
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 3932–3944
August 1–6, 2021. ©2021 Association for Computational Linguistics

3932

LEWIS: Levenshtein Editing for Unsupervised Text Style Transfer

Machel Reid∗
The University of Tokyo

machelreid@weblab.t.u-tokyo.ac.jp

Victor Zhong
University of Washington

vzhong@cs.washington.edu

Abstract

Many types of text style transfer can be
achieved with only small, precise edits
(e.g. sentiment transfer from I had a

terrible time... to I had a great

time...). We propose a coarse-to-fine
editor for style transfer that transforms text
using Levenshtein edit operations (e.g. insert,
replace, delete). Unlike prior single-span
edit methods, our method concurrently edits
multiple spans in the source text. To train
without parallel style text pairs (e.g. pairs of
+/- sentiment statements), we propose an un-
supervised data synthesis procedure. We first
convert text to style-agnostic templates using
style classifier attention (e.g. I had a SLOT

time...), then fill in slots in these templates
using fine-tuned pretrained language models.
Our method outperforms existing genera-
tion and editing style transfer methods on
sentiment (YELP, AMAZON) and politeness
(POLITE) transfer. In particular, multi-span
editing achieves higher performance and
more diverse output than single-span editing.
Moreover, compared to previous methods
on unsupervised data synthesis, our method
results in higher quality parallel style pairs
and improves model performance.1

1 Introduction

In text style transfer, a model changes the style of a
source text (e.g. sentiment, politeness) into a target
style, while otherwise changing as little as possible
about the input. Many types of style transfer can
be performed with only small, precise edits instead
of generation from scratch. Consider the task of
transforming a negative sentiment sentence such
as the worst ribs I’ve ever had! to a posi-
tive sentence such as probably the best ribs

∗Corresponding author
1Code and data can be found at https://github.

com/machelreid/lewis

ever!. Here, we need only invert the negative
sentiment phrase around worst — the references
to ribs should be left as-is. Recent and concur-
rent work on text style transfer propose single-span
editing (for insertion and replacement) (Wu et al.,
2019; Malmi et al., 2020) as an alternative to gen-
erating the target text from scratch (Prabhumoye
et al., 2018; He et al., 2020b; John et al., 2019;
Shen et al., 2017; Fu et al., 2018).

We introduce a more flexible and powerful multi-
span editing method that identifies multiple style-
specific components of the text and concurrently
edits them into the target style. Given a source
text, we first predict the sequence of coarse-grain
Levenshtein edit types (e.g. insert, replace, delete)
that transform the source text to the target text,
then fill insertion and replacement edits using a
generator. In the previous example, the operations
correspond to inserting the word probably before
the, replacing worst with best, and removing the
words I’ve and had. This example is illustrated in
detail in Figure 1.

Learning to edit requires supervised source-
target text pairs. How do we learn high-quality
editors when no such supervised parallel data ex-
ists? Given a style text, we synthesize its pair
by identifying style-specific content and replac-
ing it with samples from style-specific masked
language-models. In our sentiment transfer ex-
ample, the style-specific content of the sentence
I had a great time at the theatre is had a

great time. We can replace this phrase by saw a

fantastic movie today to synthesize an alterna-
tive positive-sentiment sentence, or by got ripped

off today to synthesize a negative-sentiment sen-
tence. Figure 3 illustrates this example in detail.

We evaluate our editing and synthesis frame-
work, which we call LEWIS (Levenshtein editing
with unsupervised synthesis), on three style trans-
fer tasks in sentiment (YELP, AMAZON) and polite-

https://github.com/machelreid/lewis
https://github.com/machelreid/lewis

3933

Source text x

<latexit sha1_base64="cf2V4AnIhRim/3JeHlwyQomsm9U=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo4kXjxCIo8ENmR26IWR2dnNzKyREL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkSleSzvzSRBP6JDyUPOqLFS46lfLLlldwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1Y9adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWldlr1K+blRKtWoWRx7O4BwuwYMbqMEd1KEJDBCe4RXenAfnxXl3PpatOSebOYU/cD5/AOXPjPo=</latexit>

x

<latexit sha1_base64="cf2V4AnIhRim/3JeHlwyQomsm9U=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo4kXjxCIo8ENmR26IWR2dnNzKyREL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkSleSzvzSRBP6JDyUPOqLFS46lfLLlldwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1Y9adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWldlr1K+blRKtWoWRx7O4BwuwYMbqMEd1KEJDBCe4RXenAfnxXl3PpatOSebOYU/cD5/AOXPjPo=</latexit>

Coarse edit types c

<latexit sha1_base64="FLGL885rC1PbD9vuNCXijc2pNKc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipyQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvunrTvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBxfuM5Q==</latexit>

c

<latexit sha1_base64="FLGL885rC1PbD9vuNCXijc2pNKc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipyQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvunrTvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBxfuM5Q==</latexit>

Target text y

<latexit sha1_base64="Q3AGWULi6sRjv8Q51cWQ7crr1xg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceCF48t2A9oQ9lsp+3azSbsboQQ+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBZcG9f9dgobm1vbO8Xd0t7+weFR+fikraNEMWyxSESqG1CNgktsGW4EdmOFNAwEdoLp3dzvPKHSPJIPJo3RD+lY8hFn1FipmQ7KFbfqLkDWiZeTCuRoDMpf/WHEkhClYYJq3fPc2PgZVYYzgbNSP9EYUzalY+xZKmmI2s8Wh87IhVWGZBQpW9KQhfp7IqOh1mkY2M6Qmole9ebif14vMaOan3EZJwYlWy4aJYKYiMy/JkOukBmRWkKZ4vZWwiZUUWZsNiUbgrf68jppX1W96+pN87pSr+VxFOEMzuESPLiFOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH51OM+w==</latexit>

y

<latexit sha1_base64="Q3AGWULi6sRjv8Q51cWQ7crr1xg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceCF48t2A9oQ9lsp+3azSbsboQQ+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBZcG9f9dgobm1vbO8Xd0t7+weFR+fikraNEMWyxSESqG1CNgktsGW4EdmOFNAwEdoLp3dzvPKHSPJIPJo3RD+lY8hFn1FipmQ7KFbfqLkDWiZeTCuRoDMpf/WHEkhClYYJq3fPc2PgZVYYzgbNSP9EYUzalY+xZKmmI2s8Wh87IhVWGZBQpW9KQhfp7IqOh1mkY2M6Qmole9ebif14vMaOan3EZJwYlWy4aJYKYiMy/JkOukBmRWkKZ4vZWwiZUUWZsNiUbgrf68jppX1W96+pN87pSr+VxFOEMzuESPLiFOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MH51OM+w==</latexit>

Coarse-grain
edit type tagger

Fine-grain
edit generator

the worst ribs I’ve ever had !

