embeddings of domain phrases.

Once a low-rank Hankel signature has been
found we could imagine several different annota-
tion strategies for estimating the relevant statistics.
This work is just a first step where we consider
one of the simplest of such strategies. However,
future work should explore the space of annotation
strategies taking into account what feedback would
result in the best estimation, and what is easiest for
the human annotator. We see this work as opening
the door for future research on interactive machine
learning for sequence modeling where the anno-
tation feedback strategy is designed to exploit the
structural properties of the domain.

Our sampling strategy contrasts with recent work
in active learning, which exploits BERT-based em-
beddings. We empirically observed that the perfor-
mance of our combo is better for very low annota-
tion budget, but eventually the neural approaches
improve and gradually achieve state-of-the-art re-
sults. Thus, one natural question for future research
is if our sampling strategy can be coupled with
more expressive neural classifiers. A second re-
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lated question is how to use the spectral models
trained with max-volume sampling to warm-start
neural approaches.
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