
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 4015–4025
August 1–6, 2021. ©2021 Association for Computational Linguistics

4015

Unsupervised Domain Adaptation for Event Detection using
Domain-specific Adapters

Nghia Ngo Trung1, Duy Phung1 and Thien Huu Nguyen2

1 VinAI Research, Vietnam
2 Department of Computer and Information Science, University of Oregon,

Eugene, OR 97403, USA
{v.nghiant66,v.duypv1}@vinai.io, thien@cs.uoregon.edu

Abstract

Due to the multi-dimensional variation of tex-
tual data, detection of event triggers from new
domains can become a lot more challenging.
This prompts a need to research on domain
adaptation methods for event detection task,
especially for the most practical unsupervised
setting. Recently, large transformer-based lan-
guage models, e.g. BERT, have become essen-
tial to achieve top performance for event detec-
tion. However, their unwieldy nature also pre-
vents effective adaptation across domains. To
this end, this work proposes a Domain-specific
Adapter-based Adaptation (DAA) framework
to improve the adaptability of BERT-based
models for event detection across domains.
By explicitly representing data from differ-
ent domains with separate adapter modules in
each layer of BERT, DAA introduces a novel
joint representation learning mechanism and a
Wasserstein distance-based technique for data
selection in adversarial learning to substan-
tially boost the performance on target domains.
Extensive experiments and analysis over dif-
ferent datasets (i.e., LitBank, TimeBank, and
ACE-05) demonstrate the effectiveness of our
approach.

1 Introduction

Event detection (ED) is an important component in
the overall event extraction pipeline, which plays
a crucial role in any natural language understand-
ing system. The goal of ED is to identify event
triggers in a given text and classify them into one
of several pre-defined types. Formally, according
to the ACE-05 annotation guideline , each event
trigger is a phrase (usually a single verb or nomi-
nalization), which evokes that event in the context
of the associating event mention. For example, the
word “fired” is the trigger word for an event of
type Attack in the following sentence: ”The police
fired tear gas and water cannons in street battles

with activists.” Tackling ED problem involves both
locating the event triggers and categorizing them
into specific event types, therefore can be a quite
challenging task due to the intricate dependency
among triggers, events, and contexts in linguistic
data. The complication is further amplified by do-
main shift problem when text are collected from
multiple different domains.

The majority of prior approaches on ED relied
on the basic supervised learning assumption where
training and testing data follow the same distribu-
tion. Several works further evaluated their methods
on cross-domain setting where their models were
trained using data from one domain and tested on
another, without leveraging any adaptation mecha-
nism to alleviate the domain shift problem (Nguyen
and Grishman, 2015; Yubo et al., 2015; Hong et al.,
2018b). To this end, our work explores the gen-
eral problem of domain adaptation for ED where
data comes from two different source and target do-
mains. In particular, we focus on the unsupervised
setting that requires no annotations for target data,
and the model has to learn to make use of both
labeled source and unlabeled target samples to im-
prove its performance on target domain. To our
knowledge, this is the first work on unsupervised
domain adaptation (UDA) for ED in the literature.

The most prominent approach for UDA is a rep-
resentation learning method based on the theory of
learning from different domains developed by Ben-
David et al. (2010). The main result provided a way
to bound the loss of a model on target domain with
its performance on source domain using a domain-
divergence term and an optimal joint error term
(which is assumably negligible). Ganin et al. (2016)
adopted this idea for deep learning architecture in
their domain-adversarial neural network (DANN).
They employed a domain-adversarial training pro-
cedure in which a domain classifier is learned con-
currently and adversarially with the network’s fea-
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ture extractor, resulting in a not only discriminative
but also domain-invariant joint representation for
data from both domains. While DANN and its vari-
ants are very well-studied in computer vision’s do-
main adaption researches, their NLP counterparts
are pale in comparison, especially for a newly es-
tablished architecture like BERT. There have been
only several works that adopted DANN to align the
contextualized representations learned by BERT
across domains (Lin et al., 2020; Naik and Rosé,
2020; Wright and Augenstein, 2020). Lin et al.
(2020) even observed negative effect when apply-
ing adversarial training compare with simply fine-
tuning BERT on in-domain data. One explanation
is that the pre-training of BERT on massive corpora
has already induces a somewhat general represen-
tation, thus DANN has little effect while the fine-
tuning process using source dataset could cause
over-fitting on the corresponding domain due to the
immense capacity of the model. To this end, we
propose fixing the parameters of the already uni-
versal language model while leveraging multiple
adapter modules for domain-adversarial training
process. More specifically, inspired by the works
of Liu et al. (2017a) and Houlsby et al. (2019)
on effective multi-task learning, we augment the
pre-trained BERT model by adding three differ-
ent adapters to create a shared-private architecture.
Two source and target adapters which take as in-
puts data from their respective domains to capture
private properties of each, and a joint adapter that
encodes every sample in a subspace shared across
domains through adversarial training. Orthogo-
nality constraints together with a self-supervised
auxiliary task are employed to ensure the represen-
tations of all adapters are informative while also
attaining the above desired properties.