<keep> <repl> <keep> <keep> <keep>

the best ribs ever !

<ins>

probably

Generator input the <MASK> ribs ever !<MASK>

Post
processing

Figure 1: Coarse-to-fine Levenshtein editor. Given the source text, the two-step editor first generates coarse edit
types via a tagger. A subsequent generator fills in insertions and replacements while taking into account the source
text and the edit types.

ness (POLITE) transfer, and achieve state-of-the-art
results in terms of retention of style-agnostic con-
tent, similarity to the annotated target text, and
transfer accuracy. LEWIS significantly outperforms
prior state-of-the-art methods by 2.6-13.5% accu-
racy depending on the task. In further analyses,
we show that (1) compared to concurrent work
on editing for style transfer, our editor achieves
33.3% higher accuracy when trained on the same
data; (2) compared to a competitive BART (Lewis
et al., 2020) pure generation baseline, our editor
achieves 5.8% higher accuracy when trained on the
same data; (3) compared to concurrent work on
unsupervised synthesis of style transfer data, our
synthesis procedure improves performance by 9.5
BLEU when used to train the same model. Our
experiments show that our editor significantly out-
performs both pure generation and editing prior
methods, that our editor yields more diverse text
transfer and that training on our synthesized data
improves performance more than prior synthesis
methods.

2 LEWIS

LEWIS consists of coarse-to-fine editing and data
synthesis. The editing component, shown in Fig-
ure 1, performs local, precise edits of style-specific
content of the source text to produce the target text.
The data synthesis component, shown in Figure 3,
produces supervised source-target text pairs, which
do not exist in naturally, to train the editor. To ap-
ply our method to transfer text from a source style
to a target style, we first train style-specific masked
language models, with which we synthesize source-
target text pairs. We then compute Levenshtein op-
erations for these source-target text pairs and train
the coarse-to-fine editor to reproduce these opera-
tions. The full LEWIS is shown in Figure 2. For

ease of exposition, we first describe the editor, then
describe how to synthesize parallel data to train the
editor.

2.1 Style transfer via Levenshtein editing
We propose a coarse-to-fine editor that first predicts
coarse-grain Levenshtein edit types (Levenshtein,
1966), then fills in fine-grain edits with a generator.
Figure 1 illustrates the editor.

Suppose we are to transfer text from a source
style into a target style. Let x denote the source
text, which we would like to edit into the target
text y. In the example shown in Figure 1, we trans-
form the source text the worst ribs I’ve ever

had! into probably the best ribs ever! Our
approach has two parts: The source text is first
tagged with a sequence of coarse-grain Levenshtein
transition types c that transform x into y. A gener-
ator then fills in phrases for insertion and replace-
ment operations. The set of coarse Levenshtein
transition types are insert, keep, replace, and
delete. In the running example, the sequence of
operations are to insert before the, replace worst,
and delete I’ve and had.

First, we train a RoBERTa-tagger (Liu et al.,
2019) to generate these coarse edit types, which
produces coarse edit types for each token in the
source text. To accommodate the insertion oper-
ation, we produce two tags for each token. The
first tag is a binary indicator of whether an addi-
tional phrase should be inserted before this token.
The second tag is the non-insertion operation to
take for this token. In the previous example, for
instance, the word the triggers both insertion and
keep operations.

c = RoBERTac(x; Φc) (1)

Next, we train a fine-grain edit generator to produce
the target text. Unlike the coarse-grain edit type

3934

Coarse-to-fine Levenshtein editorUnsupervised synthesis of source-target style pairs

Independent
source style

data

Independent
target style

data

Style
classifier

Style
agnostic
template
tagger

Source style
masked LM

Target style
masked LM

Coarse-
grain edit

type tagger

Fine-grain
edit

generator

Source-
target

parallel text

new inference
source text

predicted
target text

Figure 2: LEWIS consists of two components. Given source-target style text pairs, a coarse-to-fine Levenshtein
editor (yellow) first identifies coarse-grain Levenshtein edit types to perform for each token in the source text
(e.g. insert, replace, delete), then fills in the final edits with a fine-grain generator to produce the target text. In
most applications, supervised source-target style text pairs rarely exist. To resolve this lack of annotated data,
we perform unsupervised synthesis of source-target style pairs (blue) by first learning to produce style-agnostic
templates given arbitrary style text. Next, we fill in slots in the template by sampling from style-specific masked
language-models. In this figure, source and intermediate data are shown in white while model components are
shown in red.

generator which only observes the source text, the
fine-grain edit generator observes both the original
source text and the source text with the coarse-grain
edit types applied xc. We use the edit types pro-
duced by the Levenshtein algorithm during train-
ing and the edit types predicted by the RoBERTa-
tagger during inference.

y = BARTy(x, xc; Φfn) (2)

Our generator is a BART-based (Lewis et al., 2020)
masked sequence-to-sequence model. The input to
BART is the concatenation of the original source
text x and the source text with the coarse-grain
edit types applied xc. The generator is trained to
fill in phrases for coarse-grain edit types <ins>

and <repl>. In the example, BARTy is given
the input text the worst ribs I’ve ever had!

SEP <MASK> the <MASK> ribs ever ! and re-
spectively fills in the two <MASK>s with probably

and best.

2.2 Unsupervised synthesis of source-target
style pairs

Training an editor requires large quantities of
source-target text pairs. While there exists an abun-
dant amount of style-specific data, parallel source-
target pairs are difficult to collect and annotate.
How do we train editing style transfer methods
when no such data exists? We hypothesize that pre-
trained masked language-models, when carefully
constrained to generate only style-specific content,

can provide high-quality source-target pairs for
style transfer.

