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Abstract

The recent advancement of pre-trained Trans-
former models has propelled the development
of effective text mining models across various
biomedical tasks. However, these models are
primarily learned on the textual data and often
lack the domain knowledge of the entities to
capture the context beyond the sentence. In
this study, we introduced a novel framework
that enables the model to learn multi-omnics
biological information about entities (proteins)
with the help of additional multi-modal cues
like molecular structure. Towards this, rather
developing modality-specific architectures, we
devise a generalized and optimized graph
based multi-modal learning mechanism that
utilizes the GraphBERT model to encode the
textual and molecular structure information
and exploit the underlying features of various
modalities to enable the end-to-end learning.
We evaluated our proposed method on Protein-
Protein Interaction task from the biomedical
corpus, where our proposed generalized ap-
proach is observed to be benefited by the ad-
ditional domain-specific modality.

1 Introduction

The biomedical scientific articles hold the valuable
knowledge of biomedical entities (such as protein,
drug, gene) and their relationships. However, with
the exponential increase in the volume of biomedi-
cal articles (Lu, 2011), it is imperative to advance
the development of an accurate biomedical text
mining tool to extract and curate meaningful infor-
mation from huge unstructured texts automatically.

One of the cardinal tasks in biomedical doc-
ument processing is Protein-protein interaction
(PPI), where the relation (‘interaction’ or ‘non-
interaction’) between two protein mentions is iden-
tified from the given biomedical text. The knowl-
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edge about protein interactions is critical in under-
standing the biological processes, such as signaling
cascades, translations and metabolism, that are reg-
ulated by the interactions of proteins that alter pro-
teins to modulate their stability (Elangovan et al.,
2020).

Majority of the existing works on PPI in the
literature primarily focused only on the textual in-
formation present in the biomedical article. How-
ever, these approaches lack in capturing (1) multi-
omnics biological information regarding protein
interactions, and (2) genetic and structure informa-
tion of the proteins. A few works (Dutta and Saha,
2020; Asada et al., 2018; Jha et al., 2020; Jha and
Saha) have been reported in the literature where the
researchers have considered different modalities
of the biomedical corpus. However, these multi-
modal architectures are modality-specific and thus
are very complex. Hence, there is a surge to de-
velop a generalized and optimized model that can
understand all the modalities rather than develop-
ing various architectures for different modalities.

Towards this, we explore Graph-based Trans-
former model (GraphBERT) (Zhang et al., 2020)
to learn the modality independent graph represen-
tation. This enables the model to acquire the joint
knowledge of both the modalities (textual and pro-
tein structure) under a single learning network. The
main contributions of this work are:

1. Besides the textual information of the biomed-
ical corpus, we have also utilized protein
atomic structural information while identify-
ing the protein interactions.

2. Developed a generalized modality-agnostic
approach that is able to learn the feature repre-
sentations of both the textual and the protein-
structural modality.

3. Our analysis reveals that addition of protein-
structure modality increases the efficiency of
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model in identifying the interacted protein
mentions.

Related Work: Existing studies have adopted
traditional statistical and graphical methods (Miyao
et al., 2008; Chang et al., 2016) to identify the pro-
tein interactions from the textual content. Later,
with the success of deep learning, several tech-
niques based on Convolutional Neural Network
(Choi, 2018; Peng and Lu, 2017; Ekbal et al., 2016),
Recurrent Neural Network (Hsieh et al., 2017;
Ahmed et al., 2019), Long Short Term Memory
network (Yadav et al., 2019; Ningthoujam et al.,
2019; Yadav et al., 2020), and language models
(Yadav et al., 2021) based methods are proposed
for extracting the relationships from biomedical
literature and clinical records. Fei et al. (2020)
proposed a span-graph neural model for jointly
extracting overlapping entity relationships from
biomedical text. The recent advancement of the
Transformer model (Lee et al., 2020; Beltagy et al.,
2019) in the biomedical domain has also led to sig-
nificant performance improvement in biomedical
relation extraction task (Giles et al., 2020). Re-
cently, the use of multi-modal dataset in BioNLP
domain (Dutta and Saha, 2020; Asada et al., 2018)
draws the attention of the researchers due to its
better performance than the traditional approaches.
In contrast, our model is independent of handling
multiple modalities without relying on modality-
specific architectures.