Recently, Ma et al. (2019) and Aharoni and Gold-
berg (2020) have shown that BERT’s representa-
tions are extremely effective at clustering text to
their respective domains, and a small subset of
good in-domain data can already provide signif-
icant boosts in target performance while the rest
only provide little to no improvement, in some
cases even degrade model’s out-of-domain gen-
eralization. Considering this, we explicitly find
hard instances to leave out when learning to extract
the domain-invariant features. Our data selection
component estimates and minimizes the cost of
transport between source and target marginal repre-
sentation distributions based on the Wasserstein-1

distance (also refer to as Earth Mover distance).
Arjovsky et al. (2017) pointed out that the relative
strength of the topologies induced by this distance
is much weaker than that of KL-divergence used
by adversarial training. Therefore, it could serve
as a good necessary condition for DANN compo-
nent to achieve optimal alignment. The faraway
source instances that induce the highest transporta-
tion costs are those out-of-distribution samples that
may introduce noise and hurt adaptation perfor-
mance. Accordingly, they are omitted from the
domain-adversarial training process. The entire
computation makes use of representations from
source and target adapters, thus implicitly provides
informative signals from domain-specific adapters
to joint adapter without interrupting the joint repre-
sentation learning procedure.

2 Related Work

Prior ED works have focused on the in-domain
setting (Li et al., 2013; Chen et al., 2015; Nguyen
et al., 2016; Yang and Mitchell, 2016; Nguyen and
Grishman, 2018; Sha et al., 2018; Liu et al., 2017b;
Tong et al., 2020; Nguyen et al., 2021), the cross-
domain evaluation (Nguyen and Grishman, 2016;
Hong et al., 2018a), the few/low-shot learning sce-
nario (Lai et al., 2020a,b). Our work is different
from those prior work as we explore a new formu-
lation for ED with unsupervised domain adaptation
where unlabeled data in the target domain is uti-
lized to improve domain-invariant representation
learning.

Recently, some efforts have been made to study
the domain-related knowledge encoded in BERT’s
representations (Aharoni and Goldberg, 2020), and
methods to leverage it to improve performances on
domain-specific tasks, such as pre-training on ad-
ditional data (Gururangan et al., 2020), fine-tuning
using intermediate tasks (Phang et al., 2018; Garg
et al., 2020), and data selection (Ma et al., 2019;
Aharoni and Goldberg, 2020). Another line of re-
search regarding multi-task learning shares a com-
mon goal of creating a universal representation
space for all data with domain adaptation. Pre-
vious approaches made use of multiple encoders
to set up a shared-private architecture (Bousmalis
et al., 2016; Liu et al., 2017a), which usually is im-
practical for BERT-based models because of theirs
sizes. By fixing a pre-trained BERT as the base for
general representations, Houlsby et al. (2019) and
Stickland and Murray (2019) proposed to adapt the
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model to each task by adding small task-specific
layers between BERT’s layers and updating only
them when fine-tuning on the corresponding task.

3 Model

Throughout this work, we formulate ED task as
a token-level multi-class classification problem
(Nguyen and Grishman, 2015; Ngo et al., 2020).
For UDA setting in particular, we have a labeled
source dataset Ds

XY = {(Xs
i , y

s
i )}

Ns

i=1 of N s sam-
ples from source domain s and an unlabeled set
of N t samples Dt

X =
{
Xt
i

}Nt

i=1
drawn from tar-

get domain t. Each Xs
i is a pair consists and an

event mention W s
i = (ws

i1, w
s
i2, · · · , ws

im) (m is
the fixed number of words), and a trigger position
u (1 ≤ u ≤ m) corresponding to the word ws

iu.
An encoder computes its latent representation xsi ,
which is then used by the event classifier to predict
an event of type ysi . For target domain, parallel
notations are used xti and yti (only accessible in
target domain’s test dataset)

3.1 Baseline Model

As this is the first work on UDA for ED, this sec-
tion aims to establish a baseline of the task for
further research. Recent works have shown a sub-
stantial boost in performance for the standard su-
pervised setting of ED by leveraging contextual
embedding of large self-attention based language
models (Wang et al., 2019; Lai et al., 2020c). Ac-
cordingly, we utilize a pre-trained BERT’s encoder,
together with its domain-adversarial variant to cre-
ate a strong baseline for the UDA setting.