Our synthesis procedure, shown in Figure 3, is
two-fold. First, given a text s from either style,
we identify a style-agnostic template t, in which
style-specific content are replaced with slots. For
instance, for the style text I had a great time

at the theatre, the style-agnostic template is I
SLOT at the theatre. To identify style-specific
content, we train a RoBERTa-based style clas-
sifier that differentiates between text from each
style. Vaswani et al. (2017) and Hoover et al.
(2020) show that heavily attended-tokens corre-
late strongly with tokens that are indicative of the
target class. We observe similar results when in-
specting the attention matrices computed by the
12-layer Transfomer for the sentiment classifica-
tion task. Namely, the penultimate layer’s attention
weights correlate strongly with words humans iden-
tify as strongly indicative of positive vs. negative
sentiment. Hence, we define style-specific content
as tokens that have higher-than-average attention
weights in the classifier.

Consider the multi-head attention matrix A in
the penultimate Transformer layer, where Aij rep-
resents the attention weight of the jth attention
head on the i’s token, normalized across all tokens.
First, we max-pool Ai over all attention heads to
form ai. Conceptually, ai represents the maximum
extent to which the ith word was attended to by any

3935

Style text s

<latexit sha1_base64="nDJrI50whoaghK9AkUzElc89Py8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvunrTvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwB3juM9Q==</latexit>

s

<latexit sha1_base64="nDJrI50whoaghK9AkUzElc89Py8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvunrTvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwB3juM9Q==</latexit>

Style-agnostic template t

<latexit sha1_base64="UNTBsDVx09vNCowjPWxeSjTJoqM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceCF48t2A9oQ9lsN+3azSbsToQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNM7uZ+54lrI2L1gNOE+xEdKREKRtFKTRyUK27VXYCsEy8nFcjRGJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnqaIRN362OHRGLqwyJGGsbSkkC/X3REYjY6ZRYDsjimOz6s3F/7xeimHNz4RKUuSKLReFqSQYk/nXZCg0ZyinllCmhb2VsDHVlKHNpmRD8FZfXiftq6p3Xb1pXlfqtTyOIpzBOVyCB7dQh3toQAsYcHiGV3hzHp0X5935WLYWnHzmFP7A+fwB37+M9g==</latexit>

t

<latexit sha1_base64="UNTBsDVx09vNCowjPWxeSjTJoqM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceCF48t2A9oQ9lsN+3azSbsToQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNM7uZ+54lrI2L1gNOE+xEdKREKRtFKTRyUK27VXYCsEy8nFcjRGJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnqaIRN362OHRGLqwyJGGsbSkkC/X3REYjY6ZRYDsjimOz6s3F/7xeimHNz4RKUuSKLReFqSQYk/nXZCg0ZyinllCmhb2VsDHVlKHNpmRD8FZfXiftq6p3Xb1pXlfqtTyOIpzBOVyCB7dQh3toQAsYcHiGV3hzHp0X5935WLYWnHzmFP7A+fwB37+M9g==</latexit>

Synthesized source x̂

<latexit sha1_base64="Zmwwbs+OQi5maXFW7fZR5lHbCvs=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkYo8FLx4r2A9oQ9lsN+3SzSbsTsQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+55FrI2L1gNOE+xEdKREKRtFKnf6YYvY0G5QrbtVdgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4d0YurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6KYd3PhEpS5IotF4WpJBiT+e9kKDRnKKeWUKaFvZWwMdWUoU2oZEPwVl9eJ+2rqlerXt/XKo16HkcRzuAcLsGDG2jAHTShBQwm8Ayv8OYkzovz7nwsWwtOPnMKf+B8/gCv0o/H</latexit>

x̂

<latexit sha1_base64="Zmwwbs+OQi5maXFW7fZR5lHbCvs=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkYo8FLx4r2A9oQ9lsN+3SzSbsTsQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+55FrI2L1gNOE+xEdKREKRtFKnf6YYvY0G5QrbtVdgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4d0YurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6KYd3PhEpS5IotF4WpJBiT+e9kKDRnKKeWUKaFvZWwMdWUoU2oZEPwVl9eJ+2rqlerXt/XKo16HkcRzuAcLsGDG2jAHTShBQwm8Ayv8OYkzovz7nwsWwtOPnMKf+B8/gCv0o/H</latexit>

Attention
based
SLOT
tagger

Source
style

masked
language

model

had a great time at the theatre

SLOT at the theatre

saw a fantastic movie at the theatre

I

I

I

Synthesized target ŷ

<latexit sha1_base64="wNmHo0zFGM28kL2ePbNgMm+S9QM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceCF48V7Ae0oWy2m3bpZhN2J0II/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2md3O/+8S1EbF6xCzhfkTHSoSCUbRSdzChmGezYbXm1t0FyDrxClKDAq1h9WswilkacYVMUmP6npugn1ONgkk+qwxSwxPKpnTM+5YqGnHj54tzZ+TCKiMSxtqWQrJQf0/kNDImiwLbGVGcmFVvLv7n9VMMG34uVJIiV2y5KEwlwZjMfycjoTlDmVlCmRb2VsImVFOGNqGKDcFbfXmddK7q3nX95uG61mwUcZThDM7hEjy4hSbcQwvawGAKz/AKb07ivDjvzseyteQUM6fwB87nD7FXj8g=</latexit>

ŷ

<latexit sha1_base64="wNmHo0zFGM28kL2ePbNgMm+S9QM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceCF48V7Ae0oWy2m3bpZhN2J0II/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2md3O/+8S1EbF6xCzhfkTHSoSCUbRSdzChmGezYbXm1t0FyDrxClKDAq1h9WswilkacYVMUmP6npugn1ONgkk+qwxSwxPKpnTM+5YqGnHj54tzZ+TCKiMSxtqWQrJQf0/kNDImiwLbGVGcmFVvLv7n9VMMG34uVJIiV2y5KEwlwZjMfycjoTlDmVlCmRb2VsImVFOGNqGKDcFbfXmddK7q3nX95uG61mwUcZThDM7hEjy4hSbcQwvawGAKz/AKb07ivDjvzseyteQUM6fwB87nD7FXj8g=</latexit>

got ripped off today at the theatreI

today

Target
style

masked
language

model

Figure 3: Unsupervised synthesis of source-target style pairs. We first train an attentive style classifier, whose
attention weights we use to identify style-specific content. Next, we remove style-specific content with slots to
form a style-agnostic template. This template is finally filled using style-specific masked language-models for
each style to synthesize parallel style text pairs.

attention head.

ai = max
j
Aij (3)

Let N denote the sequence length. We compute
the average attention weight ã as

ã =

∑N
i ai
N

(4)

To modify the style text s into the style-agnostic
template t, we keep tokens that have above-average
attention weight.

ti =

{
SLOT , if ai ≥ ã
si, if ai < ã

(5)

We merge consecutive SLOT tokens in t. In the
running example, for the style text I had a great

time at the theatre, the tagger generates I

SLOT SLOT SLOT SLOT at the theatre, which
after merging becomes I SLOT at the theatre.