2 Proposed Method

In this section, we introduce our proposed method
and its detailed implementation. The proposed
deep multi-modal architecture is illustrated in
Figure-1, that consists of four main components:
(1) Multi-modal Graph Constructor, (2) Multi-
modal Graph Fusion, (3) Multi-modal Graph En-
coder, (4) PPI Predictor. Below we briefly de-
scribe each of the model components.

Problem Statement: Given a biomedical input
text S = {w1, w2, . . . , wn} having n words, and
a pair of protein mentions p1, p2 ∈ S, we aim to
predict, whether the protein mentions will ‘interact’
or ‘non-interact’.

2.1 Multi-modal Graph Constructor
This component consists of two distinct graph
constructors for two different modalities, which
are Textual Graph Constructor and Protein Struc-
ture Graph Constructor. The former, constructs

the graph by considering the textual content that
aims to capture the lexical and contextual informa-
tion present in the input. The later, exploits the
atomic structure (3D PDB structure) of the protein
molecules to build the graph.

Textual Graph Constructor: To generate the
textual graph, we begin by first constructing the
vocabulary from the training corpus. For each
input text S, we use one-hot-encoding mecha-
nism to encode them as a vector representation
RS ∈ R|V |. However, the representation RS suf-
fers from the data sparsity as the vocabulary size
can become very large for the entire training cor-
pus. To deal with this, we utilized the Principal
Component Analysis (PCA) (Wold et al., 1987)
to reduce the vector dimensionality. The textual
graph GT = {VT , ET } is formulated by the nodes
VT = {R̂S1 , R̂S2 , . . . , R̂S|N|}, where |N | is the
number of input sentences in the training dataset
and R̂Si ∈ R|V̂ | is reduced vector representa-
tion of size |V̂ | for sentence Si. The link ei,j be-
tween nodes R̂Si and R̂Sj is determined by the
common entities (protein) present in both the sen-
tences Si and Sj , if there is no common entity, then
link does not exist between the nodes. The edges
ET = {ei,j | i, j ∈ VT , and protein ∈ i, j} are the
set of all the links that exist between any two nodes
in the graph, GT .

Protein Structure Graph Constructor: For the
protein structural modality, we created a graph
where each node represents an atom and the edge
represents the connection between the atoms. To
obtain the atomic information about the proteins,
first we have mapped the proteins into genes and
utilized the PDB (Protein Data Bank)1 for each
associated protein mention. Each protein informa-
tion obtained from PDB consists of set of atoms
{a1, a2, . . . , aA}, and a node feature matrix, Np ∈
RA×dp . The node feature matrix for each protein k
undergoes the convolutional operation CNN(.) fol-
lowed by the max-pooling operation, pool(.). For-
mally, Pk = pool(relu(CNN(Npk))). The final
protein representation, PSi , for both the proteins
present in the given input sentence Si is computed
as follows: PSi = P1⊕P2. Following this, the pro-
tein structure graph GP = {VP , EP } is formulated
by the nodes VP = {PS1 , PS2 , . . . , PS|N|}, where
|N | is the number of input sentences in the train-
ing dataset and PSi ∈ Rds is the protein structure

1https://www.rcsb.org/
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Figure 1: An outline of the proposed deep multi-modal architecture for PPI.

representation of size ds for sentence Si.

2.2 Multi-modal Graph Fusion
In this component, we fused the textual graph GT
and protein structure graph GP with the aim of
generating a joint representation that is capable of
capturing the contextual, lexical, and multi-omnics
information. Towards this, we expanded the node
information of textual graph with the node informa-
tion obtained in the protein-structure graph. Specif-
ically, we created a multi-modal graph G with the
nodes V having concatenated vector representa-
tions from the respective nodes of textual graph
and protein structure graph. Formally,

Vi = R̂Si ⊕ PSi (1)

The link information remains intact in the multi-
modal graph fusion, thus, E = ET .