Without any domain adaptation mechanism, our
BERT baseline only follows cross-domain evalua-
tion setting as previous works. The model is fully
fine-tuned on source domain dataset while at test
time, data from target domain is used to evaluate
its performance.

On the other hand, the BERT+DANN baseline
takes advantage of the availabel unlabeled target
data through adversarial training. Specifically, a
domain classification task is learned concurrently
with the main downstream task, using unlabeled
samples and their domain labels from both domains.
By pushing the encoder to both minimize the event
classfication loss and maximally misdirect domain
predictor, the resulting representation can be in-
discriminate with respect to the shift between the
domains while also discriminative for the main
learning task.

Finally, to demonstrate to ability of adapter-
based tuning approach to retain the original’s model
performance, we also evaluate a BERT+Adapter
baseline. Following recommendation from Pfeif-
fer et al. (2021), we augment a pre-trained BERT
model by injecting a single bottleneck adapter mod-
ule between the encoder’s layers. Then, the fine-
tuning process proceeds in the same manner as that
of the BERT baseline, but only parameters of the
adapter modules get updated in this case.

3.2 Adapter-based Domain Representation

Pre-trained BERT model was previously optimized
for the task of masked language model in unsuper-
vised manner on several extremely large corpora.
The diversity of these unlabeled text also pushes
the network to be a good starting point for learning
domain-invariant features, which would be lost if
we fully fine-tune it on source domain task. Ac-
cordingly, we make use of a fixed pre-trained BERT
model as the base of our adapters.

Figure 1: Domain-specific adapters inside the original
BERT’s layers.

An adapter for each domain To explicitly cre-
ate a shared-private representation subspace of each
domain, we inject three adapters into the same base
encoder. Formally, adapter modules asi , a

t
i , a

j
i are

added on top of each BERT’s layer. While these
modules share the same architecture, they take in as
inputs data only from their corresponding sources:

Ad(xdi ) = adL ◦ bL−1 ◦ · · · ◦ ad1 ◦ b1(xdi )

where bi is the fixed layer of BERT (1 ≤ i ≤
L), d ∈ {s, t, j}, and Dj

X = Ds
X ∪ Dt

X. The
joint adapter Aj is our main representation which
will be used by event detection head hc for source
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classification task:

Lc =
1

ns

ns∑
i=1

−ysi log
(
hc

(
Aj (xsi )

))
On the other hand, the domain-specific adapters
As and Aj will only be used to help Aj find to the
optimal joint-domain space while simultaneously
retain good performance on downstream task.

Adapter architecture: There are a variety of
ways that one can design the adapter modules’ ar-
chitecture. Following the observations from Pfeif-
fer et al. (2021), we choose ours to be the most
efficient but also effective, which is a singular bot-
tleneck neural network with skip-connection, tak-
ing features computed by BERT’s feed-forward
sub-layer as inputs. The adapter module in layer l
can be decoupled into two parts adl = ad,upl ◦ad,dwl ,
where ad,dwl : Rdmodel → Rc and ad,upl : Rc →
Rdmodel (as shown in figure 1). Despite tripling the
added parameters from adapter modules, by setting
c� dmodel, the amount needed to be tuned is still
only less than 10% that of the original network. Ad-
ditionally, the factorized features enable effective
adaptation by making use of the low-dimensional
down-sampled representation, while also boosting
classification performance by leveraging the free
parameters of the up-sampling projection, as de-
scribed in the next sections.

3.3 Joint Representation Learning

To learn a joint representation that is as general as
possible while also maintaining its discriminative
property, we propose to combined two mechanisms
with complementary effects : a layer-wise domain-
adversarial (LDA) component and an adapter-wise
domain disentanglement (ADD) component.

3.3.1 Domain-adversarial Training
LDA apply domain-adversarial training to the rep-
resentation of Aj. Multiple refinements to the orig-
inal DANN are introduced to mitigate its flaws and
learn better domain-invariant features.