We then fine-tune style-specific masked
language-models BARTx and BARTy to fill in
slots in the template and recover the style-specific
text. During training, phrases in the input sentence
are randomly discarded and the model is trained to
fill the phrases back in (Lewis et al., 2020). Having
trained style-specific masked language-models
for both the source and target styles, we use both
models to generate source and target filled-in text
given style-agnostic templates.

x̂ = BARTx(t; Θx) (6)

ŷ = BARTy(t; Θy) (7)

In our running example, sampling with the
positive language model yields the sentence I saw

a fantastic movie today at the theatre,
while sampling with the negative language model
yields the sentence I got ripped off today at

the theatre.
The last step we perform is a filtering step using

the classifier. For synthesized examples in style
k, we keep examples for which the style classifier
predicts k. In other words, we keep only examples
where the language models and the classifier agree.
We find that this improves data quality and editor
performance. We use the collection of synthesized
source and target text pairs x̂, ŷ to train the editor.

3 Experimental Setup

We focus on two types of text style transfer: (1)
Sentiment transfer, in which we transform a posi-
tive sentiment sentence to a corresponding negative
sentiment sentence or vice-versa without changing
the core content (i.e. attributes of the sentence not
concerned with sentiment) (2) Politeness transfer,
in which we transform the tone of a sentence from
impolite to polite.

DATASET Attributes Train Valid Test

YELP
Positive 270K 2000 500
Negative 180K 2000 500

AMAZON
Positive 277K 985 500
Negative 278K 1015 500

POLITE
Polite 219K 26K 800
Impolite 198K 24K —

Table 1: Dataset statistics for style transfer tasks. The
politeness corpus does not have parallel evaluation data
and only evaluates on transfer from impolite to polite.

We make use of three datasets: YELP (Shen
et al., 2017) consists of 450K sentences from busi-

3936

Model Acc SBLEU BLEU SBERT BERT

Baselines
Input Copy 1.5 100.0 24.8 100.0 53.74
Reference 81.6 25.3 100.0 53.7 100.0

Generation methods
Delete and Retrieve (Li et al., 2018) 88.6 36.8 12.2 48.5 33.3
Tag and Generate (Madaan et al., 2020) 86.2 47.1 19.8 57.9 37.2
DeepLatentSeq (He et al., 2020b) 83.8 48.4 18.7 57.9 36.0

Editing methods
Masker (Malmi et al., 2020) 40.9† — 14.5 — —
LaserTagger (Malmi et al., 2019) + Masker data 49.6† — 15.3 — —

LaserTagger + our data 59.8 71.8 24.8 81.3 51.6
LEWIS 93.1 58.5 24.0 72.2 50.0

Table 2: Results on YELP. Results with † are taken from the classifier trained in Malmi et al. (2020) because the
outputs for these models are not released.

Model Accuracy SBLEU BLEU SBERT BERT

Input Copy 13.1 100.0 48.7 100.0 63.0

Delete and Retrieve (Li et al., 2018) 51.2 57.1 29.9 66.9 46.2
Tag and Generate (Madaan et al., 2020) 60.8 68.7 34.8 69.5 48.2

LEWIS 74.3 65.6 32.9 75.2 52.2

Table 3: Results on AMAZON

ness reviews for training and 1000 sentences re-
leased by Li et al. (2018) for testing, AMAZON (He
and McAuley, 2016) consists of 540K sentences
from product reviews for training and 1000 sen-
tences for testing, and POLITE (Madaan et al.,
2020), produced by filtering through the Enron
Email corpus, consisting of 420K sentences for
training and 800 sentences for testing. We list
dataset statistics in Table 1.

3.1 Training Setup

We implement our models using fairseq2 (Ott
et al., 2019) and HuggingFace3 (Wolf et al., 2020)
— both based on the PyTorch library (Paszke et al.,
2019). For BART-based generation models, we
initialize with BART-base (Lewis et al., 2020), and
train using a batch size of 65K tokens for 30000
iterations. We use a linear warmup schedule, reach-
ing the peak of 3 × 10−5 at 5000 iterations, and
then proceed to decay the learning rate with a poly-

2https://github.com/pytorch/fairseq
3https://github.com/huggingface/

transformers

nomial decay schedule. For regularization, we use
a dropout value of 0.3 and a weight decay value
of 0.1. We optimize using Adam, with hyperpa-
rameters β1 = 0.9, β2 = 0.98 and cross entropy
loss. For RoBERTa-based taggers and classifiers,
we initialize with RoBERTa-base (Liu et al., 2019),
and train using a batch size of 256 for 5000 iter-
ations. We optimize using Adam, warm up the
learning rate to 1 × 10−6 and then decay with a
cosine schedule. We train all models using mixed
precision (Micikevicius et al., 2018) for faster train-
ing. Similar to prior work (Wu et al., 2019; Malmi
et al., 2020), we decode using a beam width of 5
and rerank outputs produced by beam search using
the likelihood of the classifier trained in Section 2.2.

3.2 Comparison with existing methods

We compare LEWIS to five prior methods: Delete,
Retrieve, Generate (Li et al., 2018), a retrieval
method that finds text from the target domain cor-
pus whose style-agnostic form is similar to that of
the source text; Tag and Generate (Madaan et al.,

https://github.com/pytorch/fairseq
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers

3937

Model Accuracy SBLEU SBERT

Delete, Retrieve, Generate (Li et al., 2018) — 11.8 —
Tag and Generate (Madaan et al., 2020) 84.8 70.4 71.6

LEWIS 87.4 75.3 81.4

Table 4: Results on POLITE

Model Acc SBLEU BLEU SBERT BERT

LM fill 90.3 42.9 17.4 58.9 41.6
Seq2Seq 87.3 50.0 19.3 68.5 50.0
LEWIS w/o filtering 91.2 50.1 23.3 69.8 48.0
LEWIS 93.1 58.5 24.0 72.2 50.0

Table 5: Ablation on YELP. “LM fill” is the ablation experiment in which we convert the source style text to a style-
agnostic template and directly use the target style language model to synthesize a target style text (e.g. the editor
is not used). “Seq2Seq” is a pretrained BART model that is fine-tuned on the synthesized data (e.g. a from-scratch
generation model trained on the same data as the editor).