2.3 Multi-modal Graph Encoder
Majority of the existing works on multi-modal re-
lation extraction have treated multiple modalities
separately and exploited the modality-specific ar-
chitectures to learn the respective feature repre-
sentations. However, these strategies inhibit the
learning of inherent shared complementary fea-
tures, that are often present across the modalities.
To address this, we present an end-to-end multi-
modality learning mechanism that exploits the sin-
gle expanded multi-modal graph (obtained from the
Multi-modal Graph Expansion component) with
the Graph-based Transformer encoder. Specifically,
we utilized the Graph-BERT (Zhang et al., 2020)
encoder over the other dominants graph neural net-
works (GNNs) primarily due to its capability to
avoid the (a) suspended animation problem (Zhang

and Meng, 2019), and (b) over-smoothing problem
(Li et al., 2018) that hinders the applications of
GNNs for deep graph representation learning tasks.
For a given multi-modal graph G = (V, E) with
the set of nodes (V) and edges (E), Graph-BERT
sampled set of graph batches for all the nodes as set
G = {g1, g2, . . . , g|V|}. For all the nodes vj in sub-
graph gi, the Graph-BERT computes raw feature
vector embedding exj , role embedding erj , position
embedding epj and distance embedding edj . The ini-
tial input vector for node vj is computed as follows:
h
(0)
j = exj +erj+epj+edj . Furthermore, the initial in-

put vectors for all the nodes in gi can be organized
into a matrix H(0) = [h

(0)
i , h

(0)
i,1 , . . . , h

(0)
i,k ]
>, where

k is a hyper-parameter. The Graph-Transformer
(Zhang et al., 2020) computes the vector represen-
tation of D layers of transformers. The final feature
(zi) for node vj is computed as follows:

H(0) = [h
(0)
i , h

(0)
i,1 , · · · , h

(0)
i,k ]
>

H(l) = G-Transformer
(
H(l−1)

)
zi =

m=D∑
m=0

H(m)

(2)

2.4 PPI Predictor
The final feature (zi) of each node i is used to pre-
dict the PPI category. Towards this, we employed a
feed-forward network with softmax activation layer
to predict the input text into one of the two classes
interaction or non-interaction. Formally,

prob(c = interact|G, S, θ) = exp(W T zinteract
i + b)∑K

k=1 exp(W
T zki + b)

(3)

where, W and b are the weight matrix and bias
vector, respectively. K denotes total number of
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Precision Recall F-score

Proposed Model 80.84 80.87 80.86
Dutta and Saha (2020) 69.04 88.49 77.54
Yadav et al. (2019) 80.81 82.57 81.68
Hua and Quan (2016) 73.40 77.00 75.20
Choi (2018) 72.05 77.51 74.68
Qian and Zhou (2012) 63.61 61.24 62.40
Peng and Lu (2017) 62.70 68.2 65.30
Zhao et al. (2016) 53.90 72.9 61.60
Tikk et al. (2010) 53.30 70.10 60.00
Li et al. (2015) 72.33 74.94 73.61
Choi and Myaeng (2010) 74.50 70.90 72.60

Table 1: Comparative analysis of the proposed multi-
modal approach with state-of-the-art techniques for
BioInfer dataset.

Precision Recall F-score

HPRD50
Textual Modality 90.44 92.18 91.28
Proposed Model 95.47 94.69 95.06

BioInfer
Textual Modality 78.49 79.78 79.06
Proposed Model 80.84 80.87 80.86

Table 2: Results by uni-modal and multimodal ap-
proaches

distinct classes, which are ‘interaction’ and ‘non-
interaction’ in our case.

3 Datasets and Experimental Analysis

Datasets: In this work, we have collected two ex-
emplified multi-modal protein protein interaction
datasets (Dutta and Saha, 2020). In these datasets,
the authors exemplified two popular benchmark
PPI corpora, namely BioInfer2 and HPRD503.

Experimental Setup We have utilized the pre-
trained Graph-BERT4 in our experiment. The ini-
tial vocabulary for BioInfer and HPRD50 datasets
are 6561 and 1277, respectively. We have projected
them into 1000 and 1185 dimension vectors using
PCA, respectively. We have kept maximum of 5052
and 1185 number of words in both the datasets, re-
spectively. The filter-size of CNN is set to 3, 4. We
have obtained 1185 length node feature represen-
tation for protein structure graph. The nodes of
multi-modal graph received the 2185 sized feature
representation. We have obtained 2500 and 25859
number of nodes and edges from HPRD50 dataset
and 13675 and 15930214 number of nodes and
edges from BioInfer dataset for the Graph-BERT
training, respectively. We have used all the hyper-
parameters of Graph-BERT model in our proposed

2http://corpora.informatik.hu-berlin.de/
3https://goo.gl/M5tEJj
4https://github.com/jwzhanggy/Graph-Bert