Dimension Reduction It is known that discrimi-
native features computed by high-level layers usu-
ally lie on low dimensional manifolds. As a result,
naively applying adversarial training for BERT’s
representations, which require high dimension to
capture contexts, can lead to gradient vanishing
problem. We leverage the adapter’s architecture to

tackle this issue. Instead of the full dimension out-
puts of layers, we align domains based on the down-
sampled version of the representations, computed
by aj,dwi . In consequence, an adapter module can
be viewed as a two-step adaption: a down-sampling
projection step that extracts domain-invariant fea-
tures and a following up-sampling projection step
which transforms the extracted general features into
task discriminative ones.

Layer-wise Alignment To enhance the align-
ment capability of our model, domain-adversarial
training is applied on every layer’s output. In par-
ticular, we incorporate the asymmetric relaxation
of DANN (Wu et al., 2019):

Lld =−
1

N

N∑
i=1

[
di log

(
hd(a

j,dw
l (xi))

1 + βj

)

+(1− di)log

(
1−

hd(a
j,dw
l (xi))

1 + β

)]
where di is domain label of samples xi, N =
ns + nt is minibatch size, and βl ≥ 0 is a hyper-
parameter controlling the maximal difference of the
two marginal distributions (βl = 0 is the original
formulation). This modification addresses the tar-
get shift scenario where domain-adversarial train-
ing is unable to achieve optimal solution. As out-
lined by Rogers et al. (2021), lower-level layers of
BERT contain quite broad knowledge, thus encode
more random distribution when projected into label
space. In contrast, high-level ones are gradually
more task-specific, effectively reducing the possi-
ble amount of label shift between the two domains.
Therefore, we adopt the following relaxation an-
nealing strategy:

Ld =
L∑
l=1

Lld(a
j,dw
l , βl, h

j
d,l), with βl = 23−l

where each term on the right-hand side is a different
relaxed domain classification loss computed by a
separate domain classifier hjd,l.

3.3.2 Adapter-wise Domain Disentanglement
The role of ADD component is to ensure the shared-
private relationship among adapters. We want the
joint adapter Aj to encode a shared representation
space containing common information between do-
mains and no domain-specific information, while
the private adapters As and At should only ac-
commodate distinct knowledge that belong exclu-
sively to their corresponding domains. Following
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the work of Liu et al. (2017a) and Bousmalis et al.
(2016), an orthogonality constraint is imposed us-
ing the following similarity loss function:

Ls = ‖Aj
s
>As

s‖2F + ‖Aj
t
>At

t‖2F

where ‖.‖F is the Frobenius norm and Ad1
d2

is a
matrix whose rows are the outputs of adapter Ad1

taking inputs from domain d2. Minimizing Ls
will force Aj to be in a complementary subspace
with As and At, encouraging independency among
adapters and removing domain-specific noises that
may contaminate the joint representation. How-
ever, whereas Aj is trained to be informative for
the downstream classification, As and At are not
constrained by any task, which potentially could
lead to a trivial solution where the network learns
to map each representation into the same orthogo-
nal space with Aj while not having any expressive
capability of their corresponding domains. To ad-
dress this issue, we incorporate a self-supervised
component, using the popular Masked Language
Modeling (MLM) as our unsupervised task. The
token predictor hm : Rdmodel → RV (V is the vo-
cabulary size), is shared between source and target
domains:

Lm =

Nmask∑
i=1

Lsm(xsi ) + Ltm(xti )

Ldm(xdi ) = −wd
i log hm

(
Aj(xdi ) +Ad(xdi )

)
whereNmask is the number of randomly masked in-
put tokens, following the original procedure in De-
vlin et al. (2019). The benefit of adding the MLM
component is twofold. On one hand, it serves as a
constraint to learn informative representations for
domain-specific adapters. On the other hand, it also
help conditioning joint adapter Aj on unsupervised
knowledge of unlabeled target data, which can have
a positive impact on target domain’s performance.