2020), a generation method that conditionally gen-
erates target text from style-agnostic source text;
DeepLatentSeq (He et al., 2020b), an unsupervised
machine translation-based approach where genera-
tors in each domain are regularized by a language
model-based latent prior. Finally, we compare to
previous editing approaches proposed by Malmi
et al. (2019, 2020) where a single span in the source
text two domain-specific language models disagree
on is replaced.

3.3 Evaluation

Automatic Evaluation We use five evaluation
metrics: BLEU (Papineni et al., 2002) mea-
sured against the reference (denoted as BLEU) to
evaluate lexical overlap with human annotation;
Self-BLEU measured against the source to mea-
sure content preservation (denoted as SBLEU);
BERTScore and Self-BERTScore (Zhang et al.,
2020) measured against the reference and the
source (denoted as BERT and SBERT respec-
tively); and accuracy measured against an external
classifier (denoted as Accuracy) to measure how
well the style was transferred.

BLEU BERT

Ref great place , great food ! — —
Hyp 1 pathetic place , great food ! 76.0 71.5
Hyp 2 amazing place , awesome food ! 0.0 78.6

Table 6: Example comparing BERTScore vs BLEU.
Ref denotes the reference sentence and Hyp 1 and Hyp
2 represent two example hypotheses.

While measuring BLEU, Self-BLEU, and accu-
racy are standard for this task, we propose addition-
ally using BERTScore due to its higher correlation
with human judgments (Zhang et al., 2020). Com-
pared to BLEU and Self-BLEU which are n-gram
based, BERTScore is measured using token-wise
cosine similarity between representations produced
by BERT (Devlin et al., 2019).

Given this, the usage of BERTScore addresses
the potential issue of accurately transferred sen-
tences being scored poorly due to its low n-gram
overlap. Table 6 shows an example of this where
the style is accurately transferred but is scored
poorly by BLEU as a result of low n-gram overlap.

Furthermore, following Malmi et al. (2020) who
use a BERT-based classifier to score their outputs,
we train a classifier initialized with RoBERTa-base
(Liu et al., 2019). This model correctly classifies
98.2% of the YELP classification test set by Shen
et al. (2017). Its accuracy is used to evaluate the
output of style transfer models.

Human Evaluation We perform a robust human
evaluation on all datasets, asking crowdworkers to
rate 300 examples from Yelp (150 positive, 150
negative), 200 examples from Amazon (100 posi-
tive,100 negative) and 100 from Politeness. Five
annotators rate each pair from 1 (strongly disagree)
to 5 (strongly agree) in terms of fluency, content
preservation (CP) and style transfer. We com-
pare with our strongest baseline Tag and Generate
(Madaan et al., 2020).

3938

Dataset Model Fluency CP Style

YELP
TG 3.84±1.01 3.63±0.93 3.67±1.02

LEWIS 3.94±0.99 3.76±0.88 3.72±0.98

AMAZON
TG 3.60±1.01 3.48±0.93 3.37±1.02

LEWIS 3.65±0.88 3.50±0.88 3.37±0.90

POLITE
TG 3.83±0.84 3.76±0.90 3.48±1.04

LEWIS 3.93±0.78 3.87±0.83 3.63±0.98

Table 7: Human evaluation results comparing
LEWIS and Tag and Generate (TG)

Mean Std

merged edit ops 1.57 0.78
source toks 10.74 2.73
style-agnostic template toks 10.42 2.86
edit output toks 11.24 3.16

Table 8: Coarse-to-fine editor statistics on YELP, after
merging consecutive edit operations of the same type,
so that the number of operations denote spans as op-
posed to tokens (e.g. delete, replace).

4 Results

Performance of LEWIS compared to other meth-
ods on YELP, AMAZON, and POLITE are respec-
tively shown in Tables 2, 3, and 4, with human
evaluation shown in Table 7. LEWIS outperforms
prior methods on all datasets in terms of accuracy,
BLEU, and BERTScore: LEWIS achieves more
successful transfers (2.6-13.5% accuracy depend-
ing on task), has higher overlap with human an-
notations (4-14.4 BERTScore), and retains more
source content (5.7-14.3 Self-BERTScore). Human
evaluation (p < 0.01 for YELP and POLITE us-
ing pairwise bootstrap sampling (Koehn, 2004))
shows that LEWIS outperforms Tag and Generate
on fluency, content preservation and style across
datasets. These results indicate that LEWIS is
an effective method for style transfer. On the
AMAZON dataset — which is noisier than the
YELP dataset — LEWIS underperforms Tag and
Generate when evaluating using BLEU, however
when evaluating using BERTScore LEWIS out-
performs the latter. When we inspect the output
of LEWIS, we find that it generates more diverse
output as shown in Figure 4.

One reason that LEWIS generates more diverse
output is that unlike previous and concurrent edit-
ing work that use single-span replacement (Malmi
et al., 2019, 2020), our method concurrently edits
multiple spans with a larger set of operations. This

is inherently supported by the editor (Figure 5) as
well as encouraged during unsupervised data syn-
thesis (Figure 4). Table 8 shows that a large number
of examples do require multiple edits, and that the
coarse-to-fine editor indeed performs multiple edit
operations on average.

In addition to comparing end-to-end systems,
we also compare LEWIS to concurrent editing and
synthesis methods by Malmi et al. (2019, 2020). Ta-
ble 2 shows that training the same model (LaserTag-
ger) on our data improves and BLEU by 9.5 (the
accuracy difference is not directly comparable
since Malmi et al. (2020) used a BERT classifier
and did not release model output). This suggests
that our data synthesis procedure produces higher
quality data than Malmi et al. (2020). Furthermore,
because LaserTagger only performs single-span
edits (when performing insertion/replacement), it
often fails to transfer the style of the text. This also
accounts for its high BLEU and BERTScore but
low accuracy, as we show that a model that sim-
ply copies the input also achieves high BLEU and
BERTScore but low accuracy. Replacing LaserTag-
ger with our coarse-to-fine Levenshtein editor re-
sults in a sizable 33% gain in accuracy. In Ta-
ble 1 of the Appendix, we show example outputs
of these models for comparison. Finally, we ab-
late LEWIS to investigate how the different compo-
nents of LEWIS affect performance.