Precision Recall F-score

Proposed Model 95.47 94.69 95.06
Dutta and Saha (2020) 94.79 75.21 83.87
Yadav et al. (2019) 79.92 77.58 78.73
Tikk et al. (2010) 68.20 69.80 67.80
Tikk et al. (2010)(with SVM) 68.20 69.80 67.80
Palaga (2009) 66.70 80.20 70.90
Airola et al. (2008)(APG) 64.30 65.80 63.40
Van Landeghem et al. (2008) 60.00 51.00 55.00
Miwa et al. (2009) 68.50 76.10 70.90
Airola et al. (2008)(Co-occ) 38.90 100 55.40
Pyysalo et al. (2008) 76.00 64.00 69.00

Table 3: Comparative analysis of the proposed multi-
modal approach with other state-of-the-art approaches
for HPRD50 dataset.

model. We have kept following hyper-parameters
values: subgraph size = 5, hidden size = 32, atten-
tion head number = 2, Transformer layers, D = 2,
learning rate = 0.01, weight decay = 5e 4, hidden
dropout rate = 0.5, attention dropout rate = 0.3, loss
= cross entropy, optimizer = adam (Kingma and
Ba, 2014). The hyper-parameters are chosen based
on the 5-fold cross-validation experiments on both
the datasets.

Results and Analysis: We have compared the
performance (c.f. Table-1,3) of our proposed model
with the existing state-of-the-art methods on PPI for
both the datasets. These existing methods are based
on different techniques like kernel-based (Choi
and Myaeng, 2010; Tikk et al., 2010; Qian and
Zhou, 2012; Li et al., 2015), deep neural network-
based (Zhao et al., 2016; Yadav et al., 2019), multi-
channel dependency-based convolutional neural
network model (Peng and Lu, 2017), semantic fea-
ture embedding (Choi, 2018), shortest dependency
path (Hua and Quan, 2016) and a recent deep multi-
modal approach (Dutta and Saha, 2020). It is to
be noted that our results on BioInfer and HPRD50
are not directly comparable with the existing ap-
proaches as other methods have utilized different
test sets for evaluation. From the above compar-
ative study, it is evident that our proposed multi-
modal approach identifies the protein interactions
in an efficient way and can be further improved in
different ways.

Discussion: To analyze the role of each modality,
we conducted ablation study as shown in Table
2. We performed the experiments with the textual
modality. Here, we could not consider the protein-
structural modality alone as it would bring the con-
flicting labeling relation. For example, consider
two sentences that contain same pair of proteins
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Figure 2: Confusion matrices of our proposed approach on both HPRD and BioInfer datasets with only textual
modality and text+structure modality.

but these proteins can have conflicting relations
(interacting or non-interacting) depending on the
context of sentences in which they appear. Hence,
we could not consider the protein-structural modal-
ity alone. Though the structural modality is unable
to draw any conclusion alone, however the integra-
tion of both the modalities demonstrates the im-
provements (3.78% and 1.8%, in terms of F-score
for HPRD50 and BioInfer, respectively) over the
textual modality alone.

4 Error Analysis

The comparative confusion matrices with only
textual-modality and multi-modality for both the
datasets are shown in Figure-2. We have performed
error analysis to postulate possible reasons and ar-
eas with scope of improvement in our experiments.
After careful study on false positive and false nega-
tive classes, following observations can be made.
1) Instances with a large number of protein men-
tions in a single sentence can cause misclassifica-
tion. For example, the maximum number of pro-
teins in any instances of BioInfer and HPRD50
datasets are 26 and 24, respectively. These large
number of proteins present in a single instance may
lead the network to misclassificaton.
2) Few samples contain repeated mentions of the
same protein. This adds noise and might lead to
losing useful contextual information.
3) To get a consistent graph from molecular struc-
ture, the nodes were required to be of the same

length. This is done by padding the vectors with
zeros, and when the PDB is not available, a null
vector is used for consistency. A better handling
of missing data will help in learning the proposed
model.

5 Conclusion

This work presents a novel modality-agnostic
Graph-based framework to identify the interactions
between the proteins. Specifically, we explored
two modalities: textual, and molecular structure
that enable the model to learn the domain-specific
multi-omnics information complementary with the
task-specific contextual information. A detailed
comparative results and analysis proves that our
proposed multi-modal approach can capture un-
derlying molecular structure information without
relying on sophisticated modality-specific architec-
tures. Future work aims at extending this study to
the other related tasks like drug-drug interactions.
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