3.4 Data Selection

Considering the Wasserstein-1 distance between
the distributions generating source and target
marginal representations Ps

X and Pt
X, which can be

written as:

W (Ps
X,Pt

X) = sup
‖f‖L≤1

E [f(xs)]− E
[
f(xt)

]
There are several advantages of using this distance
as the proxy for data selection mechanism. First,

Wasserstein distance takes into account the geom-
etry of the actual data distributions. Thus, it is
intuitive to use it to evaluate the discrepancy be-
tween marginal distributions and pick source sam-
ples that are geometrically close to samples from
target distribution. Furthermore, it has been proven
by Arjovsky et al. (2017) that the minimization of
KL-divergence, on which LDA component based
to update Aj, also implies the minimal Wasserstein
distance between the corresponding distributions.
Therefore, leaving out the most far-a-way samples
based on this distance should provide a good nec-
essary condition for LDA to achieve optimal align-
ment from source to target domain.

Approximate Wasserstein Distance Following
the approximation from Shen et al. (2018), we
employ a data selection head hw to estimate the
Wasserstein distance between two representation
distributions of As and At by maximizing the fol-
lowing empirical loss with respect to θw:

Lŵ =
1

ns

ns∑
i=1

hw (As (xsi ))−
1

nt

nt∑
i=1

hw
(
At
(
xti
))

For the above approximation to work, we need to
enforce the Lipschitz constraint, which will force
the hypothesis class of hw to be 1-Lipschitz. Fol-
lowing Gulrajani et al. (2017), a gradient penalty
Lgr is added to the loss, resulting in the overall
estimation problem for the Wasserstein distance as

max
θw
Lw = Lŵ − λgrLgr

Lgr(Ad) = (||∇Adhw(A
d)||2 − 1)2

where d ∈ {s, t} and λgr is a hyper-parameter.

Data Selection based on Wasserstein Distance
To avoid negative transfer problem in case of highly
dissimilar domains, we propose to use a data se-
lection mechanism based on the estimated Wasser-
stein distance. By minimizing the empirical dis-
tance using As and At, we find the representations
that achieve the shortest transport distance between
source and target samples. Then, a subset of n̂s

source samples is selected with the lowest hw(.)
scores, which corresponds to the n̂s shortest dis-
tances to target domain. These source instances
will be used by the joint adapter Aj, together with
target unlabeled data, to learn domain-invariant fea-
tures in LDA.
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System In-domain(bn+nw) Out-of-domain (bc) Out-of-domain (cts) Out-of-domain (wl) Out-of-domain (un)
P R F P R F P R F P R F P R F

BERT 77.5 77.5 77.5 75.2 71.8 73.5 75.1 69.9 72.4 70.2 57.9 60.6 68.9 67.5 68.2
BERT+DANN 77.4 75.8 76.6 72.8 69.4 70.9 73.4 39.9 51.2 69.2 50.5 58.4 68.8 59.2 63.6
BERT+Adapter 76.8 76.2 76.7 78.5 72.9 75.6 77.3 69.5 73.2 64.3 56.9 60.3 72.4 69.0 70.6
DAA 79.7 75.7 77.7 78.5.1 75.6 76.9 78.4 73.2 75.6 66.2 60.3 63.1 73.5 71.3 72.3

Table 1: Unsupervised domain adaptation for event detection. Performance on the ACE-05 test datasets for differ-
ent domains.

System
In-domain Out-of-domain

(TimeBank) (LitBank)
P R F P R F

LSTM+DANN 69.3 87.5 77.3 25.6 72.9 37.9
BiLSTM+DANN 74.2 79.4 76.7 26.3 72.0 38.6
BERT 79.6 84.3 81.9 28.1 84.8 42.2
BERT+DANN 79.8 85.6 82.6 30.3 80.8 44.1
DAA 90.9 88.4 89.6 40.0 81.3 53.6

Table 2: Performance on TimeBank-to-LitBank.

System
In-domain Out-of-domain

(LitBank) (TimeBank)
P R F P R F

LSTM+DANN 61.1 61.6 61.3 89.0 18.9 31.2
BiLSTM+DANN 66.1 62.8 64.4 92.9 18.5 30.9
BERT 73.5 72.7 73.1 88.1 28.2 42.7
BERT+DANN 71.9 71.3 71.6 85.0 35.0 49.6
DAA 77.7 75.6 76.7 83.2 48.5 61.1

Table 3: Performance on LitBank-to-TimeBank.