Editing outperforms pure generation We re-
place the coarse-to-fine editor with a sequence-to-
sequence BART model, which we also train with
synthesized data. This is a strong baseline that
outperforms prior pure generation work on style
transfer, as shown in Table 3. Nevertheless, Ta-
ble 5 shows that LEWIS outperforms this baseline
on all metrics. This confirms our hypothesis that
editing is a more effective means of style transfer
compared to pure generation.

Training on synthesized data improves perfor-
mance. Instead of training an editor using syn-
thesized data, given a source text during inference,
we convert it to a style-agnostic template and im-
mediately fill it using the target language model.
Table 5 shows that the resulting model underper-
forms both the sequence-to-sequence BART and
the coarse-to-fine editor on all metrics. This result
may be surprising, in that one expects the perfor-
mance of a model trained on data synthesized by
language models to be at-most on par with the per-

3939

Orig it certainly delivered .

it SLOT delivered .Template

Synthesized
source

it was well delivered.
it was absolutely delivered.

Synthesized
target

it was not delivered.
it was never delivered.

i love the fresh , right out of the oven
bread too .

i SLOT the fresh, SLOT out
of the oven SLOT.

i love the fresh , crisp bread out of
the oven as well.
i love the fresh , hot bread out of the
oven as well.

i ordered the fresh , it came out of
the oven cold .
i ordered the fresh , it came out of
the oven and was cold.

moreover , they found ways to help
save on the expense .

SLOTover, SLOT ways to SLOT
save on the expense.

overall , great place with ways to
save on the expense.
overall , good ways to help save on
the expense.

overall , there are better ways to try
and save on the expense.
overall , there are better ways to
save on the expense .

Figure 4: Examples of synthesized parallel text on the YELP dataset.

Source we will not be coming
back .

K K R K K K RCoarse edit
type tagger
output
Fine
generator
input

we will <mask> be coming
back <mask>

Fine
generator
output

we will definitely be coming
back again !

the food 's ok , the service is among
the worst i have encountered .

K K D R R K K K K K K R K K
K K

the food <mask> , the service is
among the <mask> i have
encountered .

the food is great , the service is
among the best i have encountered.

i said it was disgusting to even serve
this to diners .

K R K K R K K K K K K K K

i <mask> it was <mask> to even
serve this to diners .

i thought it was very nice to even
serve this to diners.

Figure 5: Examples of coarse-to-fine editor output on the YELP dataset. We abbreviate the edit operation with K
for <keep>, D for , and R for <repl>. Unlike previous and concurrent edit methods, we concurrently edit
multiple spans in the text.

formance of the language model. In this case, we
observe that training on the synthesized data actu-
ally improves over just using the language models.
We hypothesize that this gain is due to the editor
learning correlations between the source language
model and the target language model, namely how
to precisely transform the output of the source lan-
guage model to the output of the target language
model. The gains we observe here may be related
to gains from training on back-translated or pseudo-
parallel data (Sennrich et al., 2016; Edunov et al.,
2018; He et al., 2020a). More research is needed
to investigate the problem conditions under which
such gains occur.

Filtering improves performance. Here, we
forgo the filtering step, which removes ≈ 20% of
the synthesized data on YELP. Table 5 shows that
filtering improves the quality of the synthesized
data and leads to consistent gains.

5 Related Work

Text style transfer Previous work on style trans-
fer can largely be divided into two categories: (1)
learning a latent space with controllable attributes

such as those found in Shen et al. (2017); John
et al. (2019) or (2) using unsupervised generative
approaches from retrieval (Li et al., 2018), tagging
using style phrases (Madaan et al., 2020), to back-
translation and unsupervised machine translation
techniques (Prabhumoye et al., 2018; Lample et al.,
2019; He et al., 2020b).

Editing for style transfer Our work is closest
to Madaan et al. (2020) and Malmi et al. (2020).
Madaan et al. (2020) use a tagger to mark style
phrases in the source text, then generates the target
text conditioned on the tagged source text. In con-
trast, we do not fully generate target text and only
perform small, precise edits. In concurrent work to
ours, Malmi et al. (2020) train a BERT language
model on each style and edits a span where the
models’ likelihoods disagree the most. In contrast,
instead of performing single-span replacement, our
editor concurrently edits multiple spans in the text,
and supports a wider set of operations than replace-
ment. We showed that this results in more effective
and more diverse style transfer. This coarse-to-fine
transformations of text, in which the input context
is progressively refined, has also led to improve-

3940

ments in syntactic parsing (Charniak and Johnson,
2005), semantic parsing (Dong and Lapata, 2018),
and NER (Choi et al., 2018).

Unsupervised data synthesis for style transfer
Malmi et al. (2020) also generate synthetic data
with which to train an editing model from Malmi
et al. (2019). Our synthesis differs from Malmi
et al. (2020) in how slots for generation are cho-
sen. In their work, the highest disagreeing span is
chosen for rewriting. In our work, multiple spans
with words whose attention weights that exceed the
average are chosen for rewriting, which allows for
more flexible and diverse samples. In turn, training
on our synthesized data improves the performance
and diversity of the style transfer model.

6 Conclusion

We proposed LEWIS, a coarse-to-fine editor for
style transfer that transforms text using Levenshtein
edit operations. Unlike prior edit methods, our
methods concurrently performs multi-span edits.
To train this editor, we proposed an unsupervised
data synthesis procedure that converts text to style-
agnostic templates using style classifier attention,
then fills in slots in these templates using fine-tuned
pretrained language models. LEWIS outperformed
existing generation and editing style transfer meth-
ods on sentiment and politeness transfer. In ad-
dition, the proposed data-synthesis procedure in-
creased transfer performance. Given the same syn-
thesized data, our editor outperformed prior pure
generation and editing methods. In future work,
we will study the application of LEWIS to general
sequence to sequence problems.

Ethical Considerations

This work has impact in the field of controlled text
generation, and as with much of language technol-
ogy has the potential to be both used for good and
used maliciously. Our work learns to generate syn-
thetic data in an unsupervised way, and is based
on a pre-trained model (BART), which is likely
to capture and amplify biases found in the data.
Furthermore, as with all text-style transfer models,
our model is amenable to malicious use, including
impersonation and mass generation of faked op-
posing opinion, for example, negative and positive
product reviews or political statements. We refer
readers to Section 8 of Hu et al. (2020) for more
on this topic. Given this, further study is needed to

see how text-style transfer models are affected by
the bias contained in the corpora they are trained
on and other aspects to avoid undesired behaviors
such as those listed in the cases above.