3.5 Alternating Minimization

Taking it all together, our final training objective
is given as:

Ltotal = Lc + λdLd + λwLw + λsLs + λmLm

where λd, λw, λs, λm are hyper-parameters which
help to balance the importance of the correspond-
ing loss with the main event detection loss. Of the
five terms on the right-hand side, the domain dis-
crepancy losses (Ld and Lw) require optimization
of different directions with respect to the added
heads and the adapters, resulting in a min-max
optimization problem. Previous works that made
used of domain-adversarial training usually applied
gradient reversal layer to train the feature extrac-
tors. We find this approach to be unstable and
cause performance degradation. Following sug-
gestions from Goodfellow et al. (2014) and Shu
et al. (2018), we design an alternating minimization
process that is compatible with our learning algo-
rithm whilst also stabilizing the domain-adversarial
training. In the first stage, all parameters are fixed
except for those of domain-adversarial heads and
data selection head. This step corresponds to the
estimation of corresponding distance functions be-
tween domains given the current representations.
After repeatedly updating for k times (k is a hyper-

parameter that controls the trade-off between com-
putation and accuracy of the divergence estima-
tions), a subset of source minibatch can be selected
based on the approximated Wasserstein distance,
which will be used for domain-adversarial train-
ing of joint adapter in next step. The following
stage, while keeping the previously updated heads
fixed, updates the rest of the model’s parameters,
using the standard gradient descent algorithm. All
maximization problems of discrepancy losses are
converted into minimization using reversed domain
labels.

At test time, a new sample xtest will go through
the trained joint adapter Aj to produce domain-
invariant representation Aj (xtest), which is then
used by prediction head hc to produce the corre-
sponding event label.

4 Experiments

We evaluate our model on two related tasks: event
identification and event detection. Given a trigger
word in the context of an event mention, the former
is formulated as a binary classification problem in
which the goal is to determine if the trigger word
expresses an event, while the latter is a multi-class
classification task that requires model to assign the
predicted label into one of the pre-defined 34 event
types (include 1 negative type).

4.1 Datasets

TimeBank dataset (Pustejovsky et al., 2003) a
fine-grained temporally annotated corpus of events
and their positions and ordering in time. The text
of the dataset were chosen from a wide range of
sources from the news media domain. Events are
annotated in a binary manner.

LitBank dataset (Sims et al., 2019) a recently
introduced corpus of literary events. The dataset
contains excerpts of 100 literary works from the
Project Gutenberg corpus. Labels for events are
binary.
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System In-domain(bn+nw) Out-of-domain (bc) Out-of-domain (cts) Out-of-domain (wl) Out-of-domain (un)
P R F P R F P R F P R F P R F

DAA-D 75.8 79.7 77.7 74.4 76.8 75.5 78.4 70.0 73.9 67.2 57.1 61.7 71.3 70.3 70.8
DAA-W 79.2 76.4 77.7 77.8 73.5 75.6 80.8 70.1 75.1 70.2 53.7 60.9 74.0 66.7 70.1
DAA-M 78.1 76.5 77.3 80.4 71.0 75.4 77.0 69.4 73.3 68.9 55.1 61.2 73.5 68.6 71.0
DAA-S 77.5 77.1 77.3 78.7 72.4 75.4 79.2 70.7 74.7 65.5 57.9 61.5 72.7 67.9 70.2
DAA 79.7 75.7 77.7 78.5 75.6 76.9 78.4 73.2 75.6 66.2 60.3 63.1 73.5 71.3 72.3

Table 4: Ablation study. Performances on the ACE-05 test datasets for different domains.

Automatic Content Extraction 2005 (ACE-05)
dataset (Walker et al., 2005) a densely anno-
tated corpus collected from 6 different domains:
Newswire (nw) - 20%, Broadcast news (bn) - 20%,
Broadcast conversation (bc) - 15%, Weblog (wl)
- 15%, Usenet Newsgroups (un) - 15%, Conversa-
tional Telephone Speech (cts) - 15%. Events of
the dataset are categorized into 33 types.

4.2 Experimental Setup

4.2.1 Unsupervised Domain Adaptation
Setting

To formulate the unsupervised domain adaptation
setting from the origin dataset of each task, we split
the target domain’s documents into two parts at the
ratio of 1 to 4, a training dataset without labels
which models have access to when learning, and a
test dataset that models are evaluated on. For event
identification, transfer experiments are performed
in two ways: LitBank-to-TimeBank, and the
reserve direction, TimeBank-to-LitBank. In
event detection experiments, we combine samples
from two closely related domains, nw and bn, to
create a sizeable labeled training source dataset.
Then, each of the other domains is considered the
target domain of a single adaptation setting.

4.2.2 Implementation and Hyper-parameters

Our model leverage the pre-trained BERT-base
model as the fixed foundation for all adapters, each
of which has a down-sampled dimension of 96.
All of the downstream heads are implemented as
feed-forward networks with activation functions
between layers. We train all models using batch
size of 150, which composes of 90 source samples
(60 of which will be used for domain-adversarial
training) and 60 target samples. Weights of the
losses are chosen from a grid-search of range
[0.01, 0.05, 0.1, 0.2, 0.5, 1, 5] using bc domain as
development dataset. Every experiment is run 5
times epochs with different random seeds and the
performance is reported using the average result of
the 5 runs.

4.2.3 Baseline
We compare the proposed model DAA with sev-
eral other baselines. In particular, for the task of
event identification, the performance of domain-
adversarial models implemented in Naik and Rosé
(2020) are considered. Regarding the event detec-
tion task, our baselines include adaption results of
BERT and BERT+Adapter models fine-tuned us-
ing only source dataset, and finally BERT+DANN
which making use of unlabeled target data through
adversarial training.

4.3 Experimental Result
Event Identification The results of our event
identification experiments are presented in tables 2
and 3. In both settings, our proposed model DAA
outperforms naive implementation of domain-
adversarial on BERT by about 10 points in F1. We
also note that high precision is observed from mod-
els transferring from LitBank-to-TimeBank,
while the other direction has high recall. This im-
balance is caused by the extreme disparity between
the two adaptation settings, which our model man-
ages to address and thus significantly improves
out-of-domain performance in both cases.

Event Detection Table 1 showcases the results
of our event detection experiment. The main con-
clusions from the table include: (1) The BERT
baseline performs decently without using any
mechanism to address the discrepancy between do-
mains. This is due to the generalization potential
of large unsupervised pre-trained language model.
However, naively adopting DANN for BERT has an
adverse effect, notably reducing the performance
of BERT+DANN on all target domains. This out-
come is consistent with results from Lin et al.
(2020), further emphasizing the need for a compati-
ble implementation method for domain-adversarial
training on BERT’s representations. (2) The re-
sults of BERT+Adapter proves that adapter-based
tuning procedure is not only able to retain perfor-
mance but also prevent over-fitting through capac-
ity reduction, therefore performing better than the
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System bc cts wl un
P R F P R F P R F P R F

Lower 77.5 73.9 75.6 74.1 74.7 74.4 67.5 56.7 61.6 73.0 69.4 71.0
Middle 78.1 73.4 75.7 78.5 70.4 74.2 66.4 56.7 61.2 71.6 70.8 71.2
Higher 79.2 73.3 76.1 77.5 71.2 74.2 67.4 55.5 60.9 72.9 68.1 70.4
Last 79.6 72.6 75.9 79.7 69.5 74.2 66.4 56.6 61.0 73.0 69.7 71.3
Up-Dim 77.6 73.2 75.3 74.5 71.7 73.0 66.6 53.1 59.1 69.0 67.7 68.4
No-Rel 77.8 75.1 76.5 76.1 74.2 75.2 67.2 58.0 62.3 72.2 70.6 71.4
Full 78.5 75.6 76.9 78.4 73.2 75.6 66.1 59.6 62.6 73.5 71.3 72.3

Table 5: Domain-adversarial analysis. Performance on the ACE-05 test datasets for different domains.

fully fine-tuned BERT in case where it follows too
closely to source domain. (3) Finally, our proposed
model DAA manages to achieves the best adap-
tation performance across all target domains. In
settings where domains are closely related such as
bc and cts, DAA is more robust and thus per-
forms better on target domain. On the other hand,
DAA significantly outperforms baselines (3 to 5
points increase in F1 score) when transferring to
target domains that are highly dissimilar to source
domains (wl and un).

4.4 Ablation Study

To examine the effect of each of the proposed com-
ponent individually, We perform an extensive ab-
lation analysis for our DAA model by measuring
domain adaptation ability of each trained model,
with a single main component discarded (by setting
the weight of its associated loss to 0), on ACE-05.
In table 4, DAA-D, DAA-W, DAA-M, and DAA-
S correspond to performances of partial models
with domain-adversarial training, data selection
component, self-supervised task, and orthogonal-
ity constraint removed, respectively. Results from
the study show that every incomplete model per-
forms consistently worse compare to the full model.
In particular, while in-domain performances are re-
tained across settings, different domains experience
varying degree of reduction in target performance
depending on its relation with the source domain.
Especially, data drawn from the domains of wl
and un are substantially diverged from the source
domain. Therefore, components that address do-
mains’ dissimilarity play important roles in improv-
ing adaptation capability, which is confirmed by
the fact that models such as DAA-W and DAA-D
have the lowest results.