Acknowledgements

We thank Gabriel Ilharco, Edison Marrese-Taylor,
Julian Michaels, Tongshuang Wu, Yutaro Yamada,
and Luke Zettlemoyer, and the anonymous review-
ers for their helpful feedback on and proofreading
of this work. This work was partly supported by
the Masason Foundation Fellowship awarded to
Machel Reid.

References

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and MaxEnt discriminative
reranking. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguis-
tics (ACL’05), pages 173–180, Ann Arbor, Michi-
gan. Association for Computational Linguistics.

Eunsol Choi, Omer Levy, Yejin Choi, and Luke Zettle-
moyer. 2018. Ultra-fine entity typing. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 87–96, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 731–742, Melbourne, Australia. Association
for Computational Linguistics.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 489–500, Brussels, Belgium. Association for
Computational Linguistics.

Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao,
and Rui Yan. 2018. Style transfer in text: Explo-
ration and evaluation. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,

https://doi.org/10.3115/1219840.1219862
https://doi.org/10.3115/1219840.1219862
https://doi.org/10.3115/1219840.1219862
https://doi.org/10.18653/v1/P18-1009
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.18653/v1/D18-1045
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17015
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17015

3941

(AAAI-18), the 30th innovative Applications of Arti-
ficial Intelligence (IAAI-18), and the 8th AAAI Sym-
posium on Educational Advances in Artificial Intel-
ligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 663–670. AAAI Press.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio
Ranzato. 2020a. Revisiting self-training for neural
sequence generation. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Ad-
dis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Junxian He, Xinyi Wang, Graham Neubig, and Tay-
lor Berg-Kirkpatrick. 2020b. A probabilistic formu-
lation of unsupervised text style transfer. In 8th
International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-
30, 2020. OpenReview.net.

Ruining He and Julian J. McAuley. 2016. Ups and
downs: Modeling the visual evolution of fashion
trends with one-class collaborative filtering. In Pro-
ceedings of the 25th International Conference on
World Wide Web, WWW 2016, Montreal, Canada,
April 11 - 15, 2016, pages 507–517. ACM.

Benjamin Hoover, Hendrik Strobelt, and Sebastian
Gehrmann. 2020. exBERT: A Visual Analysis Tool
to Explore Learned Representations in Transformer
Models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 187–196, Online. As-
sociation for Computational Linguistics.

Zhiqiang Hu, Roy Ka-Wei Lee, Charu C. Aggarwal,
and Aston Zhang. 2020. Text style transfer: A re-
view and experimental evaluation. arXiv preprint
arXiv:2010.12742.

Vineet John, Lili Mou, Hareesh Bahuleyan, and Olga
Vechtomova. 2019. Disentangled representation
learning for non-parallel text style transfer. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 424–434,
Florence, Italy. Association for Computational Lin-
guistics.

Philipp Koehn. 2004. Statistical significance tests
for machine translation evaluation. In Proceed-
ings of the 2004 Conference on Empirical Meth-
ods in Natural Language Processing, pages 388–
395, Barcelona, Spain. Association for Computa-
tional Linguistics.

Kalpesh Krishna, John Wieting, and Mohit Iyyer. 2020.
Reformulating unsupervised style transfer as para-
phrase generation. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 737–762, Online. Asso-
ciation for Computational Linguistics.

Guillaume Lample, Sandeep Subramanian, Eric Smith,
Ludovic Denoyer, Marc’Aurelio Ranzato, and Y-
Lan Boureau. 2019. Multiple-attribute text rewrit-
ing. In International Conference on Learning Rep-
resentations.

V. I. Levenshtein. 1966. Binary Codes Capable of Cor-
recting Deletions, Insertions and Reversals. Soviet
Physics Doklady, 10:707.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018.
Delete, retrieve, generate: a simple approach to sen-
timent and style transfer. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 1865–1874, New Orleans, Louisiana. Associ-
ation for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Aman Madaan, Amrith Setlur, Tanmay Parekh, Barn-
abas Poczos, Graham Neubig, Yiming Yang, Ruslan
Salakhutdinov, Alan W Black, and Shrimai Prabhu-
moye. 2020. Politeness transfer: A tag and generate
approach. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1869–1881, Online. Association for Computa-
tional Linguistics.

Eric Malmi, Sebastian Krause, Sascha Rothe, Daniil
Mirylenka, and Aliaksei Severyn. 2019. Encode,
tag, realize: High-precision text editing. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5054–5065, Hong
Kong, China. Association for Computational Lin-
guistics.

Eric Malmi, Aliaksei Severyn, and Sascha Rothe. 2020.
Unsupervised text style transfer with padded masked
language models. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 8671–8680, Online. As-
sociation for Computational Linguistics.

Paulius Micikevicius, Sharan Narang, Jonah Alben,
Gregory F. Diamos, Erich Elsen, David Garcı́a,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev,
Ganesh Venkatesh, and Hao Wu. 2018. Mixed pre-
cision training. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and

https://openreview.net/forum?id=SJgdnAVKDH
https://openreview.net/forum?id=SJgdnAVKDH
https://openreview.net/forum?id=HJlA0C4tPS
https://openreview.net/forum?id=HJlA0C4tPS
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.18653/v1/2020.acl-demos.22
https://doi.org/10.18653/v1/2020.acl-demos.22
https://doi.org/10.18653/v1/2020.acl-demos.22
https://doi.org/10.18653/v1/P19-1041
https://doi.org/10.18653/v1/P19-1041
https://www.aclweb.org/anthology/W04-3250
https://www.aclweb.org/anthology/W04-3250
https://doi.org/10.18653/v1/2020.emnlp-main.55
https://doi.org/10.18653/v1/2020.emnlp-main.55
https://openreview.net/forum?id=H1g2NhC5KQ
https://openreview.net/forum?id=H1g2NhC5KQ
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/N18-1169
https://doi.org/10.18653/v1/N18-1169
https://doi.org/10.18653/v1/2020.acl-main.169
https://doi.org/10.18653/v1/2020.acl-main.169
https://doi.org/10.18653/v1/D19-1510
https://doi.org/10.18653/v1/D19-1510
https://doi.org/10.18653/v1/2020.emnlp-main.699
https://doi.org/10.18653/v1/2020.emnlp-main.699
https://openreview.net/forum?id=r1gs9JgRZ
https://openreview.net/forum?id=r1gs9JgRZ