4.5 Domain-adversarial Analysis

The central component of our architecture is un-
doubtedly LDA whose responsibility is to ensure
joint adapter extracts domain-invariant features for

classifying event triggers. From the negative results
of BERT+DANN, finding an appropriate way to
implement domain-adversarial training for BERT is
an important question. This section aims to demon-
strate the effectiveness of our layer-wise implemen-
tation of DANN.

We apply domain alignment to different portions
of BERT. Specifically, we partitioned 12 layers
of the BERT-base encoder into 3 levels - Lower,
Middle, Upper - each corresponds to the only 4
layers whose representations are used by domain-
adversarial training. In addition, we present results
of Last and Up-Dim. The former is original im-
plementation where last layer’s output is aligned ,
while the latter is similar to our model Full except
the representation with full dimension (768) is used
instead of the down-sampled ones. Finally, No-Rel
is the same as Full but no relaxation is used.

Table 5 showcases the results of our experi-
ment. Overall, we observe performance degrades
on all three partial adaptation settings However,
the changes vary across domains in each situa-
tion, probably stemming from the fact that adver-
sarial training addresses different degrees of do-
main shifts in each layer. Moreover, taking only
the last layer’s representation as input for DANN
component performs worse compare to all other
multi-layer counterparts. Notably, using represen-
tations with full dimension significantly reduces
out-of-domain performances of model. This result
confirms the benefit of the bottleneck architecture.
Not only the alignment of down-sampled represen-
tations is more effective, but the free parameters of
up-sampling layers also increase model’s capacity
for the main downstream task.

4.6 Domain Discrepancy Analysis

To verify the effect of our method on alleviating
the negative impact of the domain shift problem
on the learning process, we compare each model’s
performance on different settings with varying shift
magnitudes. Specifically, for each target domain,
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based on the learned Wasserstein distance between
the two domains, we quantify the distance of each
target domain sample (in evaluation dataset) to the
source dataset and group them into 2 disjoint sets:
FAR - 25% of target samples that are farthest from
the source dataset, and CLOSE - 25% of those
closest to source dataset. The domain adaptation
performances on these sets for 2 target domain bc
and wl, together with the set of in-domain exam-
ples IN-DOM from bnnw domain, are provided
in Table 6. When adapting to bc domain which
has a low discrepancy to source domain, the results
for each setting show little variance, but we still
observe the over-fitting of BERT as performance
of out-of-domain settings is lower compared to its
in-domain score. Moreover, BERT+DANN is able
to improve on FAR set, however at the cost of
degradation in the other two settings. In contrast,
the negative effect of high discrepancy between do-
mains is apparent in the case of wl domain, as the
gaps between each setting are all above 10 points.
Notably, the results of BERT+DANN are lower
than that of BERT, indicating that naive implemen-
tation of DANN is not only unable to align between
source and target domains, but also causes negative
transfer when trying to learn domain-invariant rep-
resentation. On the other hand, in both case, DAA
is able to address the weakness of the baseline and
improves the performance on FAR and CLOSE
simultaneously.

bc wl bnnw
FAR CLOSE FAR CLOSE IN-DOM

BERT 72.4 75.6 43.1 59.2 77.5
BERT+DANN 73.2 76.6 35.3 52.4 76.6
DAA 74.8 76.4 50.9 64.4 77.7

Table 6: Domain adaptation performances in F1 score
with different domain shift settings.

5 Conclusion

We present a novel framework for ED in UDA set-
ting that effectively leverages the generalization
capability of large pre-trained language models
through a shared-private adapter-based architecture.
A layer-wise domain-adversarial training process
combined with a Wasserstein-based data selection
addresses the discrepancy between domains and
produces domain-invariant representations. The
proposed model achieves state-of-the-art results on
several adaptation settings across multiple datasets.
In the future, we plan to extend our approach in the
several directions: (1) We will devise a method to

incorporate target domain’s private adapter to fur-
ther improve model’s out-of-domain performance.;
(2) We will adapt our framework to more general
settings such as multi-source domain adaptation
and domain generalization.; and (3) We will extend
our work to novel domains for ED (Trong et al.,
2020).
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