3942

Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In Advances in Neural Informa-
tion Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 8024–8035.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Shrimai Prabhumoye, Yulia Tsvetkov, Ruslan Salakhut-
dinov, and Alan W Black. 2018. Style transfer
through back-translation. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 866–876, Melbourne, Australia. Association
for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi S.
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. In Advances in Neural Informa-
tion Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, De-
cember 4-9, 2017, Long Beach, CA, USA, pages
6830–6841.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Xing Wu, Tao Zhang, Liangjun Zang, Jizhong Han,
and Songlin Hu. 2019. Mask and infill: Apply-
ing masked language model for sentiment transfer.
In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, August 10-16, 2019, pages
5271–5277. ijcai.org.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with BERT. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/P18-1080
https://doi.org/10.18653/v1/P18-1080
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
https://proceedings.neurips.cc/paper/2017/hash/2d2c8394e31101a261abf1784302bf75-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/2d2c8394e31101a261abf1784302bf75-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.24963/ijcai.2019/732
https://doi.org/10.24963/ijcai.2019/732
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

3943

A Evaluation

Automatic Evaluation When evaluating us-
ing BLEU we used detokenized SacreBLEU
(Post, 2018). For BERTScore (Zhang et al.,
2020), we use the rescale with baseline
option with the following hash: roberta-
large L17 no-idf version=0.3.5(hug
trans=4.1.0.dev0)-rescaled.

Human Evaluation When using Amazon Me-
chanical Turk, we screen our annotators for English
proficiency, and require all to have a greater than
95% approval rate. We hire workers with at least
1000 HITs and pay workers 5 cents per example,
amounting to USD$10-15 per hour.

B Training Infrastructure

For training models we use between 1 and 8
NVIDIA V100 16GB GPUs on a DGX-1 machine
running Ubuntu 16.04 on a Dual 20-Core Intel
Xeon E5-2698 v4 2.2 GHz.

C Source Code & Synthetic Data

We release source code with this work, with pre-
processing scripts, training scripts for both condi-
tional lanaguage models, editors and coarse-grain
taggers, edit operations extraction scripts, and syn-
thetic data generation scripts at https://github.
com/machelreid/lewis.

D Synthetic Data

For synthetic data generation, we generate
approximately 2.2M pairs for Yelp, 2.0M pairs
for Amazon, and 1M pairs for Polite. Note that
when generating synthetic data on Polite, given the
longer sequence length, we threshold the amount
of SLOT tokens to be the minimum of one-third of
the total sequence length and 6.

We release our synthetic data to help facili-
tate further development in approaches using
synthetic data for this task.

E Qualitative Analysis

We analyzed 100 examples from YELP produced
by LEWIS. 83% transfers were correct,6% incor-
rect,and 11% ambiguous (the resulting sentence
expressed both styles). This is in line with au-
tomatic metrics and shows LEWIS is effective in
successfully transferring style. For diversity of ed-
its, in 59% of cases, LEWIS inverted key phrases

(and enjoying this → and avoiding this, friendly
folks, delicious authentic bagels→ sorry folks,not
authentic bagels), in 26%, LEWIS rewrote part of
the sentence in a way that is not inverting key ad-
jectives/nouns (and he loved it → and he said it
was OK). In 10%, LEWIS performed purely syntac-
tic editing (definitely not enough room→ enough
room). In contrast to other editors that rely on pri-
marily single-phrase inversion (e.g. LaserTagger),
demonstrating that LEWIS provides diverse edits.

F Further Automatic Evaluation

We further evaluate our model on semantic simi-
larity and fluency using the classifiers released by
Krishna et al. (2020). Results are shown in Table 9
and 10. LEWIS improves fluency by a significant
margin on all, and outperforms other methods on
2/3 datasets on semantic similarity.

Dataset Model Fluency

YELP

Delete and Retrieve 38.7
TG 53.1

DeepLatentSeq 68.1
LEWIS 84.5
Gold 89.4

AMAZON

Delete and Retrieve 49.2
TG 54.6

LEWIS 85.6
Gold 84.5

POLITE
TG 67.5

LEWIS 93.0
Gold (src) 92.3

Table 9: Fluency classification from Krishna et al.
(2020)

G Further automatic evaluation

We also conduct further human We also evaluate
Yelp using the same 300 examples, asking five an-
notators which system (LEWIS, Tag and Generate,
or Neither) they prefer. Results can be seen in
Table 11. These results show general preference
for LEWIS is consistent across fluency, content
preservation, and style transfer.

https://github.com/machelreid/lewis
https://github.com/machelreid/lewis

3944

Dataset Model Target sim. Source sim.

YELP

Delete and Retrieve 49.2 61.0
Deep Latent Seq 48.8 60.5

TG 54.0 67.3
LEWIS 61.2 77.4
Gold — 65.7

AMAZON

Delete and Retrieve 64.9 81.0
TG 59.2 76.3

LEWIS 59.6 78.8
Gold — 75.7

POLITE
TG — 84.6

LEWIS — 87.4

Table 10: Semantic similarity classification from Kr-
ishna et al. (2020)

Attribute LEWIS Tag and Generate Neither

Fluency 50.2 39.2 10.6
Content Preservation 53.3 38.3 8.4
Style 45.2 41.0 13.7

Table 11: Human evaluation with annotators indicating
their preference when comparing aligned pairs from
both LEWIS and Tag and Generate

H Example Outputs

Source the wine was very average and
the food was even less .

LEWIS the wine was very good and the
food was even better .

LaserTagger the wine was very good and the
food was even less .

Reference the wine was above average and
the food was even better

Source owner : a very rude man .
LEWIS owner : a very nice man .
LaserTagger owner : a very man .
Reference The owner was such a friendly

person.

Source i love the food ... however ser-
vice here is horrible .

LEWIS i love the food and the service
here is great .

LaserTagger i love the food ... however ser-
vice here is great .

Reference i love the food ... and service
here is awesome .

Table 12: Three examples from the Yelp test set com-
paring the LaserTagger trained on our synthetic data
and LEWIS

